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Abstract

Renal magnetic resonance (MR) imaging has undergone major improvements in the past several years. This review
focuses on the technical basics and clinical applications of MR angiography (MRA) with the goal of enabling
readers to acquire high-resolution, high quality renal artery MRA. The current role of contrast agents and their safe
use in patients with renal impairment is discussed. In addition, an overview of promising techniques on the
horizon for renal MR is provided. The clinical value and specific applications of renal MR are critically discussed.

Introduction
Since its clinical introduction in the 1990’s magnetic reso-
nance angiography (MRA) has become an increasingly
important tool in the evaluation of the renal vasculature
[1-3]. Its benefits compared to the clinical gold-standard
method, digital subtraction angiography (DSA), are well-
known and widely discussed: a lack of ionizing radiation,
non-invasiveness, and no reliance on iodinated contrast
agents, the latter being particularly important in patients
with impaired renal function. Even at 1.5 T, renal artery
MRA allows accurate detection of renal vascular disease
such as fibromuscular dysplasia, arterial dissection, and
venous thrombosis, in addition to allowing accurate quan-
tification of vascular luminal narrowing in processes like
renal artery stenosis [4]. The ongoing incorporation of
higher field strength imaging into routine clinical practice
has further improved this method. The signal-to-noise
ratio (SNR) gains at 3 T compared to 1.5 T allow for utili-
zation of parallel imaging acceleration (PI) factors up to 3
without a significant loss in image quality. Higher PI fac-
tors are potentially advantageous in several ways and can
be utilized to increase spatial resolution or decrease acqui-
sition times. Reductions in acquisition time serve to also
reduce the potential for image degradation from diaphrag-
matic motion thus allowing for improved depiction of seg-
mental renal arteries. The use of newer contrast agents,
such as high relaxivity or protein binding Gadolinium
(Gd)-chelates, also improves image quality, particularly

when combined with SNR gains available at 3 T. These
factors have also allowed a reduction in the contrast agent
dose necessary to achieve diagnostic image quality. Beyond
purely morphological assessments of renal arterial wall
disease, time-resolved, dynamic imaging techniques such
as TRICKS, TREAT and TWIST [5] allow improved
assessment of the hemodynamic significance of such
abnormalities. Ultrafast gradients can likewise be utilized
to perform renal perfusion imaging wherein dedicated
post-processing algorithms can utilize signal intensity
changes over time to calculate functional parameters such
as the blood flow and tubular filtration. An overview of
the impact of field strength, parallel imaging, and dynamic
imaging techniques as well as the use of improved gadoli-
nium chelates on renal MRA will be provided in this
review.

Optimizing MRA-Sequences at 1.5 and 3 T
Independent of the body region being examined, success-
ful MRA depends balancing requirements of temporal and
spatial resolution. In particular with respect to detecting
segmental renal arterial pathology, an isotropic spatial
resolution with a voxel size < 1 mm3 is ideal. Furthermore
to accurately measure renal artery stenosis, a high spatial
resolution is desirable (Figure 1). Typically an in-plane
resolution of 1 mm can be achieved with current 1.5 T
MR-scanners and dedicated multi-element coils (Figure 2).
As noted above, isotropic voxel sizes are optimal, as they
exploit the three-dimensional character of MRA-datasets,
allowing for multiplanar reconstructions without loss in
image quality. Recent studies investigating different
approaches for measuring renal artery stenosis (i.e.
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Figure 1 Two thin MIP reconstructions of MRA scans from two different patients (A, B) are presented. The high-grade renal artery
stenoses are well-depicted on both scans. In the second patient (B), the renal artery stenosis has led to a renal infarction with resultant
parenchymal scarring and shrinking of the entire kidney.
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diameter reduction versus area reduction) have shown that
the use of area measurements, achievable with isotropic
voxel sizes, is far more accurate [4]. The depiction of
subtle renal artery changes, as in FMD, which can be par-
ticularly difficult to detect if distal in location, is facilitated
when high-spatial resolution MRA is also obtained with a
short acquisition time [6] (Figure 3).
Voxel size and SNR are inversely related, meaning

that keeping all other factors equal, increasing spatial

resolution always reduces SNR and thus potentially
overall image quality. Reductions in scan acquisition
time can likewise deteriorate image quality. So how
can MRA protocols be optimized when high-spatial
resolution, short acquisition times, and optimal image
quality are all desired? Although there is no perfect
solution to this dilemma, parallel imaging, greater field
strengths, and dedicated contrast agents are helpful in
this regard.

