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Abstract

Background: Molecular signaling of angiogenesis begins within hours after initiation of a stroke and the following
regulation of endothelial integrity mediated by growth factor receptors and vascular growth factors. Recent studies
further provided insights into the coordinated patterns of post-stroke gene expressions and the relationships
between neurodegenerative diseases and neural function recovery processes after a stroke.

Results: Differential protein-protein interaction networks (PPINs) were constructed at 3 post-stroke time points, and
proteins with a significant stroke relevance value (SRV) were discovered. Genes, including UBC, CUL3, APP, NEDD8,
JUP, and SIRT7, showed high associations with time after a stroke, and Ingenuity Pathway Analysis results showed
that these post-stroke time series-associated genes were related to molecular and cellular functions of cell death,
cell survival, the cell cycle, cellular development, cellular movement, and cell-to-cell signaling and interactions.
These biomarkers may be helpful for the early detection, diagnosis, and prognosis of ischemic stroke.

Conclusions: This is our first attempt to use our theory of a systems biology framework on strokes. We focused on
3 key post-stroke time points. We identified the network and corresponding network biomarkers for the 3 time
points, further studies are needed to experimentally confirm the findings and compare them with the causes of
ischemic stroke. Our findings showed that stroke-associated biomarker genes at different time points were
significantly involved in cell cycle processing, including G2-M, G1-S and meiosis, which contributes to the current
understanding of the etiology of stroke. We hope this work helps scientists reveal more hidden cellular
mechanisms of stroke etiology and repair processes.

Background
Stroke is the third leading cause of mortality and the
primary cause of permanent disability worldwide; 87% of
all strokes are ischemic [1]. Ischemic strokes are classi-
fied into cardioembolic, large-vessel, small-vessel lacu-
nar, cryptogenic, and other causes based on stroke

etiology. Cardiogenic embolisms account for ~20% of
ischemic strokes each year [2]. Cardioembolic strokes
are largely preventable through efforts at primary pre-
vention for major-risk cardioembolic sources, e.g. high
blood pressure, hyperlipidemia, etc. Once a cardioem-
bolic stroke occurrs, the likelihood of recurrence is rela-
tively high; therefore, the following prevention is also
important. When known causes of strokes are identified,
etiologic classification can guide treatments. Not knowing
the etiology of a stroke restricts optimal therapy imple-
mentation and limits stroke research [3]. Several studies
offered evidence of significant genetic implications in
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ischemic stroke [4]. We attempted to examine whether
gene expression features in the blood can distinguish the
causes of stroke, and determine whether these gene
expression profiles can predict the stroke etiology and its
outcomes.
Although no existing valid clinical criteria for diagnos-

ing cardioembolic stroke, a diagnosis of cardioembolism
can be based on the triad of (1) identification of a
potential source of cardiogenic embolisms, (2) exclusion
of other potential sources of cerebral ischemia, and (3)
consideration of clinical neurologic features. Cardioem-
bolism can be predicted on clinical grounds but is diffi-
cult to document [5]. Magnetic resonance imaging
(MRI), echocardiography, Holter monitoring, transcra-
nial Doppler, and electrophysiological studies increase
the ability to identify the origin of cardioembolisms. In
general, cardioembolic strokes have much worse prog-
nosis and produce larger and more-disabling symptoms
than other stroke subtypes. A recurrent embolism
occurs in 30%~60% of patients with a history of a pre-
vious embolic event [6]. Cardioembolic strokes are a
heterogeneous, complex disease resulting from interac-
tions between genetic and environmental risk factors
[7]. To understand contributions of various genetic risk
factors to the etiology of stroke, the genetic risk factor
must be analyzed and integrated in terms of biological
functions and pathways [8]. With advances in affordable,
high-throughput technologies, a systems biology study
of diagnoses and treatments of cardioembolic strokes
can shed light on applications of systems biology to the
diagnosis, prognosis, and therapy of cardioembolic
strokes.
In this study, we compared molecular interaction net-

works of 3 stages of cardioembolic strokes to reveal the
underlying cellular mechanisms of cardioembolic
strokes. As to different etiologies and heterogenic geno-
mic alterations of cardioembolic stroke, the systems
biology methodology integrated with Omics data is sui-
table to develop accurate diagnoses, novel therapeutic
targets, and efficient targeted therapies. In this study,
microarray data were applied to build the protein-
protein interaction (PPI) networks (PPINs) of 3 stages of
cardioembolic strokes. Network structures and protein
association abilities in different stages of cardioembolic
strokes were compared to obtain a set of significant pro-
teins which can serve as important network biomarkers
in the progressive process of cardioembolic strokes. In
the future, significant proteins including UBC, CUL3,
APP, NEDD8, JUP, SIRT7, etc., can be potent drug tar-
gets for first aid and emergency treatment within 24 h
post-stroke. The complex behaviors of strokes differ
from those of cancer and other complex diseases. We
hope that this work can help scientists reveal more

hidden cellular mechanisms of stroke etiology and repair
processes.

Materials and methods
Overview of the construction process of stroke network
marker
We successfully used our methods to find the core
and specific network markers of 4 different cancers
and the evolution of network markers from the early
to late stages of bladder cancer [9,10]. A similar theo-
retical framework was employed in this study to find
the evolution of network biomarkers of stroke at 3
time points which represent 3 important stages after a
stroke has occurred. The theoretical systematic
method in this paper was developed from a previous
study. Figure 1 shows the flowchart to identify net-
work biomarkers of stroke at 3 time points. Due to
the theoretical framework have been successfully
applied by us on various cancers and have been pub-
lished on many journals, so we do not repeat it in
detail in the main text. We only highlighted the signif-
icant key points of it and put the detailed description
in the Additional file 1.
At first, two kinds of data sources were combined to

build the network, they are microarray gene expression
data and the protein-protein interaction data. We used
them to construct the stroke PPINs (SPPINs, stroke
protein-protein interaction networks) and normal
PPIN (NPPINs). We calculated the stroke relevance
value (SRV) for each protein in the network, and
choose the proteins with top significant SRVs to be the
network biomarkers. Detailed please refer to Addi-
tional file 1.

