
Citation: Mansour, A.T.; Alprol, A.E.;

Abualnaja, K.M.; El-Beltagi, H.S.;

Ramadan, K.M.A.; Ashour, M. The

Using of Nanoparticles of Microalgae

in Remediation of Toxic Dye from

Industrial Wastewater: Kinetic and

Isotherm Studies. Materials 2022, 15,

3922. https://doi.org/10.3390/

ma15113922

Academic Editor: Irene Bavasso

Received: 28 April 2022

Accepted: 29 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

The Using of Nanoparticles of Microalgae in Remediation of
Toxic Dye from Industrial Wastewater: Kinetic and
Isotherm Studies
Abdallah Tageldein Mansour 1,2,* , Ahmed E. Alprol 3,*, Khamael M. Abualnaja 4, Hossam S. El-Beltagi 5,6 ,
Khaled M. A. Ramadan 7,8 and Mohamed Ashour 3,*

1 Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University,
P.O. Box 420, Al-Ahsa 31982, Saudi Arabia

2 Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University,
Alexandria 21531, Egypt

3 National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
4 Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;

k.ala@tu.edu.sa
5 Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University,

P.O. Box 420, Al-Ahsa 31982, Saudi Arabia; helbeltagi@kfu.edu.sa
6 Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
7 Central Laboratories, Department of Chemistry, King Faisal University, P.O. Box 420,

Al-Ahsa 31982, Saudi Arabia; kramadan@kfu.edu.sa
8 Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
* Correspondence: amansour@kfu.edu.sa (A.T.M.); ah831992@gmail.com (A.E.A.);

microalgae_egypt@yahoo.com (M.A.)

Abstract: Batch adsorption experiments were carried out to study the removal of the toxic Methylene
Blue Dye (MBD) from synthetic aqueous solutions using the nanoparticles form of Arthrospira platensis
NIOF17/003. The adsorption capacity of the adsorbent for MBD was investigated using different
amounts of A. platensis nanoparticles at different contact times, temperatures, pH, and MBD ini-
tial concentrations in the synthetic aqueous solution. In addition, A. platensis nanoparticles were
characterized using Electron Microscopy (SEM), Brunauer–Emmett–Teller (BET), Fourier Transform
Infrared (FTIR), and Ultraviolet spectra (UV) techniques. The optimum removal of MBD was found
at a concentration of 0.4 g A. platensis nanoparticles. A. platensis nanoparticles remove 93% of MBD in
5 min (under agitation conditions at 150 rpm). The highest adsorption capacity was found by the
Langmuir model to be 58.8 mg g−1. It is an endothermic process with spontaneity increasing with
temperature. The probable mechanism for the adsorption is chemisorption via surface-active charges
in the initial phase, which is followed by physical sorption by occupying pores of A. platensis. MBD
adsorption by A. platensis follows pseudo-second-order kinetics. The Freundlich and Langmuir mod-
els fit well with the experimental data. The adsorption experiments suggested that the regeneration
of the adsorbents was possible for repeated use, especially regarding MBD up to 65.8% after three
cycles, which proves it can be easily recycled. In conclusion, the nanoparticles of A. platensis have a
significant adsorption potential in the removal of MBD from effluent wastewater.

Keywords: Arthrospira platensis NIOF17/003; bioremediation; green nanoparticles; methylene blue;
adsorption; equilibrium isotherm; SEM; FTIR

1. Introduction

Green techniques of nanomaterial synthesis are part of sustainable chemistry ap-
proaches. The utilization of renewable raw materials as preparations for the reduction in
metal ions to nanoparticles (NPs) has recently piqued interest. Synthetic dyes are polluting
chemicals that have both harmful and aesthetic effects on aquatic habitats. Dye effluents,

Materials 2022, 15, 3922. https://doi.org/10.3390/ma15113922 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15113922
https://doi.org/10.3390/ma15113922
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-5963-5276
https://orcid.org/0000-0003-4433-2034
https://orcid.org/0000-0003-0595-5394
https://orcid.org/0000-0002-1595-1197
https://doi.org/10.3390/ma15113922
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15113922?type=check_update&version=2


Materials 2022, 15, 3922 2 of 26

which contain dyed organic molecules, increase the organic load in water bodies and re-
duce sunlight penetration, reducing phytoplankton photosynthetic activity and altering the
biological balance of the aquatic ecosystem [1]. Dyes are significant dangerous materials
used in several industrial sectors. Methylene Blue Dye (MBD) is a cationic dye that has
been used to color cotton, wool, and silk for centuries [2]. Breathing difficulties, nausea,
vomiting, tissue necrosis, intense sweating, mental confusion, cyanosis, and metabolic
disturbances are all side effects of MBD [3]. This dye has a harmful impact on the water
ecosystem and its components [4,5]. MBD has been extensively used in adsorption ex-
periments, including low-cost adsorbents, such as marine algae [6], fungi [7], activated
carbon [8,9], agricultural [10], and industrial wastes [11,12].

