nature cell biology

Supplementary information

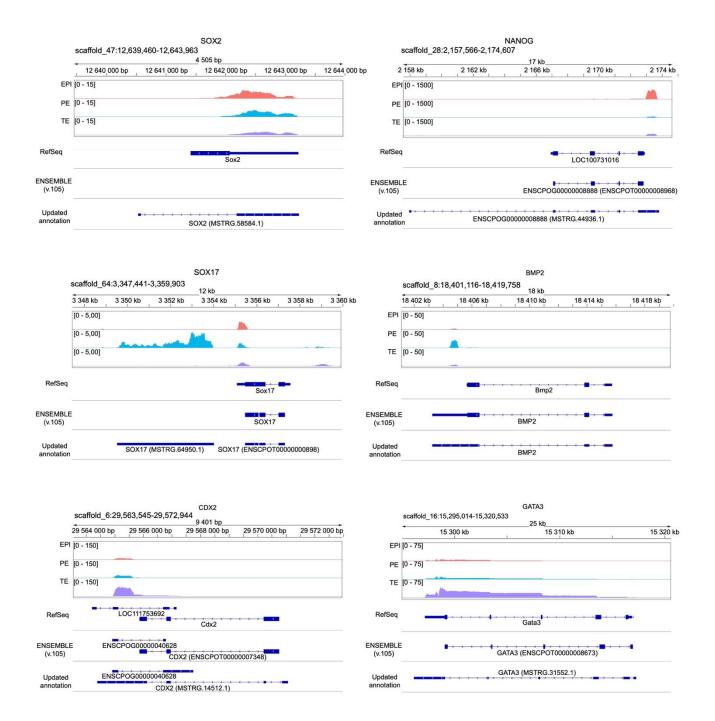
https://doi.org/10.1038/s41556-025-01642-9

The guinea pig serves as an alternative model to study human preimplantation development

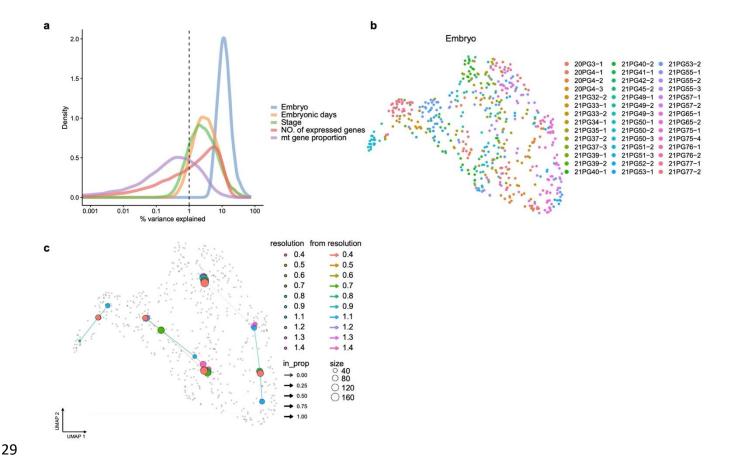
In the format provided by the authors and unedited