Data sets selection and pre-processing
The stroke microarray dataset GSE58294 [11] and its
corresponding platform, GPL570, were obtained from
the NCBI GEO [12]. It contains gene expression data
following a cardioembolic stroke. The dataset con-
tained 3 time points of 23 stroke patients’ samples and
23 control samples from non-disease subjects (totally
23*4 = 92 samples) (Table 1). We built 3 SPPINs for 3,
5, and 24 h post-stroke in this study and the NPPIN.
We extract the PPI data for Homo sapiens from the
online interaction repository with data compiled
through comprehensive curation efforts, Biological Gen-
eral Repository for Interaction Database (BioGRID). It
was used to delete false-positive PPIs for pruning
PPINs. These PPINs of 3, 5, and 24 h post-stroke (3
SPPINs), and normal stage (NPPIN) were then com-
pared mathematically to get SRVs and corresponding
network markers (top SRVs). Detailed please refer to
Additional file 1 [13-15].
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Figure 1 Flowchart of constructing the network marker at 3 time points post-stroke. We integrated microarray data, a gene ontology
database, and protein-protein interaction (PPI) information to construct PPI networks (PPINs). These data were used for the differential protein
pool selection, and then the selected proteins and their corresponding microarray data were used for the contribution of PPIN by a maximum-
likelihood estimation and model order detection methods, resulting in a stroke PPIN (SPPIN) and a normal PPIN (NPPIN) in the 3 stages (3, 5, and
24 h post-stroke) of stroke. The 2 constructed PPINs were used to determine critical proteins of stroke by the difference of SPPIN and NPPIN
matrices. By the help of the differential value of these two networks, the stroke relevance value (SRV) was computed for each protein, and
significant proteins in the stroke recovery process were determined based on p values of the SRVs. These significant critical proteins with top
SRVs were obtained as network markers for the 3 stages of stroke.
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Protein pool selection and the PPINs identification for
stroke and normal samples
We collect a protein pool of those proteins with differen-
tial expressions to construct the corresponding SPPINs
and NPPIN. A one-way analysis of variance (ANOVA)
was used to screen out the differential proteins. We used
the following protein association model to describe the
PPI relationship:

xi(n) =
Mi∑
j=1

αijxj(n) + ωi(n) (1)

where xi(n) is the target protein i’s expression level for
each sample n (stroke or normal); xj(n) is the j-th pro-
tein’s expression level interacting with target protein i
for each sample n; aij means the ability of association
interaction (combination strength) between the i-th tar-
get protein and its corresponding j-th interaction pro-
tein; Mi is the number of proteins that interacting with
their i-th target protein; and finally ωi(n) means stochas-
tic noise caused by other factors in the biological sys-
tems or uncertainty of our model.
The second step is to use the maximum-likelihood

(ML) estimation method [16] to determine associated
parameters (combination strength) in (1) by the micro-
array expression data as follows (see Additional file 2):

xi(n) =
Mi∑
j=1

α̂ijxj(n) (2)

where α̂ij was determined by using microarray expres-
sion data and the ML estimation method.
To do the model order selection and determine the

significant protein interactions in α̂ij , finally we use the
Akaike information criterion (AIC) [16] and a Student’s
t-test [17] method (see Additional file 3). Please refer to
details in Additional file 1.

Determination of the network structures and their
corresponding significant proteins at 3, 5, and 24 h post-
stroke and normal stage
After pruning away the spurious false-positive PPIs, only
significant PPIs are remained:

xi(n) =
M′

i∑
j=1

α̂ijxj(n), i = 1, 2.....M (3)

where Mi’≤Mi is the number of significant PPIs in the
total PPIN, with the i-th target protein. The refined
PPIN is:

X(n) = AX(n) + w(n) (4)

where

X(n) =

⎡
⎢⎢⎢⎢⎢⎣

x1(n)

x2(n)

...

xM(n)

⎤
⎥⎥⎥⎥⎥⎦
, A =

⎡
⎢⎣

α̂11 . . . α̂1M
...

. . .
...

α̂M1 · · · α̂MM

⎤
⎥⎦ , and

w(n) =

⎡
⎢⎢⎢⎢⎢⎣

w1
’(n)

w2
’(n)

...

wM
’(n)

⎤
⎥⎥⎥⎥⎥⎦

The interaction matrix A of refined PPINs in equation
(4) for 3, 5, and 24 h post-stroke and normal cells was
constructed, respectively, as follows:

Ak
S =

⎡
⎢⎣

α̂k
11,S . . . α̂k

1M,S
...

. . .
...

α̂k
M1,S · · · α̂k

MM,S

⎤
⎥⎦ , and AN =

⎡
⎢⎣

α̂11,N . . . α̂1M,N
...

. . .
...

α̂M1,N · · · α̂MM,N

⎤
⎥⎦ (5)

where k = 3, 5, and 24 h post-stroke; Ak
S and AN are

the interaction matrices of the refined PPINs of 3, 5,
and 24 h post-stroke, respectively; and M denotes the
proteins number in the refined PPIN. The two protein
association (combination strength) models for both
SPPINs and the NPPIN for 3, 5, and 24 h post-stroke
and normal stage are:

xk
S(n) = Ak

SxS(n)

xN(n) = ANxN(n)
(6)

where k = 3, 5, and 24 h post-stroke and

xk
S(n) =

[
xk

1S xk
2S · · · xk

MS

]T and xN(n)=[x1N x2N ··· xMN]
T

are vectors of proteins expression levels.
We defined the difference matrix Ak

S − AN of the
DPPIN between SPPINs and NPPIN as follows:

Dk =

⎡
⎢⎣

dk
11 . . . dk

1M
...