Many physical, chemical, and biological approaches [13,14] have been investigated
for the treatment of synthetic dye-contaminated wastewaters [15], such as chemical co-
agulation/flocculation [16,17], chemical precipitation [18], oxidation processes [19], ion
exchange [20], ultra-filtration [21], and reverse osmosis [22]. Each of these methods has
disadvantages, such as high operational and capital costs, low efficiency at low dye con-
centrations, and the creation of unwanted sludge [15]. Because these synthetic dyes resist
microbial degradation, traditional biological wastewater treatment methods have grown
less effective in removing them [23]. For these reasons, nanoparticles could be used to
treat wastewater as they have a high specific surface area, which improves dye removal
activity [24]. Accordingly, to decrease dye concentration in wastewater, it is vital to create
effective, low-cost, and environmentally friendly solutions [25]. Furthermore, previous
chemical and physical techniques used hazardous materials, required high conditions
such as temperature, energy, and pressure, and produced hazardous by-products. As a
result, interest in biological techniques or green nanotechnology has grown [26]. Green
nanotechnology refers to a method for producing nanomaterials that is free of or uses
less harmful components throughout the creation process. Biological elements such as
bacteria, actinomycetes, fungus, cyanobacteria, macro-algae, and plants can all be used to
green synthesize NPs. Because of its eco-friendliness, cost-effectiveness, ease of handling,
upscaling, and biocompatibility, green synthesis is favored over chemical and physical
approaches [27]. Several NPs have recently been produced using environmentally friendly
technologies. Adsorption is quickly gaining prominence among treatment technologies,
with the realization that it may provide high-quality water while being a cost-effective
technique [28,29]. However, microalgae and cyanobacteria (formerly known as blue-green
algae) have been identified as potential organisms for heavy metal removal, dye removal
from industrial effluents, pollutant bioremediation, and the production of commercially
important molecules [30–33].

Many aquatic plant biomasses, such as microalgae and seaweeds, have been utilized
as renewable, biological, and high-efficiency absorption materials [34–40]. In general, algal
cells are one of the most promising aquatic organisms that contain biomolecules, playing a
vital role in several biological and sustainable industries such as biofertilizers [41–43], aqua-
culture [41,44,45], bioenergy [46–49], antioxidant and antimicrobial materials [50–52], and
pharmaceuticals [53], besides being effective, sustainable, and low-cost effective adsorption
biomaterials [32,47,54–57].

The blue-green algae Arthrospira platensis is a widely cultivated species around the world
and is available in large quantities, reaching 2000 tons per year [53,58,59]. Arthrospira platensis is
a filamentous cyanobacterium with a number of benefits, including quick growth rates, high
biomass output, ease of cell harvesting, and biomass composition manipulation [48,60,61],
and it is a possible biosorbent [32,33]. The cyanobacterium Arthrospira platensis is known
to have a good supply of protein, polysaccharides, lipids, minerals, vitamins, and phos-
phate [48,60,61], all of which are required for dye binding [32,33,62,63]. According to
Seker et al. [64], several functional groups in blue-green algal biomass, including carboxyl,
hydroxyl, sulfate, phosphate, and other charged groups, may be responsible for dye bind-
ing. This cyanobacterium is widely available, and it can be used to adsorb heavy metals
such as cadmium, copper, lead, and nickel [23].
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The use of nanoparticles from biomass could be an effective technique to boost the
bio-available mass’s adsorption sites [65]. Furthermore, recent breakthroughs in nan-
otechnology have demonstrated that ultra-fine adsorbents are a viable alternative to dye
removal [66].