Figure 2 Source data as well as thin MIP reconstructions of renal MRAs are provided, acquired in the same patient at 1.5 and 3 T.
Although the renal vasculature is clearly depicted at 1.5 T, the SNR and CNR gains at 3 T provide even more homogeneous vessel signal,
improving visualization of smaller subsegmental branches.

Figure 3 This case illustrates the benefits of higher fields strengths for MRA: in distinction to DSA (A), on which a string-and-bed like
appearance of the right renal artery consistent with fibromuscular disease is depicted clearly, this morphology is hardly visible on
the corresponding MRA scan (B), acquired on a 1.5 T scanner. Thin MIP reconstructions of a renal MRA, performed on a 3 T scanner in a
different patient (C), demonstrate similar vessel changes very clearly.
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In parallel imaging, the inherent ability of coil elements
in multi-element coils to localize MR signal along the
phase encoding direction is utilized to reduce the number
of phase-encoding steps–a major factor influencing scan
acquisition time. Such under sampling can be employed
to acquire images with the same spatial resolution at a
shorter acquisition time or alternatively to acquire higher
spatial resolution images at the same acquisition time.
The degree of under sampling utilized is reflected by the
parallel imaging acceleration factor. Various vendor spe-
cific parallel imaging reconstruction algorithms are avail-
able working either in the image domain such as SENSE
(Sensitivity Encoded) [7] or the k-space domain such as
GRAPPA (Generalized Auto-calibrating Partially Parallel
Acquisition Technique) and SMASH (Simultaneous
Acquisition of Spatial Harmonics) [8]. While each algo-
rithm allows under sampling, the techniques possess dif-
ferent properties. SENSE acquires so-called reference
lines before the actual acquisition, which renders it sus-
ceptible to patient motion occurring between these two
steps. With GRAPPA, reference lines are integrated into
the acquisition rendering it less motion sensitive. The
major drawback with GRAPPA is that this type of inte-
gration results in a smaller effective acceleration factor.
Regardless of the technique utilized, the value of parallel
imaging for abdominal MRA has been proven in various
studies [9-11]. Specifically, Born et al demonstrated that
SENSE parallel imaging significantly improved scan qual-
ity and reduced the necessary patient breath-hold time
[11]. The acquisition time in that study was also shorter
and spatial resolution higher with parallel imaging. The
improved spatial resolution enabled improved depiction
of the distal renal arteries; although, these improvements
came at a slight, but measurable SNR loss. As these stu-
dies were conducted at 1.5 T, the acceleration factors
used were 2 and 3. Clinically, acceleration factors of at
least 2 are preferred. Although parallel imaging accelera-
tion is most typically employed in the phase-encoding
direction, implementation of advanced coil systems, such
as high density coils, allows under sampling in both the
phase and partition-encoding directions [12]. The shorter
scan acquisition times facilitated by parallel imaging
allow depiction of the distal renal arteries and greatly
improve the robustness of MRA in critically ill patients.
Moreover, the probability of diaphragmatic motion arti-
fact degrading scan quality, which can occur in younger
patients as well, is also reduced [13].
Imaging at higher field strengths, such as 3 T, is one

way to address the decreases in SNR associated with
higher parallel imaging acceleration factors. SNR is theo-
retically at least doubled at 3 T compared to 1.5 T [14].
Studies investigating renal MRA at 3 T have thus utilized
acceleration factors of 3 and greater [14-17]. Due to the
progressive installation of 3 T scanners worldwide, the