. . .
...

dk
M1 · · · dk

MM

⎤
⎥⎦ =

⎡
⎢⎣

α̂k
11,S − α̂11,N . . . α̂k

1M,S − α̂1M,N
...

. . .
...

α̂k
M1,S − α̂M1,N · · · α̂k

MM,S − α̂MM,N

⎤
⎥⎦ ; (7)

Table 1. Descriptive information on datasets extracted from the GEO database used in this study

Disease GEO accession number 3 h Post-Stroke 5 h Post-Stroke 24 h Post-Stroke Normal platform

Stroke GSE58294 23 23 23 23 GPL570
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where k = 3, 5, and 24 h post-stroke; dk
ij is the protein

association (combination strength) ability difference
between SPPINs and NPPIN at k = 3, 5, and 24 h post-
stroke and normal samples; and matrix Dk is the differ-
ence in network structures between SPPINs and the
NPPIN for k = 3, 5, and 24 h post-stroke and normal
samples.
Then we defined a stroke relevance value (SRV) to

show the difference summation of SPPIN and NPPIN as
follows [13]:

SRVk =

⎡
⎢⎢⎢⎢⎢⎢⎣

SRVk
1

...
SRVk

i
...

SRVk
M

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

where SRVk
i =

M∑
j=1

∣∣∣dk
ij

∣∣∣ , and k = 3, 5, and 24 h post-stroke.

Detailed please refer to Additional file 1.

Pathway analysis by many on-line freeware and powerful
commercial software
We mapped the network biomarkers found to several
on-line freeware of pathway analysis, such as KEEG
(Kyoto Encyclopedia of Genes and Genomes) [18],
NOA (network ontology analysis) [19,20] and the
DAVID bioinformatics database [21,22]. They can help
to investigate critical pathways related to these network
markers and explore the relationships between these
pathways and stroke. They also can illustrate the biolo-
gical processes, cellular components and molecular
functions. They also interpret the pathways involved in
stoke etiology and repair processes. To complete our
research results, we used the well-known commercial
software, Ingenuity® Pathway Analysis (IPA) and Meta-
core, to do multiple functional and pathway analyses.
IPA® is from QIAGEN (Redwood City, CA, http://
www.qiagen.com/ingenuity). MetaCore™ is an inte-
grated software suite from GeneGo for functional ana-
lysis of microarray, metabolic, SAGE, proteomics,
siRNA, microRNA, and screening data. Please refer to
details in Additional file 1.

Results and discussion
Evolution of network biomarkers at 3 post-stroke time
points
We built DPPINs for the 3 post-stroke time points (3, 5,
and 24 h) (Figure 2). The SRVs of each protein in the 3
PPINs were calculated. One can find more information
than SRVs in this figure, such as the edges and nodes of
these PPINs. Screened by the p value of the SRV, we
found significant proteins of network markers for these 3

stroke stages. Similar to our previous experience with
bladder cancer [10], we wanted to reveal the repair
mechanism of stroke at these 3 time points.

Network markers at the 3 time points
After p value (≤0.01) screening, we found that there
were 5, 9, and 4 significant proteins at 3, 5, and 24 h,
respectively, post-stroke (Table 2). In addition, their cor-
responding SRVs respectively ranged 1.7~6.1, 2.1~11.7,
and 1.7~26. These significant top SRV proteins and
their corresponding PPIs were used to construct net-
work markers at 3 post-stroke time points. We found
that SRVs of stroke were much smaller than SRVs of
our pervious cancer results [9,10], and also the cancer
networks were much more complex than the stroke net-
work. To compare the overall stroke process, we also
combined samples at 3 time points into a total one (69
samples), and used it with normal data to build the
DPPIN. This is not the main topic of this research, so
we only put the total DPPIN in the results of Metacore.
We do not discuss UBC in this paper, because it is
another complex problem. It is a house keeping gene
for many different kinds of diseases. We will extend our
research on this target in the future.

Pathway analysis of network biomarkers at 3 h post-
stroke
After SRV screening with our systems biology approach,
the complete and complex functional and pathway ana-
lyses fundamentally revealed the evolutionary process of
repair mechanisms of stroke. Because the number of sig-
nificant proteins was very small compared to results for
cancers, the KEGG results could not give us as much
information as in cancer cases.
The IPA gave us the clearest information on the dis-

ease, so we first show the IPA results (Table 3). We then
show additional information given by NOA (Table 4).
From Figure 3, one can see that the 2 key moduli of
Tx_Cardiac-Hypertrophy and ML_Cardiovascular-
Disease were related to our significant proteins (Figure 2
(A)). We found that CUL3 appeared at all 3 stages, which
implies that this time stationary network marker would
be a significant target for therapy. It is easily seen that
CUL3 is a key hub of the network. Functions and beha-
viors of CUL3 are very complex. Salinas et al. discussed
how actinfilin acts as a CUL3 substrate adaptor, linking
gluR6 kainate receptor subunits to the ubiquitin-protea-
some pathway. They said that kainate receptors were
implicated in excitotoxic neuronal death induced by
stroke [23]. We list the disease functional analyses in a
Additional file 3. The IPA results are shown in Table 3.
NOA results are shown in Table 4. Results of Metacore
are shown in Figure 7 to 14, for 3, 5, and 24 h, and the
total (the sum of all samples).
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Figure 2 The constructed differential protein-protein interaction (PPI) networks (PPINs; DPPINs) for 3 time points post-stroke. This
shows the DPPINs with edge and node information for 3 time points after a stroke occurred. It is the difference between the stroke PPIN
(SPPIN) and normal PPIN (NPPIN). The node size means the stroke relevance value (SRV) of each protein, and the edge width is proportional to
the link ability between the 2 proteins. Red and blue edges respectively indicate positive and negative values of dij in (7). Besides UBC, we see at
3 h that CUL3, ATXN2L, TTN, and NRF2 dominate the network. At 5 h, APP, CUL3, NEDD8, EVAL1, TCO, PAN, and JUP dominate the network. At 24
h, CLU3 and APP dominate the network. We suggest that readers examine these figures together with Table 2. Information of the SRV and PPI
are important for you to develop new therapeutic methods for stroke recovery. The figures were created using Cytoscape.