There are several forms of cyanobacteria species A. platensis (live form, biomass form,
dried form, and nanoparticles form), which can be utilized as adsorbents materials of the
cationic dye, MBD. However, exposure of the live form of A. platensis to MBD increased the
toxicity, reduced growth rate, pigment synthesis, and protein content, due to dye uptake
by the live form of A. platensis [67]. The only study using A. platensis that is linked to this
purpose is an artificial neural network to estimate methylene blue adsorption capacities
onto Spirulina sp. [54]. There is no published data on the adsorption of cationic dyes on
the nanoparticle form of A. platensis. However, there is little information in the literature
about the adsorptive kinetics and thermodynamics of MBD onto A. platensis or the role of
the ion exchange process in dye removal. Even though the ion exchange mechanism plays
a key role in MBD removal by various adsorbents, it has not been extensively explored by
detection methods. Accordingly, the aim of this study is to examine the adsorption of basic
dye methylene blue dye (MBD) from aqueous solutions as a low-cost adsorbent. Effects of
different parameters such as pH, initial MBD concentration, adsorbent dose, contact time,
and temperature were examined by a batch process to better understand the adsorption
rate and processes of MBD onto nanoparticles of A. platensis. The kinetics, isotherms, and
thermodynamic factors were also calculated to determine the rate constants and adsorption
mechanism. Additionally, Scanning Electron Microscopy (SEM), Brunauer–Emmett–Teller
(BET), Fourier Transform Infrared (FTIR), and Ultraviolet spectra (UV) were applied to
characterize the physicochemical and morphological properties of the adsorbent.

2. Materials and Methods
2.1. Chemicals and Preparation of Dye Solution

Analytical grade MB supplied by Sigma-Aldrich is utilized as adsorbate without
additional purification. MBD is a cationic dye with the chemical formula C16H18N3SCl
(Figure 1), a maximum wavelength of 665 nm, and a molecular weight of 319.85 (g mol−1).
MB dye has strong water solubility and a positive charge on the S atom at 293 K. Melting
1 g of powder dye in one liter of distilled water yielded 1000 mg L−1 MB stock solutions.
The stock solution was made into working solutions ranging from 5 to 40 mg L−1 [68]. Fol-
lowing Beer’s law, low concentrations were utilized to ensure a linear connection between
absorbance and concentration. Using an SQ-2800 ultraviolet-visible spectrophotometer, a
calibration curve (absorbance against concentration).
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Figure 1. Chemical structure of MBD.

2.2. Adsorbent Nanoparticles (A. platensis) Preparation

The nanoparticle preparation of A. platensis was performed at the Egyptian Petroleum
Research Institute (EPRI), Nasr City, Cairo, Egypt, using ball grinding (Planetary Ball
Mill PM 400 “4 grinding stations”), as described in our previous work [60]. As our pre-
viously published works show [60,61], the distribution of A. platensis nanoparticle size
was determined by dynamic light scattering (DLS) and recorded with the average sizes of
183.9 nm (87.6%) and 1069 nm (12.4%), while the normal size of the alga A. Platensis was
100 µmL [60,61].
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2.3. Characterization of the Adsorbent (A. platensis Nanoparticle)
2.3.1. Scanning Electron Microscopy (SEM)

SEM (JEOLGSM-6610LV) at an accelerated voltage of 25 kV was used to examine the
surface morphology of A. platensis nanoparticles. For measurement, the surfaces of the
adsorbent were vacuum-coated with gold.

2.3.2. BET Analysis

The NLDFT Ads Model was used to conduct nitrogen (N2) adsorption–desorption
studies at liquid nitrogen temperature. The specific surface area was estimated using the
Brunauer–Emmett–Teller (BET) method by (Micromeritics Instrument Corporation, Model-
3Flex, Norcross, GA, USA) using nitrogen adsorption at 77 K using critical pressure 33.5 atm.

2.3.3. FTIR Spectral Analysis

The chemical content of the produced A. platensis nanoparticles biomass was deter-
mined using the KBr pellet technique and an FTIR (TENSOR Series FT-IR Spectrophotome-
ter, Germany) in the scope of 500–4000 cm−1.

2.3.4. Ultraviolet Spectra (UV)

As a basic analytical technique, UV–vis spectroscopy was used to evaluate the nano
A. platensis powdered extracts as well as to determine secondary metabolites. The powder
dilution was made in 50 mL volumetric flasks with 0.2 g dissolved in deionized water.