1 SUPPLEMENTARY INFORMATION

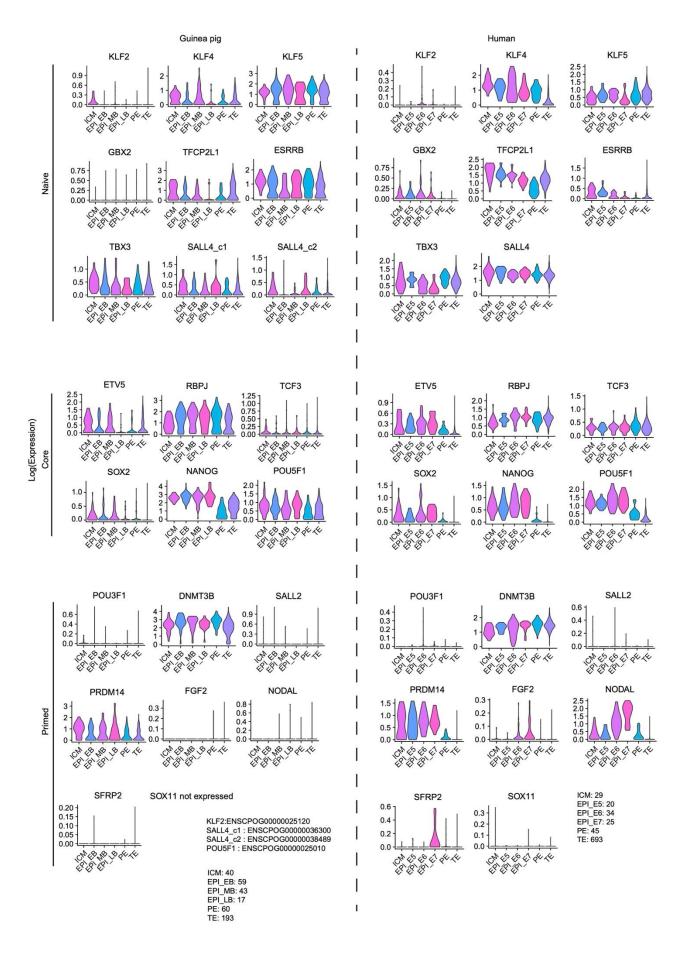
- 2 This file contains Supplementary Figs. 1-11
- 3 Supplementary Fig. 1: IGV snapshot displaying the read distribution from middle and late
- 4 blastocyst EPI, PE, and TE cells for SOX2, NANOG, SOX17, BMP2, CDX2, and GATA3.
- 5 Supplementary Fig. 2: Variance and resolution selection in the guinea pig scRNA-seq dataset.
- 6 Supplementary Fig. 3: Pluripotency signatures in guinea pig and human preimplantation embryos.
- 7 Supplementary Fig. 4: Signalling pathways related to lineage segregation in guinea pig, human,
- 8 and mouse
- 9 Supplementary Fig. 5: Dose-response of LATs inhibitor in mouse embryos.
- 10 Supplementary Fig. 6: Hippo and MEK-ERK signalling pathways in mouse embryos.
- 11 Supplementary Fig. 7: Dose-response of PKC inhibitor treatment in guinea pig and mouse
- 12 embryos.
- 13 Supplementary Fig. 8: Dose-response of PI3K-AKT inhibitor in guinea pig and mouse embryos.
- 14 Supplementary Fig. 9: Expression of mural and polar DEGs in guinea pig and human mural and
- 15 polar cells.
- 16 Supplementary Fig. 10: Heatmap depicting the pseudo-bulk expression of selected genes,
- 17 categorized by stages and lineages, across human, marmoset, cynomolgus monkey, guinea pig, and
- 18 mouse species.