Table 2. Top proteins at 3 time points post-stroke/

Protein SRV p value Case_AvgExp Control_AvgExp Log2FC

5 proteins at 3 h post-stroke

UBC [36] 6.07 <10^-9 18100 19375 -0.1

CUL3 [37] 3.26 0.001157 4178 3592 0.22

RNF2 [38] 1.77 0.031488 19 18 0.06

ATXN2L [39] 1.68 0.037603 70 164 -1.23

TTN [40] 1.65 0.041157 371 139 1.42

9 proteins at 5 h post-stroke

UBC 11.69 <10^-9 18178 19375 -0.09

APP [41] 5 3.24E-05 1651 2018 -0.29

CUL3 4.44 0.000421 4486 3592 0.32

NEDD8 [42] 2.69 0.010615 3413 2952 0.21

PAN2 [43] 2.62 0.012395 293 491 -0.74

ELAVL1 [44] 2.53 0.014757 825 800 0.04

DBN1 [45] 2.37 0.021003 261 128 1.03

TCOF1 [46] 2.09 0.039515 109 229 -1.08

JUP [47] 2.06 0.042265 8 32 -2.04

4 proteins at 24 h post-stroke

UBC 25.99 <10^-9 17540 19375 -0.14

APP 5.06 <10^-9 1653 2018 -0.29

CUL3 2.82 0.003012 4554 3592 0.34

SIRT7 [48] 1.66 0.042587 720 594 0.28
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Table 3. Functional analyses of the network biomarker at 3 h post- stroke

Name p value Ratio

Top canonical pathways

GABA receptor signaling 1.66E-02 1/67

Renal cell carcinoma signaling 1.75E-02 1/71

Toll-like receptor signaling 1.83E-02 1/74

Hereditary breast cancer signaling 2.83E-02 1/115

RhoA signaling 3.00E-02 1/122

Top disease and biological functions

Cardiovascular disease 2.49E-04 ~ 3.94E-02

Developmental disorder 2.49E-04 ~ 3.94E-02

Hereditary disorder 2.49E-04 ~ 1.24E-03

Organismal injury and abnormalities 2.49E-04 ~ 3.94E-02

Skeletal and muscular disorders 2.49E-04 ~ 3.94E-02

Physiological system development and function

Embryonic development 6.94E-05 ~ 4.35E-02

Organismal development 9.92E-05 ~ 4.35E-02

Cardiovascular system development and function 4.98E-04 ~ 3.85E-02

Hematological system development and function 4.98E-04 ~ 1.48E-02

Hepatic system development and function 4.98E-04 ~ 3.00E-02

Table 4. Pathway analysis and gene set enrichment analysis of 5 proteins at 3 h post-stroke on (1) biological
processes, (2) cellular components and (3) molecular functions by NOA

GO: term p value Corrected p value R T G O Term name

(1) Biological Processes

GO:0042787 0.0033 0.0825 6357 1 21 1 protein ubiquitination involved in ubiquitin-dependent protein catabolic process

GO:0016567 0.0135 0.3382 6357 1 86 1 protein ubiquitination

GO:0032446 0.0171 0.4286 6357 1 109 1 protein modification by small protein conjugation

GO:0070647 0.0215 0.5387 6357 1 137 1 protein modification by small protein conjugation or removal

GO:0019941 0.0272 0.6803 6357 1 173 1 modification-dependent protein catabolic process

GO:0006511 0.0272 0.6803 6357 1 173 1 ubiquitin-dependent protein catabolic process

GO:0051603 0.0289 0.7236 6357 1 184 1 proteolysis involved in cellular protein catabolic process

GO:0043632 0.03 0.7511 6357 1 191 1 modification-dependent macromolecule catabolic process

GO:0006508 0.047 1 6357 1 299 1 proteolysis

(2) Cellular Components

GO:0031463 7.8E-4 0.0110 6357 1 5 1 Cul3-RING ubiquitin ligase complex

GO:0031461 0.0042 0.0594 6357 1 27 1 cullin-RING ubiquitin ligase complex

GO:0000151 0.0099 0.1387 6357 1 63 1 ubiquitin ligase complex

(3) Molecular Functions

GO:0031625 0.0020 0.0224 6357 1 13 1 ubiquitin protein ligase binding

GO:0019899 0.0056 0.0622 6357 1 36 1 enzyme binding

GO:0004842 0.0133 0.1470 6357 1 85 1 ubiquitin-protein ligase activity

GO:0019787 0.0143 0.1574 6357 1 91 1 small conjugating protein ligase activity

GO:0016881 0.0157 0.1730 6357 1 100 1 acid-amino acid ligase activity

GO:0016879 0.0212 0.2336 6357 1 135 1 ligase activity, forming carbon-nitrogen bonds