2.4. Batch Experiments of the Adsorption Process

All batch adsorption experiments were completed in 250 mL Erlenmeyer flasks con-
taining dry biomass and 50 mL dye solutions. To ensure that the flasks reached equilibrium,
they were shaken at 150 rpm for 180 min. The effects of the sorption factors of adsorbent
dosage (0.05, 0.1, 0.2, 0.4, and 0.8 g L−1) in addition to experimental parameters of initial
MBD concentrations (5, 10, 15, 20, and 40 mg L−1), contact times (10, 20, 30, 40, 60, 90, 120,
and 180 min.), pH values (2, 4, 6, 8, 10, and 12), and temperatures (303, 313, 323, and 333 K)
were carried out.

2.5. Dyes Removal Efficiency

The amount of dyes absorbed per gram (mg g−1) of A. platensis nanoparticles may be
determined by using the following equation [28] at equilibrium:

qe = [((Ci − Ce) × V)/M] (1)

The percentage of dyes removed (efficiency) obtained by the following equation [69]
can also be used to show dye uptake:

Adsorption (%) = [(Ci − Ce)/Ci]× 100 (2)

where Ci is the initial concentration of methylene blue dye, Ce is the equilibrium concentra-
tion of methylene blue dye (mg L−1), m (g) is the weight of A. platensis biomass, and V (L)
is the volume of the methylene blue solution, respectively.

2.6. Mathematical Models (Isotherm Study)

The sorption capacity residual concentration and the adsorbate fixed temperature are
determined by the adsorption isotherm. Batch sorption experiments were conducted at
303 K of temperature by mixing 0.1 g of adsorbent with 50 mL of a solution of initial MB
dye concentration at (5, 10, 20, 30, and 40 mg L−1) for 3 h at pH 6; then, these were shaken at
160 rpm of agitation rate. Then, we analyzed the reaction mixture for residual MBD content.
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Langmuir [70], Freundlich [71], and Tempkin isotherm [72] models (Equations (3)–(5),
respectively) were used to analyze the adsorption parameters:

qe =
QmKaCe

1 + KaCe
(3)

qe = KFC1/n
e (4)

Qe = B ln A + B ln Ce (5)

where Qm is the solute’s highest adsorption capacity (mg g−1) and Ka is the sorption
equilibrium constant (L mg−1), which is connected to Langmuir’s apparent energy of
adsorption. KF is the Freundlich constant revealing the comparative sorption capacity of the
adsorbent material correlated to the bonding energy. A (L g−1) = Tempkin isotherm constant
also, called equilibrium binding constant, B = (RT)/b, R = gas constant (8.314 J mol−1 k),
T (k) = absolute temperature, the constant (b) is related to the heat of adsorption.

2.7. Adsorption Kinetics

At pH 8, the kinetic investigations were carried out using a similar approach. First,
0.1 g of adsorbent was mixed individually with 50 mL of MBD solution (10 mg L−1

concentrations), and the mixture was obtained at 298 K temperature for the required time
intervals of 10, 15, 30, 120, and 180 min [73]. The concentration of MBD in the clear solutions
was evaluated.

2.8. Theoretic Background of Adsorption Kinetics
2.8.1. Kinetic Model of Pseudo-First-Order

The linear form of the generalized pseudo-first-order equation is represented by the
equation below [74]:

dqt/dt = K1 (qe − qt) (6)

where: qe stands for the amount of dyes adsorbed at equilibrium (mg g−1), qt stands for
the amount of dyes adsorbed at time t (mg g−1), and K1 stands or the pseudo-first-order
rate constant (min−1). Below are the steps used to calculate the integrating equation:

log (qe/qe − qt) = k1t/2.303 (7)

In a linear equation, the following formula gives the pseudo-first-order equation

log (qe − qt) = log qe − k1t/2.303 (8)

Plotting log (qe − qt) versus (t) should yield a linear connection between k1 and qe,
which can be evaluated using the slope and intercept.

2.8.2. Pseudo-Second-Order Kinetic Model

The pseudo-second-order equation was written as follows [75]:

dqt/dt = K2(qe − qt)2 (9)

where: K2 denotes the second-order rate constant (g mg−1 min−1). The following is an
example of an integrating equation:

1/(qe − qt) = 1/qe + K2 (10)

Ho et al. [75] obtain a linear form of the pseudo-second-order equation as follows:

t/qt = 1/K2qe
2 + t/qe (11)
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Plotting (t/qt) versus (t) yields a linear connection, and the slope and intercept may be
used to compute the values of the qe and K2 parameters, respectively.