SNR gains of higher field strengths have become more
widely available. Up to 20% of the newly installed MR-
scanners currently operate at 3 T. The simplest way to
appreciate the gains possible with 3 T MR is to increase
the readout bandwidth, hence reducing the acquisition
time. The greater SNR also allows increases in spatial
resolution to the sub-millimeter level with similar image
quality compared to standard 1.5 T imaging [14]. To
maintain reasonable acquisition times in high-spatial
resolution 3 T imaging, implementation of parallel ima-
ging is essential.
The benefits of performing MRA on 3 T systems extend

beyond the theoretical doubling of SNR. Due to the pro-
longed T1 relaxation times of the stationary background
tissue at 3 T, differences in signal between the contrast-
enhanced vessel lumen and the stationary background tis-
sue are accentuated. Smaller and more peripheral vessels
are consequently depicted more clearly. This feature of
3 T MRA enables contrast agent dose reduction. However,
the implementation of 3 T MR imaging is not without
new dilemmas. One major problem is the four-fold
increase in SAR (specific absorption rate)–a factor often
strictly limited by local or national safety regulations.
There are three principle ways to address SAR concerns,
but all warrant careful consideration due to potentially
detrimental effects on image quality. Repetition times can
be increased, but at the expense of scan acquisition time.
The flip angle can also be reduced; although, this may
negatively affect T1 image contrast. Utilization of parallel
imaging is the third means of obviating the SAR problem.
Implementation of parallel imaging results in a decreased
number of RF-pulses and thus diminished energy
deposition.
Typical protocols for a state-of-the art renal MRA at

1.5 T and 3 T are given in Table 1.

Bolus Timing Techniques
Optimal contrast agent bolus timing is an additional pre-
requisite for high-quality MRA of the renal arteries. If
the imaging acquisition is begun too early relative to the
contrast bolus, ringing artifacts may impair image quality.
If the acquisition is delayed, parenchymal and venous
enhancement may likewise degrade image quality. One
common method to achieve successful bolus timing is to
use the test bolus technique. This is based on the injec-
tion of a small amount (typically 1 ml) of contrast agent
at the same rate to be utilized for the injection of the
actual bolus. To calculate the individual circulation time,
a single slice at the level of the renal arteries is acquired.
Subtracting the time the test bolus needs to arrive in the
area of interest from the time-to-center gives the delay at
which the scan should be started. MR-fluoroscopy can
also be used for this purpose. This technique employs
continuous image acquisition with contemporaneous
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image reconstruction (Figure 4). Once the contrast bolus
arrives at the area of interest, the full MRA-sequence is
either manually or automatically started. The fluoro-
scopic technique has the advantage of being more time-

efficient and easier to implement than the test bolus
approach. The major disadvantage of MR fluoroscopy is
the short period of time between the fluoroscopic and
actual MRA acquisition. This leaves the patient less time

Table 1 Specific sequence parameters for the MRA at 1.5 T (Siemens Avanto) and 3.0T (Siemens TimTrio) using a 6-
element body matrix coil and the inbuilt 32-element spine coil

1.5 T MRA slow 1.5 T MRA fast 3.0 T MRA

TR/TE [ms] 3.77/1.39 3.77/1.39 3.14/1.1

Flip angle [°] 25 25 23

Bandwidth [Hz/Px] 350 350 510

Matrix 512 × 80% 512 × 80% 512 × 80%

FOV [mm2] 400 × 87% 400 × 87% 400 × 81%

Phase Oversampling [%] 0 0 8

Voxel size [mm3] 0.8 0.8 0.65

Spatial resolution [mm3] 1 × 0.8 × 1 1 × 0.8 × 1 0.9 × 0.8 × 0.9

Scan time [s] 26 19 18

Partitions 80 80 96

Parallel imaging GRAPPA factor 2 GRAPPA factor 3 GRAPPA factor 3

Figure 4 An example of MR-fluoroscopy is illustrated. MR-fluoroscopy can be used in place of test bolus techniques. In MR-fluoroscopy,
continuous image acquisition with online image reconstruction is performed. Whenever the contrast bolus arrives in the area of interest,
acquisition of the MRA-sequence can be either manually or automatically initiated. Even with the time-efficiency and ease-of-use of this
technique, the abrupt switch from fluoroscopic measurements to the actual MRA-acquisition often minimizes the time for the patient to inspire
for the breath hold, consequently increasing the risk of motion artifact.
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to initiate the breath hold necessary for the acquisition,
thus resulting in a higher risk of diaphragmatic motion
artifact.