GO:0016874 0.0309 0.3408 6357 1 197 1 ligase activity

R: number of genes in the reference set. T: number of genes in the test set. G: number of genes annotated by a given term in the reference set. O: number of
genes annotated by a given term in the test set.
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Pathway analysis of network biomarkers at 5 h post-
stroke
IPA results (Figure 4) show that there were 5 modules of
ML_Cardiovascular-Disease, ML_Cell-Death-Brain,
Tx_Increases-Heart-Failure, Tx_Cardiac Necrosis/Cell
Death, and BM_Unspecified-Application/Actute-Coronary
Syndrome related to our significant proteins (Figure 2(B)).
We found that caspase was related to 4 modules. Aries
et el. discussed caspase-1 cleavage of transcription factor
GATA4 and regulation of cardiac cell fate. They showed
that GATA4 is cleaved by caspase-1 in cardiomyocytes,
and their data identified a target for caspase-1 in nuclei
and a pathway to explain its related cardiac actions [24].
The amyloid precursor protein (APP) is part of a binding-
protein-dependent transport system. It is probably respon-
sible for translocation of substrate across membranes, and
it belongs to the permease family of the binding-protein-
dependent transport system. It is also known as the
b-amyloid (Ab) precursor protein. From [25], we know

that APP is a key gene related to Alzheimer disease (AD),
and it implicates the relationship between neurodegenera-
tive diseases and stroke. A lot of research has discussed
this gene [26-29]. It could possibly be an efficient therapy
target at this time point. We list the disease functional
analyses in a Additional file 3. IPA results are shown in
Table 5. NOA results are shown in Table 6.

Pathway analysis of network biomarkers at 24 h post-
stroke
IPA results (Figure 5) (Figure 6 shows the detailed
legend of IPA in Figure 3, 4, 5) show that there were 6
modules of ML_Cell-Cycle-Brain, ML_Cell-Death-Brain,
Tx_Cardiac-Necrosis/Cell Death, Tx_Cardiac-Fibrosis,
Tx_Cardiac-Hypertrophy, and ML_Cardiovascular-
Disease related to our 4 significant proteins (Figure 2(C)).
Another key protein, SIRT7, was found at this time
point. We found that SIRT7 was related to 4 modules.
Vakhrusheva et al. discussed how “SIRT7 increases stress

Figure 3 IPA results at 3 h post-stroke. Please refer to the legend of Figure 5 and 6.
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Figure 4 IPA results at 5 h post-stroke. Please refer to the legend of Figure 5 and 6.

Table 5. Functional analyses of the network biomarker at 5 h post-stroke

Name p value Ratio

Top canonical pathways

Protein ubiquitination pathway 5.44E-03 2/255

Docosahexaenoic acid (DHA) signaling 1.73E-02 1/39

Neuroprotective role of THOP1 in Alzheimer’s disease 1.78E-02 1/40

Amyloid processing 2.26E-02 1/51

GABA receptor signaling 2.96E-02 1/67

Top disease and biological functions

Cancer 4.48E-04 ~ 7.14E-03

Cardiovascular disease 4.48E-04 ~ 5.36E-03

Connective tissue disorders 4.48E-04 ~ 2.68E-03

Developmental disorder 4.48E-04 ~ 7.14E-03

Hematological disease 4.48E-04 ~ 4.47E-03

Physiological system development and function

Embryonic development 3.80E-06 ~ 8.48E-03

Organismal development 3.80E-06 ~ 8.48E-03

Tissue morphology 3.80E-06 ~ 8.03E-03

Organ morphology 6.22E-05 ~ 8.48E-03

Reproductive system development and function 6.22E-05 ~ 6.70E-03
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resistance of cardiomyocytes and prevents apoptosis and
inflammatory cardiomyopathy in mice.” It is a member of
the mammalian sirtuin family that consists of 7 genes,
SIRT1~7. Its deficiency can cause the development of
heart hypertrophy and inflammatory cardiomyopathy
[30]. SIRT7 was discovered to be highly associated with
ischemic stroke in our analytical results. Previous studies
showed the roles of sirtuins in cell death. Increasing evi-
dence has suggested that sirtuins play fundamental roles
in a variety of biological processes, including cell death,
inflammation, and energy metabolism. In addition,
SIRT7 increases the stress resistance of cardiomyocytes
and prevents apoptosis and inflammatory cardiomyopa-
thy in mice. We list the disease functional analyses in
Additional file 3. IPA results are shown in Table 7. NOA
results are shown in Table 8. Results of Metacore are
shown in Figure 7 to 14, for 3, 5, and 24 h and the total
(the sum of all samples).

Network biomarkers and the evolution of network
biomarkers of stroke etiology and repair processes
Our stroke PPI model was constructed from differential
expressions of stroke and normal microarray data and
data mining of PPI information from the BioGRID data-
base. So, the 3 SPPINs and NPPIN were the results of
our systems biology model using the original microarray
data and PPI databases. There are 3 key factors which
affected the final results.
(i) The effect of different microarray data: We know

that microarray data have the drawback of being irreprodu-
cible. That means even in the same case, microarray data
might not produce the same results as previous ones. Also,
for the same diseases, patients of different ethnicities, differ-
ent ages, or different genders will produce different microar-
ray data. This is the first factor that affected the final results.
(ii) The effect of different original PPI databases:

We know that PPI databases, such as BioGRID and

Table 6. Pathway analysis and gene set enrichment analysis of 9 proteins at 5 h post-stroke on (1) biological
processes, (2) cellular components and (3) molecular functions by NOA

GO: term p value Corrected
p value

R T G O Term name

(1) Biological Processes

GO:0019941 7.3E-4 0.0316 6357 2 173 2 modification-dependent protein catabolic process