2.8.3. The Intraparticle Diffusion Model

The intraparticle diffusion equation [3] is explored as follows:

qt = Kdif t1/2 + C (12)

where qt (mg g−1) is the quantities of dye adsorbed at time t. In addition, intercept denotes
the value C when the adsorption mechanism follows the intraparticle diffusion process.
The values of the intercept provide an idea about the thickness of the boundary layer; i.e.,
the larger the intercept, the greater the boundary layer effect, and the intraparticle diffusion
rate constant, Kdif (mg g−1 min−0.5), is derived using the slope of the regression line.

3. Results and Discussion
3.1. Characterization of the Adsorbent Material (Binding Mechanism)
3.1.1. FTIR Analysis

The FTIR technique was used to investigate the surface of the adsorbent (A. platensis)
to determine the functional groups responsible for dye adsorption, as each group has a
unique energy absorption band. This analysis was carried out on both raw and dye-loaded
A. platensis. The ability to distinguish characteristic peaks associated with the complex
matrix of algae, which incorporates protein, carbohydrates, and lipid fractions, as well as
functional groups involved in dye ion adsorption, is a key feature of this approach [76]. In
the range of 4000–400 cm−1, FTIR spectra of A. platensis before and after adsorption were
obtained, as shown in Figure 2 and Table 1.
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The FTIR spectra of A. platensis display the hydroxyl and amine groups’ characteristic
absorption bands, which range from 3111 to 3729 cm−1, for both before and after adsorption,
respectively [28]. The band positions at 2923.91 cm−1 related to the stretching of C–H [14].
Moreover, asymmetric and symmetric stretching of the CH2 group is related to the bands
at 2923 and 2853 cm−1, respectively [77]. The carbonyl group of the carboxylic acid is
ascribed to the sharp band at 1656 cm−1 [78,79]. The overlapping amongst broad bands
of N–O and N–H with strong peaks for amide has been shown as a single band at 1654
and 1656 cm−1 [80]. In addition, ring modes of aromatic rings are ascribed to many small
bands (1313, 1317, 1403, and 1409 cm−1) in the range of 1460–1250 cm−1 region [81]. The
C–N stretch of amide or amine groups can be allocated to the bands at 1242, 1106, and
1079 cm−1 [62]. C–O stretching vibrations are attributed to the bands at 1079 and 1106 cm−1

before and after absorption, respectively. P–O, S–O, and aromatic C-H stretching vibrations
are responsible for the adsorption bands in the 750–900 cm−1 range [82]. All of these
proposed that the polysaccharide of tested seaweeds may be alginate and fucoidan as
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reported by Alprol et al. [32]. The transmittance at wave number 3279 cm−1 is found to be
shifted to 3729 cm−1 on adsorption, and this may be responsible for the chemical interaction
of the dye with O–H and NH2 groups on the A. platensis nanoparticles, as reported by
Srinivasan and Viraraghavan [15]. The broadening and shifting of peaks on spectra revealed
the interaction of functional groups on the surface of the A. platensis cell wall with MB dye
ions in the aqueous solution. According to the FTIR spectrum of the adsorbent, MBD ions
may bind to amino groups and anionic groups due to electrostatic attraction. When the
adsorbent was loaded with MBD, the OH, NH2, COO, and C=O groups, as well as the
aromatic groups were present in the bio-mass, as well as the phosphate and sulfate peak
regions. There was a disappearance of the C≡C stretch band at 2143.56 cm−1. In addition,
there were changes in absorption intensity or shifts in wavenumber of the functional groups
as the peaks at 3279, 2959, 2854, 1546, 1409, 1313, 1079, 864 and 661 cm−1 were shifted to
3729, 3111, 2853, 1542, 1403, 1317, 1106, 876 and 701 cm−1 after MB adsorption, which could
be recognized to the contact of ions in the dye with the active sites of adsorbents surface.

Table 1. Wavenumber and functional groups of FTIR spectroscopy investigation of A. platensis
nanoparticles before and after sorption of MBD.