Time-resolved techniques
Even at sites with a great deal of experience with the tech-
nique, static MRA acquisitions can fail, most frequently as
a result of poor bolus timing. As such, time-resolved ima-
ging techniques offer an appealing alternative. Time-
resolved MRA eliminates the need for a test bolus or MR
fluoroscopy, as the acquisition is started upon injection of
the contrast bolus. Modern time-resolved MRA based on
view-sharing was first introduced by Korosec et al [5]. In
this technique, called TRICKS, k-space is divided into cen-
tral and peripheral portions containing contrast and image
detail information, respectively. As the k-space center is
updated more frequently than the periphery, which is rela-
tively under sampled, contrast information is fully sampled
at temporal resolution sufficient to fully resolve the pas-
sage of contrast bolus. Newer sequences combining view-
sharing and parallel imaging are named TREAT and
TWIST. The combination of parallel imaging with view-
sharing allows further increases in temporal resolution.
The benefits of time-resolved imaging exceed accurate ste-
nosis detection alone: the hemodynamic significance of
such changes can also be assessed. Moreover, pure arterial
and venous phases are depicted. Time-resolved MRA is, of
course, not without limitations. First, the tradeoff of the
improved temporal resolution is a reduction in spatial
resolution far below that achievable with static MRA-
exams. Second, particularly for abdominal time-resolved
MRA, the coordination of the sequence start and the pre-
sumed arrival of the contrast bolus at the target site with a
given patient’s breath hold capabilities render abdominal
time-resolved MRA susceptible to motion artifacts. As
noted above, low-dose time-resolved MRA is often
acquired instead of a test bolus measurement prior to sta-
tic MRA. For this purpose, minor motion artifacts and the
relatively lower spatial resolution are of little consequence.

Contrast agents
Any approved gadolinium-chelate MR-contrast agents
(hereafter referred to as ECCM - extracellular contrast
agents) can be theoretically administered for renal MRA.
The diagnostic performance of these ECCM in controlled
clinical trials with comparison to intra-arterial angiography
is comparable [18,19]. Traditionally, renal MRA has been
performed with both single (0.1 mmol/kg) and double (0.2
mmol/kg) dose ECCM. However, most studies have found
a single dose to be sufficient [20,21] and to reveal less
degradation from background parenchymal enhancement
[22]. Despite this, double doses were still widely used clini-
cally prior to the advent of nephrogenic systemic fibrosis
(NSF), which has dramatically changed dosing of Gd-

based ECCM in clinical MRA [23]. NSF describes a
systemic body collagenosis, most likely evoked by the
deposition of Gadolinium ions in body tissue. NSF is most
commonly reported in patients with markedly impaired
renal function after repeated injections of high doses of
Gd-based ECCM. In addition to dose, the chemical struc-
ture of the injected chelate, which defines its molecular
stability, has a major impact on the risk of developing
NSF. Various studies have demonstrated reduced stability
of linear, non-ionic chelates relative to their macrocyclic
counterparts [24]. According to the new European Medi-
cines Agency (EMA)-guidelines, linear ECCMs Gd-DTPA
and Gadodiamide are contraindicated in patients with a
eGFR < 30 ml/min [25]. For the linear Gd-BOPTA and
the macrocyclic chelates gadobutrol and gadoterate
meglumine, there is no such contraindication in this
patient group; although, dose minimization is recom-
mended. Currently, only the macrocyclic chelates are con-
sidered low-risk with regard to the risk of NSF. However,
there remains, even with the macrocyclic agents, a strong
clinical impetus to minimize contrast dose. Higher relaxiv-
ity gadolinium chelates have been shown to maximize
signal intensity in abdominal and abdominopelvic imaging
in several studies [26-28]. These studies also demonstrated
that such improvement in vessel signal facilitates visualiza-
tion of smaller vessels. The use of a single dose of contrast
agent has also been fostered by the trend to acquire MRA
examinations at 3 T. The results of studies at 3 T have
indicated that single dose 0.5 M ECCM at 3 T yields simi-
lar diagnostic image quality despite lower SNR than dou-
ble dose 0.5 M ECCM at 1.5 T [29], and that comparable
image quality can be achieved with single dose 0.5 M
ECCM at 3 T despite acquisition at higher spatial resolu-
tion [30]. For peripheral MRA a sub-single dose of 0.07
mmol/kg (as opposed to the typical single dose of
1 mmol/kg) has been shown sufficient to achieve homoge-
neous enhancement throughout the peripheral vasculature
[31]. This low of a dose seems likely to be feasible for
renal artery MRA as well. When utilizing sub-single doses,
the enhancement properties of the contrast agents
becomes more important as shown in an animal study
where half dose gadobutrol was found superior to Gd-
DTPA and Gd-BOPTA [32].