GO:0006511 7.3E-4 0.0316 6357 2 173 2 ubiquitin-dependent protein catabolic process

GO:0051603 8.3E-4 0.0358 6357 2 184 2 proteolysis involved in cellular protein catabolic process

GO:0043632 8.9E-4 0.0386 6357 2 191 2 modification-dependent macromolecule catabolic process

GO:0006508 0.0022 0.0948 6357 2 299 2 proteolysis

GO:0044265 0.0039 0.1698 6357 2 400 2 cellular macromolecule catabolic process

GO:0009057 0.0044 0.1899 6357 2 423 2 macromolecule catabolic process

GO:0006301 0.0059 0.2566 6357 2 19 1 postreplication repair

GO:0042787 0.0065 0.2836 6357 2 21 1 protein ubiquitination involved in ubiquitin-dependent protein catabolic process

GO:0044248 0.0106 0.4600 6357 2 658 2 cellular catabolic process

(2) Cellular Components

GO:0031251 6.2E-4 0.0106 6357 2 2 1 PAN complex

GO:0031463 0.0015 0.0267 6357 2 5 1 Cul3-RING ubiquitin ligase complex

GO:0031461 0.0084 0.1441 6357 2 27 1 cullin-RING ubiquitin ligase complex

GO:0000151 0.0197 0.3353 6357 2 63 1 ubiquitin ligase complex

GO:0043234 0.0463 0.7879 6357 2 1369 2 protein complex

(3) Molecular Functions

GO:0004535 0.0012 0.0314 6357 2 4 1 poly(A)-specific ribonuclease activity

GO:0031625 0.0040 0.1021 6357 2 13 1 ubiquitin protein ligase binding

GO:0000175 0.0053 0.1335 6357 2 17 1 3’-5’-exoribonuclease activity

GO:0004221 0.0059 0.1492 6357 2 19 1 ubiquitin thiolesterase activity

GO:0016896 0.0065 0.1649 6357 2 21 1 exoribonuclease activity, producing 5’-phosphomonoesters

GO:0004532 0.0065 0.1649 6357 2 21 1 exoribonuclease activity

GO:0016790 0.0084 0.2119 6357 2 27 1 thiolester hydrolase activity

GO:0008408 0.0084 0.2119 6357 2 27 1 3’-5’ exonuclease activity

GO:0016796 0.0097 0.2432 6357 2 31 1 exonuclease activity, active with either ribo- or deoxyribonucleic acids and producing
5’-phosphomonoesters

GO:0019899 0.0112 0.2823 6357 2 36 1 enzyme binding

R: number of genes in the reference set. T: number of genes in the test set. G: number of genes annotated by a given term in the reference set. O: number of
genes annotated by a given term in the test set.
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MIPS, are constructed from putative information and
then validated by wet-lab experiments. Due to advances
in many high-throughput experimental skills, the origi-
nal PPI databases have evolved with time. Newly
updated original PPI databases were the second factor
that affected the final results.
(iii) The effect of the systems biology model: Our

mathematical model combined with many biological
databases to be a novel one that we have successfully
applied it on various cancer researches [9,10]. We used
AIC and Student’s t-test methods to construct the

DPPIN of SPPIN and NPPIN, and get the SRV for three
time points post stroke. The significance and the novelty
of our model please refer to our previous work [9].
Although we described the novelty of our systems biol-
ogy method, we have validated our results through a lit-
erature survey in the research. In the future, our results
should be validated by other researchers’ wet-lab experi-
ments, and we will repeatedly modify our mathematical
model. This is the third key factor that affected the
results. Although not directly, it also had an influence
on the protein interaction networks.

Figure 5 IPA results at 24 h post-stroke. By the IPA analysis, one can see that the 3 network markers are related to different modules at 3
different time points (3, 5, and 24 h) post-stroke. It is easy to see the evolutionary process of network biomarkers. From the detailed legend in
Figure 6, one can see different regulatory mechanisms at these 3 time points of stroke. This abundant information can offer experts various
novel strategies to develop stroke therapies or recovery methods. The experts can decide to inhibit or activate key proteins in these networks.
And experts can refer to a patient’s medical history to decide the therapeutic strategy. We analyzed the stroke relevance value (SRV) results by
IPA software, and it gave us more clues to uncover hidden mechanisms of stroke. We consider this inspired pioneering work, and in the future,
experts need to design new therapies or recovery strategies for validation.
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We also know that bio-systems evolve with time. It is
obvious that different-stage patients have very different
symptoms; these are key features for us to classify stroke
stages. Since patients of different stages have greatly dif-
ferent symptoms, there is no doubt that the microarray

data of these stage patients will be quite different. As
described above, protein expressions from microarray
data are one of the key factors of our systems biology
model used to produce the final SPPINs and NPPIN.
And the SPPINs and NPPIN yielded the final network

Figure 6 The detailed legend of IPA in Figures 3 to 5.
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biomarkers from our systems biology method. So, the
most important thing for the evolution of network bio-
markers is the evolution of microarray data at different

stroke stages, which is inherent in the exhibition of
stroke-related genes due to DNA mutations in the
stroke process. The main purpose of this research was