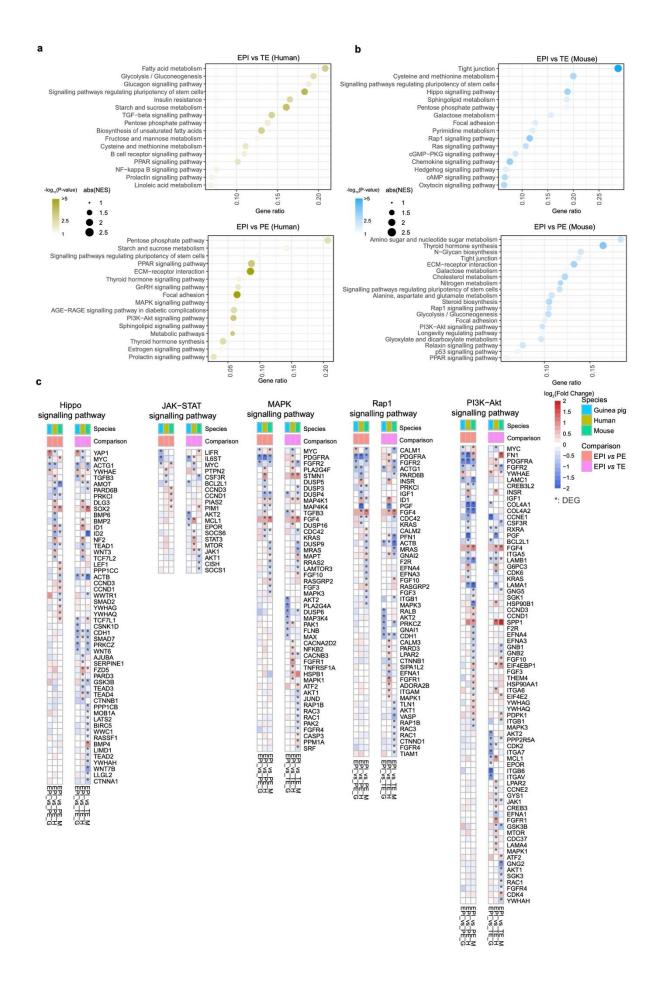

20

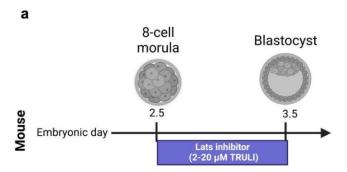
22

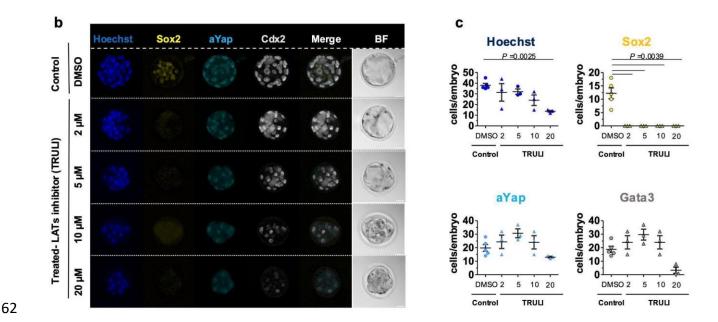

23

19 Supplementary Fig. 11: Guinea Pig Blastocysts Sex Validation.

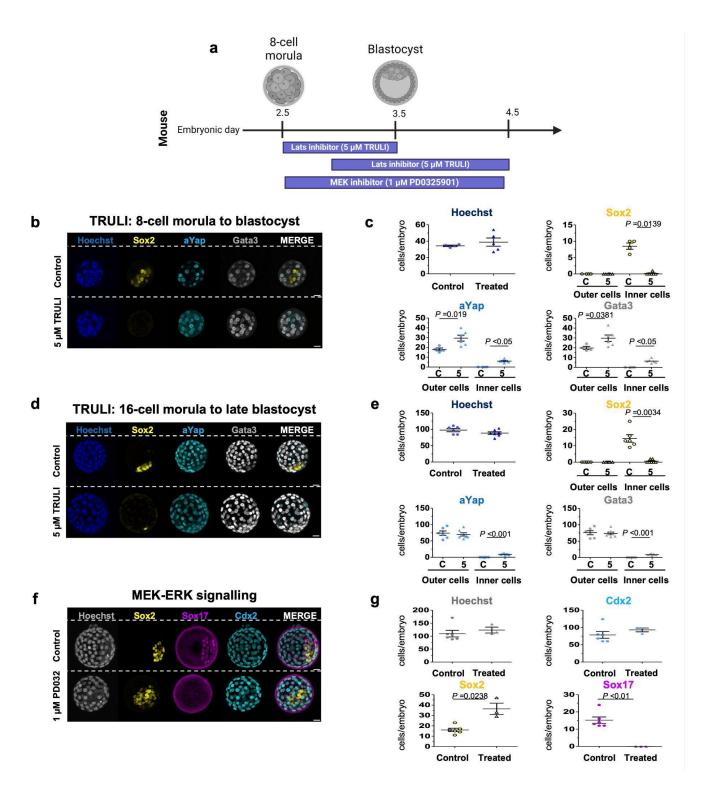

21 Source Data for Supplementary Figs. 5-8 and 11


Supplementary Fig. 1 IGV snapshot displaying the read distribution from middle and late blastocyst EPI, PE, and TE cells for *SOX2*, *NANOG*, *SOX17*, *BMP2*, *CDX2*, and *GATA3*. Gene annotations from RefSeq, ENSEMBL, and updated annotations are listed.

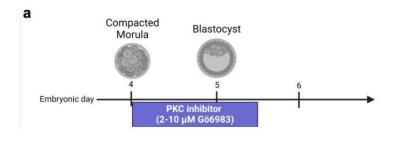

Supplementary Fig. 2 Variance and resolution selection in the guinea pig scRNA-seq dataset. a, Line plot showing the percentage of variance explained by factors "Embryo", "Embryonic days", "Stages", "Number of expressed genes", and "Mitochondrial gene proportion". **b**, Two-dimensional UMAP representation of 541 single-cell transcriptomes (from 42 embryos) from guinea pig preimplantation embryos, with colours indicating the embryo source. **c**, Cluster stability was analyzed with Clustree at various resolution values (0.4 to 1.4).

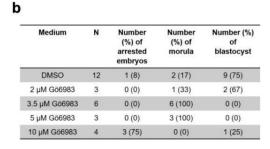


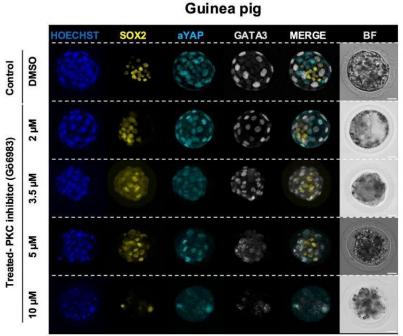
Supplementary Fig. 3 Pluripotency signatures in guinea pig and human preimplantation embryos. Violin plots showing the expression of selected pluripotency (naive, core and primed) genes in guinea pigs and humans, stratified by lineages. Published data for the human embryo was leveraged from Petropoulos et al., 2016. Cell numbers used to generate the violin plots are indicated for each lineage and species.