Before Adsorption After Adsorption

Wave Number (cm−1) Annotations Wave Number (cm−1) Difference (cm−1) Annotations

3279.90 O–H group 3729.92 450 O–H group and –NH groups

3111.91 new peaks

2959.97 & 2923.44 CH2 group 2923.44 36.5 Aliphatic C–H group

2854.48 Asymmetric CH3 & symmetric
CH2 stretching 2853.86 0.61 Asymmetric CH3 and

symmetric CH2 stretching

2143.56 C=O of the carboxylic groups
or ester groups disappears C=O of the carboxylic groups

or ester groups

1656.51 C=O, C=N, N–H
or C=C groups 1654.92 1.58 C=O, C=N, N–H or

C=C groups

1546.33 C=C stretching 1542.98 3.34 C=C stretching

1456.35 new peaks C=C stretch aromatic

1409.30 –C=O stretches 1403.10 6.19 Sp3 C–H bend

1313.08 C–O 1317.83 4.75

1242.68 –O–C links of the organic
phosphate groups 1242.26 0.41

C–N stretch of amide or
amine groups1106.10 new peaks

1079.08 C–O stretching of ether groups disappears

864.69 P–O, S–O, and aromatic
C–H stretching 876.95 12.258 P–O, S–O, and aromatic

C–H stretching

701.65 new peaks

661.77

–P–O, –S–O, and aromatic –CH
stretching or Silicate

659.96
45.33

Aromatic sp2 C–H bend or
Alkene sp2 C–H bend

621.32 616.44

522.32 519.50 2.815

474.68 464.72
9.96

420.83

3.1.2. UV Examination

The optical and structural characterization of adsorbent materials requires the use
of UV-vis spectroscopy analysis [77]. The results showed an optimum of 207–412 nm for
A. platensis nanoparticles as prepared by a hydrothermal process utilizing algae. According
to the UV-vis spectrophotometer, there is no distinctive peak change in the reaction mixture.
There was no change in peak due to nanoparticle SPR excitations [83]. On nanoparticle
A. platensis, five peaks occur at 207 and 260 nm with absorbance intensities of 0.236 and
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0.130, respectively, as well as 297 nm with an absorbance intensity of 0.021, confirming the
formation of hydroxyl groups in the adsorbent material (Figure 3 and Table 2). The spectral
bands of flavonoids usually consist of two absorption spectra with maximal values in the
regions of 230–290 nm and 300–360 nm [84]. In that case, the existence of phenolic and
alkaloid chemicals in the marine algae is revealed by the band appearance at 234–676 nm.
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Table 2. UV-visible spectrum of methanolic extract of A. platensis nanoparticles.

Peak No. Wavelength (nm) Optical Density (O.D)

1 441.5 0.123

2 297.5 0.021

3 269.5 0.105

4 261 0.13

5 207 0.237

3.1.3. SEM

The surface morphology of A. platensis nanoparticles before and after MBD adsorption
can be determined using scanning electron microscopy (SEM), as shown in Figure 4. The
SEM morphology of A. platensis nanoparticles was found to be unique before adsorption,
with a nonporous structure and a regular, smooth surface. This revealed that the microalgal
cell surfaces were heterogeneous. In addition, before adsorption, SEM analysis revealed
that the active sites were homogeneous, resulting in the creation of spherical particles with
a uniform distribution. Meanwhile, after MBD adsorption, the cell surface was found
to be uneven and porous with aggregation, irregularity, and small particles covering it.
In the SEM micrograph of the cells after MBD adsorption, amorphous substances were
also aggregated all over the cell surface. Pores of different sizes and shapes could be
observed. It is thought that the microscopic particles are cell contents that were discharged
during the treatment. The MBD cations covered the surrounding adsorbent particles and
occupied the gaps, resulting in the formation of an MB ion monolayer on the surface
of the A. platensis nanoparticles [85]. Alprol et al. investigated the use of A. platensis
biomass in the bioremediation of organic dyes from industrial effluents, revealing that
changes in morphological state and cell wall matrix for A. platensis reflect higher dye
surface adsorption. Additionally, Dotto et al. [62] found that the essential components on
the surface of the A. platensis nanoparticles before adsorption were C (54.0%), N (33.9%),
O (9.2%), P (1.8%), and S. platensis nanoparticles before adsorption (1.1%). The ratios of C,
O, and S increased after the adsorption process, whereas the percentage values of N and P
declined. The trapped dye molecules, which include aromatic rings and sulfonic groups,
produced this, demonstrating a significant connection between dyes and nanoparticles.



Materials 2022, 15, 3922 9 of 26

Moreover, Dmytryk et al. [86] reported that the amount of all microelements employed
in the adsorption procedure, including Co(II), Cu(II), Mn(II), and Zn, increased after
adsorption, according to SEM-EDX analysis of Spirulina sp. (II).
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of methylene blue.