NCE Techniques
In light of the trend to decrease contrast agent dose,
and because two of the most widely used macrocyclic
ECCMs have long time not been approved in the United
States, there has been a renewed interest in non-con-
trast enhanced (NCE) MRA. The newer NCE MRA
techniques are based on the inflow of arterial blood into
the imaging plane–a property made possible by a SSFP-
type read-out scheme. Numerous vendor-specific varia-
tions on this technique are available. These differ as to
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whether ECG-gating is necessary, the type of respiratory
gating or type navigator utilized, the primary acquisition
plane, and the specific preparation pulses included
[33-37]. As of now, NCE-MRA appears to be a suitable
screening tool for detection of renal artery stenosis;
although, accurate stenosis grading may not always be
possible. As with CE-MRA, NCE-MRA benefits from
the transition to 3 T where the inflow signal is stronger
for SSFP-type approaches and decay of arterial labelling
is slower for spin-labelling techniques (Figure 5). In
patients with low cardiac output, the inflow-effect of the
blood is less pronounced, and scanning such patients
requires longer acquisition times so as to overcome this
technical limitation. Most NCE-MRA techniques rely on
a transversely oriented slab, thus rendering the techni-
que prone to missing aberrant or accessory renal
arteries. Recent NCE-MRA studies at 1.5 and 3 T in
renal transplant patients with limited respective cohorts
of 13 and 20 subjects have demonstrated a high diag-
nostic accuracy for stenosis detection with a sensitivity
of 100% and a specificity of 88% relative to intra-arterial
angiography [38,39]. NCE-MRA is an ideal technique by
which to evaluate renal transplant grafts as the trans-
verse imaging slab is sufficient to cover the transplant
artery, and the administration of contrast material to
these patients might be contraindicated depending on
local guidelines regarding contrast administration.

MRA Limitations and Areas for Improvement
Today, MRA is considered the most cost-effective tool
for the diagnosis of renovascular hypertension [40] with
initial CE-MRA studies yielding specificities and sensi-
tivities of up to 100% [41,42]. However, these initial
results were probably biased by the small number of
patients examined, as a larger multicenter study (RAD-
ISH-study) has failed to reproduce such high values,
finding a low sensitivity (62%) for the detection of renal
artery stenoses with CE-MRA and low interobserver
agreement [43]. Recent large multicenter studies on
interventional therapies (PTA ± stenting) for renal
artery stenosis (ASTRAL and STAR) have failed to
demonstrate a benefit versus medical therapy alone
[44,45]. From these results, two conclusions can be
drawn. First, there is clearly potential for improvement
in the diagnostic accuracy of MRA, which may be
accomplished through use of high-resolution techniques.
A more recent study by Kramer et al evaluated a high
resolution MRA sequence at 3 T finding high diagnostic
accuracy for stenosis detection with respective sensitivity
and specificity of 94% and 96% for detection of signifi-
cant renal artery stenosis [16]. Imaging with higher spa-
tial resolutions may overcome some of the problems
encountered in the RADISH study in which a large pro-
portion of patients with FMD were included. Second,
selection of patients for interventional therapy should be

Figure 5 Axial and coronal reformats of native TrueFISP renal MRAs are shown, acquired at 1.5 (A) and 3 T (B). These techniques are
based on the inflow of arterial blood into the imaging plane, which is made visible by a SSFP-type of read-out scheme which is available in
numerous vendor specific variations. Whereas, NCE-MRA appears to be a suitable screening tool for renal artery stenosis detection, accurate
stenosis grading might not always be feasible. Courtesy of PD Dr. Blondin, University of Dusseldorf.