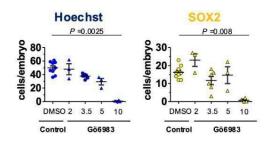


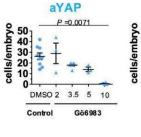
Supplementary Fig. 4 Signalling pathways related to lineage segregation in guinea pig, human, and mouse. a and b, Dot plots of KEGG terms showing the results from Gene Set Enrichment Analysis (GSEA) for the EPI-TE comparison and EPI-PE comparison in human (a) and mouse (b), with P values (one-sided, permutation test) less than 0.05 indicated. The dot size indicates the absolute values of normalized enrichment score (NES), colour represents the P value, and the x-axis shows the ratio of DEGs corresponding to each KEGG term. c, Gene regulation associated with the Hippo signalling pathway, JAK-STAT signalling pathway, MAPK signalling pathway, Rap1 signalling pathway, and PI3K-AKT signalling pathway in guinea pigs, humans, and mice. The log2(fold change) of genes from the EPI-TE and EPI-PE comparisons is represented by colour, with DEGs identified by Bonferroni adjusted P values (two-sided, Wilcoxon test) less than 0.05 and log2(fold change) more than 0.25 marked by an asterisk (*). Species and lineage comparisons are indicated in the heatmap.

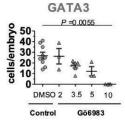


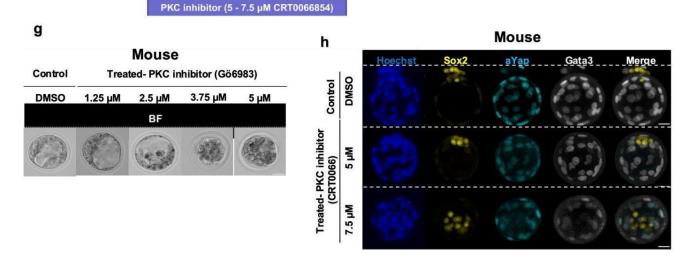

Supplementary Fig. 5 Dose-response of LATs inhibitor in mouse embryos. a, Schematic of TRULI treatments in mouse embryos. b, Representative immunofluorescence images of Sox2 (yellow), Cdx2 (gray), aYAP (cyan) and Hoechst nuclear staining (blue) in control (DMSO) and LATs inhibitor-treated mouse embryos with different concentrations of TRULI inhibitor (2-20 μ M) from 8 cell E2.25 to blastocyst E3.5 (n = 5 for control and n = 3 for each TRULI dose). c, Scatter plot showing the number of cells per embryo for the indicated markers, P values stated in each figure (Kruskal-Wallis test). Schematic created in BioRender.com. Scale bars: 20 μ m.



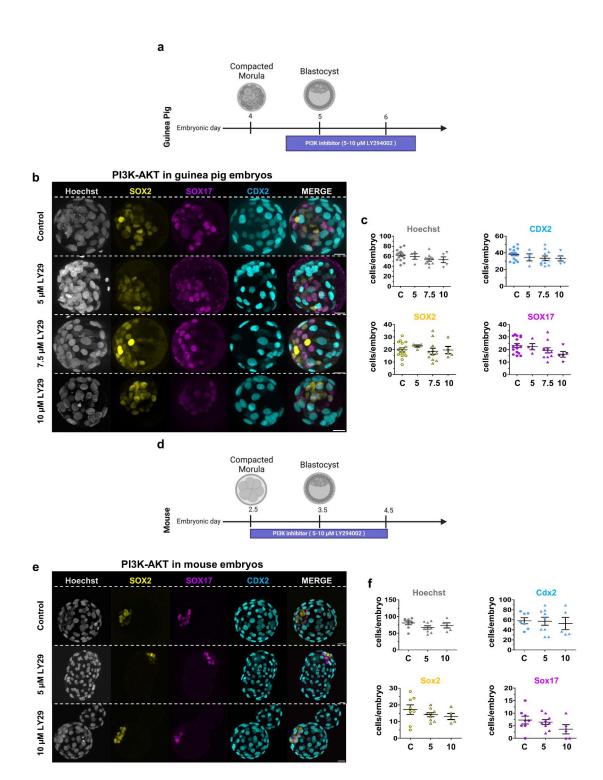

Supplementary Fig. 6 Hippo and MEK-ERK signalling pathways in mouse embryos. a, Schematic of the treatment protocol for individual small molecules used with mouse embryos. b, Representative immunofluorescence image of Sox2 (yellow), aYAP (cyan), Gata3 (gray) and Hoechst nuclear staining (blue) in control (DMSO) and LATS inhibitor (5 μ M of TRULI) treated mouse embryos from 8-cell compacted morula to mid-blastocyst. c, Scatter plot showing the total number of cells per embryo (Hoechst stained) and the number of cells per embryo for the indicated markers in control (n = 4) and TRULI (n = 5) treated embryos. P values stated in each figure (two-tailed Mann-Whitney test). d, Representative immunofluorescence