Table 7. Functional analyses of the network biomarker at 24 h post-stroke

Name p value Ratio

Top canonical pathways

Docosahexaenoic acid (DHA) signaling 7.74E-03 1/39

Neuroprotective role of THOP1 in Alzheimer’s disease 7.94E-03 1/40

Amyloid processing 1.01E-02 1/51

GABA receptor signaling 1.33E-02 1/67

Renal cell carcinoma signaling 1.41E-02 1/71

Top disease and bio functions

Cancer 1.99E-04 ~ 5.96E-03

Cardiovascular disease 1.99E-04 ~ 8.53E-03

Connective tissue disorders 1.99E-04 ~ 5.97E-04

Developmental disorder 1.99E-04 ~ 8.53E-03

Hematological disease 1.99E-04 ~ 1.19E-03

Physiological system development and function

Behavior 1.99E-04 ~ 7.54E-03

Cardiovascular system development and function 1.99E-04 ~ 6.55E-03

Connective tissue development and function 1.99E-04 ~ 7.94E-03

Embryonic development 1.99E-04 ~ 5.96E-03

Hematological system development and function 1.99E-04 ~ 8.93E-03

Table 8. The pathway analysis and gene set enrichment analysis of 4 proteins at 24 h post-stroke on (1) biological
processes, (2) cellular components and (3) molecular functions by NOA

GO: term p value Corrected p value R T G O Term name

(1) Biological Processes

GO:0042787 0.0033 0.0825 6357 1 21 1 protein ubiquitination involved in ubiquitin-dependent protein catabolic process

GO:0016567 0.0135 0.3382 6357 1 86 1 protein ubiquitination

GO:0032446 0.0171 0.4286 6357 1 109 1 protein modification by small protein conjugation

GO:0070647 0.0215 0.5387 6357 1 137 1 protein modification by small protein conjugation or removal

GO:0019941 0.0272 0.6803 6357 1 173 1 modification-dependent protein catabolic process

GO:0006511 0.0272 0.6803 6357 1 173 1 ubiquitin-dependent protein catabolic process

GO:0051603 0.0289 0.7236 6357 1 184 1 proteolysis involved in cellular protein catabolic process

GO:0043632 0.03 0.7511 6357 1 191 1 modification-dependent macromolecule catabolic process

GO:0006508 0.047 1 6357 1 299 1 proteolysis

(2) Cellular Components

GO:0031463 7.8E-4 0.0110 6357 1 5 1 Cul3-RING ubiquitin ligase complex

GO:0031461 0.0042 0.0594 6357 1 27 1 cullin-RING ubiquitin ligase complex

GO:0000151 0.0099 0.1387 6357 1 63 1 ubiquitin ligase complex

(3) Molecular Functions

GO:0031625 0.0020 0.0224 6357 1 13 1 ubiquitin protein ligase binding

GO:0019899 0.0056 0.0622 6357 1 36 1 enzyme binding

GO:0004842 0.0133 0.1470 6357 1 85 1 ubiquitin-protein ligase activity

GO:0019787 0.0143 0.1574 6357 1 91 1 small conjugating protein ligase activity

GO:0016881 0.0157 0.1730 6357 1 100 1 acid-amino acid ligase activity

GO:0016879 0.0212 0.2336 6357 1 135 1 ligase activity, forming carbon-nitrogen bonds

GO:0016874 0.0309 0.3408 6357 1 197 1 ligase activity

R: number of genes in the reference set. T: number of genes in the test set. G: number of genes annotated by a given term in the reference set. O: number of
genes annotated by a given term in the test set.
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to discuss the network evolutionary process of stroke at
3 time points, and we hope it can provide clues for ther-
apy and medical recovery processes. We found that
CUL3 appeared at all 3 time points, and may be a target
we should pay more attention to. At the second time
point of 5 h, we found that the APP and caspase both
played significant roles. At the last time point of 24 h,
we found another important one, SIRT7. A lot of
research has discussed these key proteins (Table 2).
Results in Figure 13 show that stroke-associated bio-

marker genes among different time points were signifi-
cantly involved in cell cycle processing, including G2-M,
G1-S and meiosis. Both in vitro and in vivo evidences
for involvement of cell cycle elements in stroke was
reported in a previous study [31]. The activity level of
key regulators of the cell cycle are downregulated in

differentiated neurons, and there is increasing evidence
that activation of cell cycle machinery leads to death of
neurons following stroke insults [32,33]. Our finding
also shows the involvement of multiple cell cycle-regu-
latory signals in ischemic injury, and this may contri-
bute to our current understanding of the etiology of
stroke [34].

Comparison with our previous results of traumatic brain
injury in Danio rerio
We compared the results with our previous study, “On
the Crucial Cerebellar Wound Healing-Related Pathways
and Their Cross-Talks after Traumatic Brain Injury in
Danio rerio [35]“. We found that there were no intersec-
tions between these 2 results. To discuss core and speci-
fic network biomarkers of cardiac and brain injury

Figure 7 Pathway maps of Metacore. Sorting is done for the ‘Statistically significant Maps’. Canonical pathway maps represent a set of
signaling and metabolic maps covering human in a comprehensive way. All maps are created by Thomson Reuters scientists by a high-quality
manual curation process based on published peer-reviewed literature. [The above paragraph is directly cited from the Metacore results.]. Figure
7-14 are serial maps generated by Metacore should give experts more choices and strategies to attack the core network post-stroke. Figure 7-12
show pathway maps for the 3 time points of stroke. Figure 13 shows the process networks. We can see cell cycle G2-M, G1-S, and meiosis are
the top 3 process networks. They give experts actual targets to develop novel strategies. Figure 14 shows our network markers related to
statistically significant diseases.
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between humans and other species is important work,
and we will extend this work in the future. It is difficult
to obtain datasets for stroke patients. The original rea-
son we wanted to compare the results with traumatic
brain injury in D. rerio was to determine if any

intersection existed between these 2 results. Then
maybe it would be possible to use D. rerio as a model
organism to model human stroke. However, we found
nothing at this stage, and we will try to develop other
methods to model human stroke.