Attenberger et al. Journal of Cardiovascular Magnetic Resonance 2011, 13:70
http://www.jcmr-online.com/content/13/1/70

Page 7 of 13



based not only on the absolute degree of arterial nar-
rowing but also upon functional MR parameters. Renal
artery MRA can easily be extended to a comprehensive
examination including MR-perfusion and filtration mea-
surements [46-49] (Figure 6), diffusion-weighted and

diffusion tensor imaging [50-53], T2-mapping, and
blood-oxygen level dependent imaging [54-57]. Only an
additional 5-10 minutes is required for the acquisition
of these additional sequences, which provide further
diagnostic information to better detect and stratify

Figure 6 Using dedicated post-processing, renal perfusion and filtration can be quantified based on high temporal resolution data
sets. Figure 6A illustrates in this instance non-enhanced, arterial phase and late venous phase images, subsequently acquired with a high-
temporal resolution TurboFLASH sequence. After post-processing, color coded maps as well as quantified values of renal perfusion (plasma flow,
FP) and filtration values (tubular flow, FT) can be derived from the primary MR data set. This analysis is, for example, especially helpful in
evaluating therapeutic success after interventional procedures as shown in Figure 6B. After stenting of a high-grade renal artery stenosis, the
plasma flow value normalized as did cortical and medullary oxygenation, both of which can be measured using a BOLD-sequence. These
techniques along with BOLD, as illustrated in this case, have extended the utility of MR beyond purely morphologic assessments, allowing
detection of functional renal impairments.
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existing renal damage (Table 2). A recent study on MR-
perfusion measurements by Attenberger et al has
already demonstrated the value of this approach in tria-
ging patients [58]. In that study, the inclusion of MR-
perfusion measurements led to significantly higher
detection rates of renal disease beyond that purely of
renovascular origin. Other studies have shown that in
renal transplants, MR-perfusion measurements are able
to demonstrate global and focal perfusion changes,
hence providing valuable hints at the origin of chronic
renal failure [47,59]. Diffusion-weighted MR derived
ADC (Apparent Diffusion Coefficient) values correlate
with patient GFR [51] and are inversely proportional to
the degree of stenosis present [60]. Similarly, increased
fractional anisotropy (FA) values, reflecting the depen-
dence of water motion on the renal parenchymal fibro
structure, have been found in kidneys with unilateral
renal artery stenosis and indicate the presence of renal
fibrosis [50]. In a controlled trial in a murine model, the
degree of renal fibrosis, as measured by specific myofi-
broblast biomarkers, has also correlated well with
decreases in ADC values [61]. All of the aforementioned
functional imaging modalities also benefit from the tran-
sition to 3 T, primarily due to the higher SNR but also

as a result of the increased effects of susceptibility at the
higher field strength [62-64]. Numerous other studies
demonstrate that functional renal MR-imaging yields
valuable information beyond purely morphological
assessments. However, no controlled clinical trials have
been conducted combining these different functional
imaging tools in a large patient cohort undergoing inter-
ventional therapy. Such a study would be useful to iden-
tify specific factors that predict patient outcomes or
allow improved assignments of patients to specific
therapies.

Future Advances
What further improvements of renal MRA can we
expect in the future? Arterial spin labeling measure-
ments of renal perfusion were introduced over a decade
ago [65] but have not yet found their way into broad
clinical use (Figure 7). Several studies on sequence
improvement and the transition to higher field
strengths–the latter from which the tagging-based spin
labelling techniques benefit due to the longer T1-times–
have been published since that time [66]. In a clinical
study on the value of ASL-perfusion imaging, Michaely
et al [67] found utilization of renal ASL-perfusion

Table 2 Functional renal imaging sequences

Sequence Type Description

MR-perfusion and filtration measurements Allow assessment of renal blood flow and calculation of split renal function

Diffusion-weighted imaging/Diffusion tensor
imaging

ADC-values roughly correlate with renal function, FA-values can be used as marker for renal
fibrosis

BOLD-Measurements Specific R2* changes can be seen in various diseases (ATN, chronic rejection)

T2-Measurements Experimental technique wherein T2 seems to correlate with renal function