image of Sox2 (yellow), aYAP (cyan), Gata3 (gray) and Hoechst nuclear staining (blue) in control (DMSO) and LATS inhibited (5 μ M of TRULI) treated mouse embryos from 16-cell compacted morula to late blastocyst. **e**, Scatter plot showing the total number of cells per embryo (Hoechst stained) and the number of cells per embryo for the indicated markers in control (n = 6) and TRULI (n = 7) treated embryos, P values stated in each figure. **f**, Representative immunofluorescence image of Sox2 (yellow), Sox17 (magenta), Cdx2 (cyan) and Hoechst nuclear staining (gray) in control (DMSO) and MEK-ERK inhibitor (1 μ M of PD0325901) mouse embryos. **g**, Scatter plot showing the total number of cells per embryo (Hoechst stained) and the number of cells per embryo for the indicated markers in control (n = 6) and PD0325901 (n = 3) treated embryos. P values stated in each figure (two-tailed Mann–Whitney test for a two-group comparison). Schematic created in BioRender.com. Scatter plots with mean \pm s.e.m. Scale bars: 20 μ m.

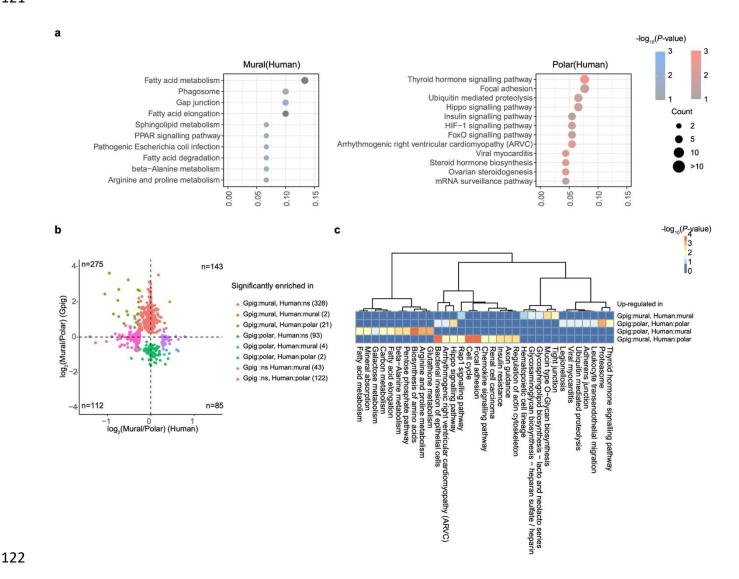


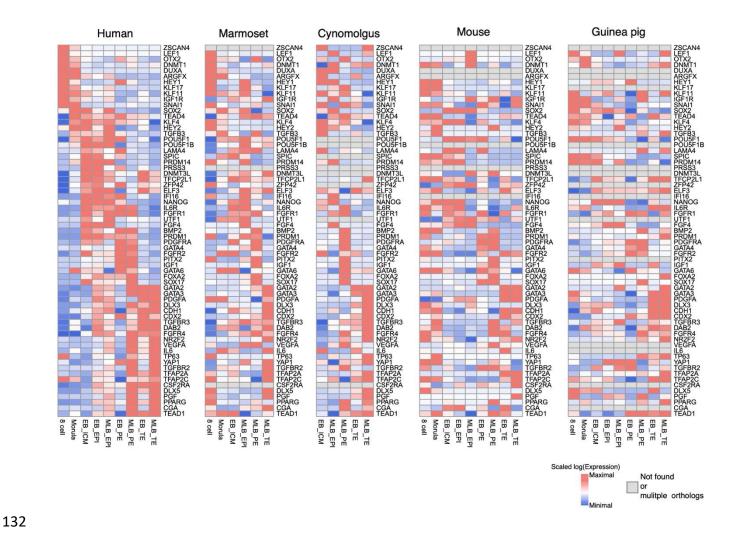

d

f



е	4C	8C (compacted)	Blastocyst	
1.5		2.5	3.5	4.5
Embryonic day +	-		- 	$-\ddot{+}$