Figure 8 Development Hedgehog Signaling which is the top scored pathway map in MetaCore enrichment analysis results. The family
of protein called Hedgehog controls and patterns various aspects of the vertebrate body plan such as survival, cell growth and etc. Ubiquitin
was down-regulated while Cullin 3 and Cul3/SPOP/Rbx 1 E3 ligase complex was up-regulated in stoke samples at 3, 5, 24 hours and overall
stroke samples as compared with control. ITCH was up-regulated in overall stroke samples. Figure 8-12: *Experimental data from all files is linked
to and visualized on the maps as thermometer-like figures. Up-ward thermometers have red color and indicate up-regulated signals and down-
ward (blue) ones indicate down-regulated expression levels of the genes. [The above paragraph is directly cited from the Metacore results.]
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Figure 9 Development WNT signaling pathway Part 1. Degradation of beta catenin which is the second scored pathway map in MetaCore
enrichment analysis results. Ubiquitin was down-regulated in stoke samples at 3, 5, 24 hours and overall stroke samples as compared with
control. HDAC1 was down-regulated in overall stroke samples.

Figure 10 Cell cycle Role of SCF complex in cell cycle regulation which is the third scored pathway map in MetaCore enrichment
analysis results. The Skp, Cullin, F-box containing complex (SCF complex) play critical roles in the ubiquitination of proteins involved in cell
cycle regulation. Ubiquitin was down-regulated in stoke samples at 3, 5, 24 hours and overall stroke samples as compared with control. NEDD8
was up-regulated in stoke samples at 5 hours and overall stroke samples.
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Summary of results and discussion
Due to the help of high-throughput data and the power
of our systems biology model, we determined total dif-
ferent network structures and biomarkers at 3 signifi-
cant time points. Besides the original results of our
model of SRV and network structure, we offer an abun-
dant pathway analysis by various powerful commercial
software and free web-servers. The entire work should
be very valuable for experts (doctors and researchers) in
developing novel strategies of recovery, therapy and

prevention for stroke patients. Take for example, if you
are only interested on SRVs, you can refer to Table 2 to
choose the top SRV for drug targets. If you want to
separate the PPIN by multiple drug targets, you can
refer to Figure 1 to focus on elements of the network
and select some of them to be drug targets. If you want
to break down the network by destroying the regulatory
relationship, you can refer to Figure 3 to 5, the IPA
results, to choose some regulatory elements for your
drug targets. If you want to break down the network by

Figure 11 Apoptosis and survival NGF activation of NF-kB which is the fourth scored pathway map in MetaCore enrichment analysis
results. Nerve growth factor (NGF) involved in neuron survival and differentiation, and the NF-kB signal generated by receptors of tyrosinekinase
(TrkA) and the tumor necrosis factor receptor (NGFR) exerts neuroprotective effects. Ubiquitin was down-regulated in stoke samples at 3, 5,
24 hours and overall stroke samples as compared with control. GAB1 was up-regulated in overall stoke samples.
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the complex modules given by Metacore, you can refer
to Figure 7 to 14. You can use your medical knowledge
combined with the complex modules to develop novel
strategies. Additionally, the diseases and functional
annotation given by IPA was shown in Additional file 4.
And we also extended our research to examine relation-
ships between significant genes determined by our mod-
els and many other diseases. This can give clues for new
clinical application of old drug.

Conclusions
Stroke is a complex disease, and its complex cellular
behaviors differ from those of cancers. We found a lot of
research work that focused on cancer systems biology,
and not as much work on stroke systems biology. Our

systems biology method applied to cancers helped us
successfully identify network biomarkers. This is our first
attempt to apply a similar framework of systematic the-
ory to the stroke process. We focused on a systematic
analysis of 3 key post-stroke time points, and our findings
showed that stroke-associated biomarker genes among
different time points were significantly involved in cell
cycle processing, including G2-M, G1-S and meiosis,
which contributes to our current understanding of the
etiology of strokes. We identified a significant PPIN and
the corresponding network biomarkers for 3 time points.
We hope this work helps scientists reveal more hidden
cellular mechanisms of stroke etiology and recovery pro-
cesses. In future work, we will try to integrate more data
samples and more critical time points of data, and design

Figure 12 LRRK2 in neurons in Parkinson's disease which is the fifth scored pathway map in MetaCore enrichment analysis results.
Mutation in LRRK2 (R1441C, R1441G, R1441H, Y1699C, I2020T and G2019S) are the most common genetic cause of Parkinson's disease, and
LRRK2 stimulates various pathways leading to progression of Parkinson's disease. Ubiquitin was down-regulated in stoke samples at 3, 5, 24
hours and overall stroke samples as compared with control. LRRK2 was up-regulated in overall stroke samples.
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Figure 13 Process Networks. Sorting is done for the 'Statistically significant Networks'. The content of these cellular and molecular processes is
defined and annotated by Thomson Reuters scientists. Each process represents a pre-set network of protein interactions characteristic for the
process. [The above paragraph is directly cited from the Metacore results.]

Figure 14 Diseases (by Biomarkers). Sorting is done for the 'Statistically significant Diseases'. Disease folders are organized into a hierarchical tree.
Gene content may very greatly between such complex diseases as cancers and some Mendelian diseases. Also, coverage of different diseases in
literature is skewed. These two factors may affect p-value prioritization for diseases. [The above paragraph is directly cited from the Metacore results.]

Wong et al. BMC Systems Biology 2015, 9(Suppl 6):S4
http://www.biomedcentral.com/1752-0509/9/S6/S4

Page 19 of 21



new methods of model organisms to unearth more dee-
ply the mechanisms and processes.

Additional material

Additional file 1: The detailed description of Materials and Methods
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the Akaike information criterion and Student’s t-test (*.pdf).

Additional file 4: The diseases and functional annotation from IPA.
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