Figure 7 A color coded ASL as well as an ADC map are demonstrated in a patient with a shrunken, fibrotic left kidney due to
ischemia. In this case, the ASL color coded map illustrates reduced perfusion compared to the contralateral, un-affected kidney, whereas the
ADC map shows restricted diffusion. Arterial spin labeling measurements of renal perfusion have not yet been widely accepted into routine
clinical practice. The principle dilemma with ASL-techniques is the inherently low signal intensity. The technique is also prone to susceptibility
artifacts. Courtesy of PD Dr. Blondin, University of Dusseldorf.
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measurements in combination with MR-flow measure-
ments to distinguish healthy from diseased kidneys with
specificity and sensitivity of 99% and 69%, respectively.
Fenchel and colleagues applied FAIR-ASL measure-
ments to patients with renal artery stenosis where they

showed a good correlation of ASL-perfusion images
with the degree of stenosis (r = 0.76) and with single
photon emission tomography perfusion data (r = 0.83)
[68]. The main problem with ASL-techniques is the
inherent low signal intensity and its susceptibility to

Figure 8 Based on conventional phase-contrast MRA and driven by the increase in available post-processing computing power, a new
vascular imaging technique with great clinical potential has evolved in the past few years: a flow-sensitive, 3-dimensional, and 3-
directional time-resolved gradient echo sequence–often referred to as 7D-MRA. This figure illustrates the evaluation of renal artery stenosis
using DSA for reference (A) and MRA (B). The flow alterations around the stenosis present can not only be visualized on color coded post-
processed 7D-MRA parameter maps (C) with red indicating increased post stenotic flow, but also the trans-stenotic pressure gradient can also be
quantified (D) using the Bernoulli equation. Courtesy of PD Dr. Bley, UKE Hamburg.
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artifacts. Their greater clinical availability, trends toward
functional renal MR assessments, and the need to mini-
mize or stop contrast agent administration will likely
foster broader acceptance of renal ASL-measurements.
Based on conventional phase-contrast MRA-techni-

ques and driven by increased post-processing computing
power, a new vascular imaging technique with great
clinical potential has evolved in the past years: a flow-
sensitive, 3-dimensional, and 3-directional time-resolved
gradient echo sequence–often referred to as 7D-MRA.
Once acquired, data from 7D-MRA are analysed to yield
phase contrast MR angiography, color-coded stream-
lines, and particle trace 3D visualization. The latter
allows graphical depiction of flow patterns in a vessel.
Initial results have demonstrated potential for detecting
altered flow patterns in aneurysms or in patients with
aortic disease [69,70]. Impressively, the technique has
also demonstrated retrograde aortic arch flow in stroke
patients secondary to retrograde emboli [71]. No robust
data is available for this technique at present for evalua-
tion of the renal vasculature. Based on personal commu-
nication, initial 7D-MRA data in a swine model of renal
artery stenosis allows for visualization and quantification
of stenotic flow acceleration (Figure 8, additional file 1
and 2). Utilizing the Bernoulli equation, trans-stenotic
pressure gradients can reliably derived from the 7D-
MRA data, most likely rendering this technique a pivotal
tool for future interventional decision making. One
minor current dilemma is the potential for the failure of
particle trace calculations with high grade stenoses (Fig-
ure 9). Exemplary movies demonstrating the 7D-MRA
technique can be downloaded online.

Summary
Renal MRA is a continuing success story. Current state
of the art 3 T MRA allows reliable detection of even the
most subtle renal artery changes with utilization of

relatively small contrast agent doses. Whether non-con-
trast enhanced MRA techniques continue to flourish
depends upon their further development and demon-
stration of their clinical utility, the latter being shown
thus far only in the assessment of renal transplants. In
the future, MRA–whether performed with or without
contrast agents–will most likely be combined with func-
tional MR renal imaging techniques such as MR-perfu-
sion measurements which currently lie on the brink of
broad clinical application.

Additional material

Additional file 1: 7D-MRA renal arteries. Particle-trace depiction of a
7D-MRA in a swine model. The flow velocity of the blood in the renal
artery can be measured. Courtesy of PD Dr. Bley, UKE Hamburg.

Additional file 2: 7D-MRA renal artery stenosis. The particle-trace
depiction of a renal artery stenosis in a swine model demonstrates
increased flow velocity at the site of the stenosis. Courtesy of PD Dr.
Bley, UKE Hamburg.
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