Medium	N	Number (%) of arrested embryos	Number (%) of morula	Number (%) of blastocyst
DMSO	8	0 (0)	2 (25)	6 (75)
1.25 µM Gö6983	5	0 (0)	2 (37)	3 (63)
2.5 µM Gö6983	7	0 (0)	2 (29)	5 (71)
3.75 µM Gö6983	5	0 (0)	5 (100)	0 (0)
5 µM Gö6983	5	5 (100)	0 (0)	0 (0)
DMSO	3	0 (0)	0 (0)	3 (100)
5 μM CRT0066854	3	0 (0)	1 (33)	2 (67)
7.5 uM CRT0066854	4	1 (25)	3 (75)	0 (0)


Supplementary Fig. 7 Dose-response of PKC inhibitor treatment in guinea pig and mouse embryos. a, Schematic of dose-response of PKC inhibitor (Gö6983) in guinea pigs. b, The percentage of guinea pig embryos either developing to form a blastocyst or arrested morula in control and Gö6983 treated embryos. c, Representative immunofluorescence image of SOX2 (yellow), aYAP (cyan), GATA3 (gray) and Hoechst nuclear staining (blue) in control (DMSO) and PKC inhibitor (Gö6983) treated guinea pig embryos from 16-cell compacted morula to mid-blastocyst. d, Scatter plot showing the total number of cells per embryo (Hoechst stained) and the number of cells per embryo for the indicated markers in control (n = 12) and Gö6983 treated embryos at 2 μ M (n = 3), 3.5 μ M (n = 6), 5 μ M (n = 3) and 10 μ M (n = 4). e, Schematic of dose-response of PKC inhibitors (Gö6983 and CRT0066854) in mice. f, The percentage of guinea pig embryos that developed to blastocyst or arrested at the morula stage in control and PKC inhibitors-treated embryos. g, Bright-field representative images of mouse embryos at E3.5 for control (n = 8) and Gö6983 treated at 1.25 μ M (n = 5), 2.5 μ M (n = 7), 3.75 μ M (n = 5) and 5 μ M (n = 5) μ M. h, Representative immunofluorescence image of Sox2 (yellow), aYAP (cyan), Gata3 (gray) and Hoechst nuclear staining (blue) in control (n = 3) and CRT066854 treated mouse embryos at 5 μ M (n = 3) and 7.5 μ M (n = 4). P values stated in each figure (Kruskal-Wallis test with Dunn's post-test). Scatter plots with mean \pm s.e.m. Schematic created in BioRender.com. Scale bars: 20 μ m.

Supplementary Fig. 8 Dose-response of PI3K-AKT inhibitor in guinea pig and mouse embryos. a, Schematic of PI3K inhibitor (LY294002) treatment in guinea pig embryos. b, Representative immunofluorescence image of SOX2 (yellow), SOX17 (magenta), CDX2 (cyan) and Hoechst nuclear staining (gray) in control (DMSO) and LY29 treated guinea pig embryos for 48 h. c, Scatter plot showing the total number of cells per embryo (Hoechst stained) and the number of cells per embryo for the indicated markers in control embryos (n = 16) and LY29 treated embryos at 5 μ M (n = 4), 7.5 μ M (n = 11) and 10 μ M (n = 5). d, Schematic of dose-response of PI3K inhibitor (LY294002) in mice. e, Representative immunofluorescence image of Sox2 (yellow), Sox17 (magenta), Cdx2 (cyan) and Hoechst nuclear staining (gray) in control (DMSO) and LY29 treated mouse embryos. f, Scatter plot showing the total number of cells per embryo (Hoechst stained)

Supplementary Fig. 9 Expression of mural and polar DEGs in guinea pig and human mural and polar cells. a, Dot plot illustrating the enriched KEGG pathways for DEGs between mural and polar TE cells from Human (P < 0.05, one-sided, permutation test). Colour and size indicate the significance and number of differentially expressed genes in each pathway. **b,** Log2 fold change between mural and polar cells in human and guinea pig (x-axis and y-axis, respectively). Colours indicate the differential expression status in the guinea pig and human. The number of genes is indicated behind the colour legend. "n" in each corner represents the total number of genes in each quadrant. "ns" denotes "not significant." **c,** Heatmap illustrating the significance of enriched KEGG pathways for genes associated with differential expression status in guinea pig and human mural and polar cells.

Supplementary Fig. 10: Heatmap depicting the pseudo-bulk expression of selected genes, categorized by stages and lineages, across human, marmoset, cynomolgus monkey, guinea pig, and mouse species. Gene selection was adapted from Meistermann et al., 2021 gene module analysis. Genes that could not be detected or with multiple orthologs in the corresponding species are coloured as gray. Preimplantation embryo data was leveraged from Petropoulos et al., 2016 (human), Nakamura et al., 2016 (cynomolgus monkey), Boroviak et al., 2018 (marmoset), Bergmann et al., 2022 (marmoset), Deng et al., 2014 (mouse), Nowotschin et al., 2019 (mouse), guinea pig data generated in this study.

Guinea pig sex validation Female embryos DYS SRY Male embryos DYS SRY 212 bp 88 bp

Supplementary Fig. 11: Guinea Pig Blastocysts Sex Validation. a and **b** Representative image of agarose gel following PCR of DYS and SRY genes for sex determination of three female (E1, E2 and E3) and three male (E4, E5 and E6) embryos used for H3Kme27 analysis. Amplicon of DYS is 212 bp and of SRY 88 bp.

159 Source Data:

Supplementary Figure 5c

Mouse TRULI dose-response (Number of cells per embryo)

Hoechst							
DMSO	2 μM TRULI						
	IKULI			TRULI			
45	44	29	15	15			
35	16	37	32	12			
36	34	30	25	14			
36							
20							

	Sox2					
	2 μΜ	5 μΜ	10 µM	20 μM		
DMSO	TRULI	TRULI	TRULI	TRULI		
18	0	0	0	0		
10	0	0	0	0		
6	0	0	0	0		
12						
15						

	aYap					
	2 μΜ	5 μΜ	10 μM	20 μΜ		
DMSO	TRULI	TRULI	TRULI	TRULI		
28	32	26	15	14		
23	15	37	32	12		
18	26	29	25	13		
14						
16						

	Gata3					
DMSO	2 μM TRULI	5 μM TRULI	10 µM TRULI	20 μM TRULI		
27	32	23	15	1		
17	15	37	32	8		
20	25	29	25	1		
14						
16						

Supplementary Figure 6c

Mouse Hippo signalling inhibition with optimal dose at two different time-points From 8C to Blastocyst E3.5 (Number of cells per embryo)

Hoechst				
DMSO	5 μM TRULI			
35	37			
36	54			
32	30			
34	27			
	46			

	Gata3					
Ou	iter	Inner				
DMSO	5 μM TRULI	DMSO	5 μM TRULI			
17	43	0	10			
18	32	0	5			
20	23	0	4			
24	21	0	6			
	33		7			
	26		6			

	Sox2					
Ou	Outer		ner			
DMSO	5 μM TRULI	DMSO	5 μM TRULI			
0	0	10	0			
0	0	6	0			
0	0	8	0			
0	0	10	0			
	0		1			
	0		0			

	aYap					
Ou	Outer		ner			
DMSO	5 μM TRULI	DMSO	5 μM TRULI			
17	23	0	4			
15	32	0	5			
18	40	0	9			
22	21	0	6			
	35		6			
	26		6			

Supplementary Figure 6e

From 16C to Blastocyst E4.5 (Number of cells per embryo)

Hoechst				
DMSO	5 μM TRULI			
105	72			
96	88			
84	103			
84	86			
106	98			
111	82			
	90			

	Gata3					
Ou	ıter	Inner				
DMSO	5 μM TRULI	DMSO	5 μM TRULI			
75	63	0	6			
80	80	0	8			
59	95	0	8			
58	72	0	10			
88	68	0	12			
96	65	0	10			
	73		9			

Sox2				
Ou	iter	In	ner	
DMSO	5 μΜ	DMSO	5 μΜ	
	TRULI		TRULI	
0	0	16	2	
0	0	13	0	
0	0	11	2	
0	0	25	0	
0	0	9	0	
0	0	13	0	
	0		0	

aYap				
Ou	Outer		ner	
DMSO	DMSO 5 μM		5 μΜ	
	TRULI		TRULI	
74	62	0	8	
71	93	0	7	
60	82	0	6	
53	62	0	10	
89	56	0	13	
96	63	0	10	
	71		9	

MAPK signalling inhibition (PD0325901) with optimal dose

(Number of cells per embryo)

Hoechst			
DMS O	1 μM PD032		
171	146		
105	109		
88	115		
90			
108			
95			

Cdx2			
DMS O	1 μM PD032		
124	99		
78	98		
60	82		
60			
80			
68			

Sox2			
DMS O	1 μM PD032		
23	47		
11	29		
16	33		
17			
14			
15			

Sox17			
DMS O	1 μM PD032		
24	0		
16	0		
12	0		
13			
14			
12			

189 Supplementary Figure 7b

Medium	N	Number (%) of arrested embryos	Number (%) of morula	Number (%) of blastocyst
DMSO	12	1 (8)	2 (17)	9 (75)
2 μM Gö6983	3	0 (0)	1 (33)	2 (67)
3.5 µM Gö6983	6	0 (0)	6 (100)	0 (0)
5 μM Gö6983	3	0 (0)	3 (100)	0 (0)
10 μM Gö6983	4	3 (75)	0 (0)	1 (25)

Supplementary Figure 7d

Guinea pig Dose-response of PKC inhibitor (Gö6983) (Number of cells per embryo)

	(Traineer of e					
	Hoechst					
DMS	2	3.5	5	10		
O	μM	$\mu \mathbf{M}$	μM	μM		
58	62	35	20	2		
57	48	39	32	0		
59	34	40	36	1		
50		38		0		
45		42				
36		32				
46						
38						
61						

SOX2					
DMS	2	3.5	5	10	
0	μM	μM	μM	μM	
16	26	3	6	2	
12	27	8	16	0	
16	16	15	22	1	
18		16		0	
23		18			
12		10			
14					
15					
20					

	aYAP					
DMS	2	3.5	5	10		
0	μM	μM	μM	μM		
25	32	18	13	2		
42	44	20	18	1		
35	11	13	11	0		
27		19		0		
19		18				
14		20				
24						
16						
34						

	GATA3					
DMS	2	3.5	5	10		
O	μM	μM	$\mu \mathbf{M}$	μM		
25	26	22	8	0		
39	39	20	21	0		
35	14	8	8	0		
27		19		0		
21		20				
14		15				
24						
16						
41						

Mouse PKC inhibitor Dose-response

Medium	N	Number (%) of arrested embryos	Number (%) of morula	Number (%) of blastocyst
DMSO	8	0 (0)	2 (25)	6 (75)
1.25 µM Gö6983	5	0 (0)	2 (37)	3 (63)
2.5 µM Gö6983	7	0 (0)	2 (29)	5 (71)
3.75 µM Gö6983	5	0 (0)	5 (100)	0 (0)
5 μM Gö6983	5	5 (100)	0 (0)	0 (0)

DMSO	3	0 (0)	0 (0)	3 (100)
5 μM CRT0066	3	0 (0)	1 (33)	2 (67)
7.5 µM CRT0066	4	1 (25)	3 (75)	0 (0)

Guinea Pig PI3K Dose-response Inhibition (LY294002) for 48h

(Number of cells per embryo)

Hoechst			
DMSO	5 μM LY29	7.5 µM LY29	10 μM LY29
81	69	75	68
78	44	61	44
72	65	45	38
42	60	46	64
66		48	51
64		38	
65		46	
58		57	
62		56	
61		58	
69		52	
67			
53			
56			
46			
52			

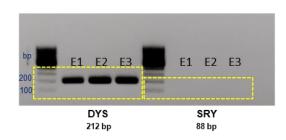
CDX2			
DMSO	5 μM LY29	7.5 µM LY29	10 μM LY29
40	37	50	32
43	24	45	28
50	44	31	27
29	33	28	36
39		28	43
31		25	
39		41	
33		26	
28		39	
40		24	
37		31	
47			
29			
45			
37			
44			

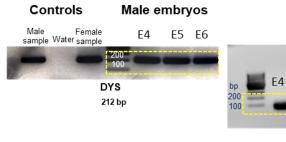
SOX2			
DMSO	5 μM LY29	7.5 µM LY29	10 μM LY29
31	24	35	30
27	20	31	16
18	24	12	17
22	23	19	14
26		11	21
26		14	
8		9	
15		18	
20		16	
25		23	
17		17	
12			
17			
21			
16			
15			

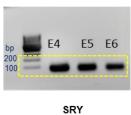
SOX17			
DMSO	5 μM LY29	7.5 μM LY29	10 μM LY29
31	29	34	24
32	17	28	15
20	21	14	15
21	22	21	10
24		15	17
31		14	
22		10	
15		18	
17		18	
30		21	
31		20	
28			
18			
22			
16			
15			

Mouse PI3K Dose-response Inhibition (LY294002) for 48h (Number of cells per embryo)

Hoechst		
DMSO	5 μM LY29	10 μM LY29
89	70	76
82	87	60
91	85	54
92	51	81
49	56	96
67	65	
81	63	
95	46	
	82	


Cdx2		
DMSO	5 μM LY29	10 μM LY29
72	64	37
73	79	32
52	72	31
56	89	75
42	26	89
36	41	
77	41	
	26	
	77	


	Sox2		
DMSO	5 μM LY29	10 μM LY29	
28	15	12	
16	9	19	
24	13	9	
23	10	10	
5	18	15	
16	15		
18	20		
7	16		
	11		


Sox17		
DMSO	5 μM LY29	10 μM LY29
15	7	3
10	8	0
5	10	0
7	11	10
0	5	5
5	3	
9	2	
7	6	
	6	

Guinea pig sex validation

Female embryos

88 bp