3.1.4. BET Analysis

The physical properties of the adsorbent, as determined by BET analysis, have the
greatest influence on the manner of application of the adsorption process. The surface
area, size, and distribution of pores are all physical parameters of particles that influence
adsorption characteristics by regulating the quantity of adsorbent capacity available and the
molecular size that can be adsorbed. The N2 sorption isotherms of A. platensis nanoparticles
were used to investigate the specific surface area, as shown in Table 3. Figure 5 represents
the nitrogen adsorption/desorption isotherms. The obtained results are the specific surface
area of the A. platensis nanoparticles, which was 139.83 m2 g−1. This is a reasonable value
for the synthesized adsorbent. It is worth noting that the larger the surface area, the more
efficient the adsorption of MB dye from an aqueous solution. The total volume of pores was
0.131 cc g−1. While the average particle radius was 9.751 nm, however, the average pore
size was 1.88 nm (which indicates mesopore and nanoporous nature), as confirmed by the
international union of pure and applied chemistry (IUPAC) classification of pores by size,
which showed that pore diameter, D (nm), in the range (2 nm < D < 50 nm, indicates that
the type of pore size is mesopore type with characteristic (capillary condensation), while the
nanoporous (pores size < 5 nm) and macropore type in scope (D > 50 nm) with characteristic
is effectively flat walled [87]. According to the USEPA [88], a nanoparticle, also known as an
ultrafine particle, is a small particle of matter with a dimension of 1 to 100 nanometers (nm).
Nanoparticles are distinguishable from mesopores by their smaller size, which causes them
to have extremely different physical and chemical properties, such as colloidal properties,
ultrafast optical effects, and electric properties. Furthermore, the mesopores have the
largest effect on the adsorption of organic solutes, allowing solute molecules to access
their surfaces. Surface functional groups introduced to the surface of the aggregates as a
result of modification changed the adsorbent’s surface character [89]. Li et al. [90] reported
that due to their potential to absorb and interact with guest species on their exterior and
inner surfaces, as well as in the pore spaces, porous solids, especially mesoporous solids,
are attractive materials in many applications. It also contains characteristics that can help
materials perform better in terms of energy and power density, lifetime, and stability.
Because pores serve as binding or receptor sites during the adsorption phase, this is critical
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for pollutant trapping [85]. The results demonstrated that A. platensis nanoparticles had a
significant surface area because algal swelling in aqueous solutions enhances their surface
area. This suggests that the former’s adsorptive qualities are greater than the latter’s.

Table 3. BET analysis of A. platensis nanoparticles.

Characteristics Data Unit

Specific surface area (Multipoint) 139.837 m2 g−1

Langmuir method 261.836 m2 g−1

BJH adsorption 71.0792 m2 g−1

BJH desorption 60.5881 m2 g−1

Total pore volume (Vp) 0.131752 cc g−1

Mean pore size 1.88438 nm

Average particle radius 9.751 nm
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3.2. Adsorbent Parameters Optimizations

The goal of the current study was to find the ideal MBD removal parameters, including
initial adsorbent biomass concentrations (A. platensis nanoparticles), MBD concentration,
pH, temperature, and contact time [87].

3.2.1. Effect of Initial MBD Concentration

A series of tests with varying dye concentrations, namely 5, 10, 20, 30, and 40 mg L−1,
were completed to explore the influence of the beginning MBD concentration on batch
operation performance. Figure 6 depicts the influence of the initial MBD concentration on
the equilibrium adsorption capacity and removal of nano A. platensis at different concentra-
tions. At all studied concentrations, when the initial MBD concentration was increased, qe
was augmented [91].
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Figure 6. Effect of initial concentration on the percentage removal of MBD onto A. platensis nanopar-
ticles (adsorbent amount: 0.1 g; initial volume: 50 mL; pH: 6; contact time: 180 min; 303 K).

For the lowest starting MBD concentration of 5 mg L−1, the amount of MBD adsorbed
was 4.31 mg g−1 with a percentage removal of 56.49%, while for the highest initial MBD
concentration of 40 mg L−1, it was 13.39 mg g−1 with a percentage removal of 75.48%.
This result can be explained by the growing driving force that overcomes the MBD’s mass
transfer resistance between the aqueous and solid phases [92]. Furthermore, raising the
initial dye concentration can improve the sorption process by increasing the number of
collisions between MBD cations and adsorbents [93]. For the MBD adsorption, consistent
observations were found [94]. In addition, because the initial molar number of pollutant
ions reaching the active sites of the adsorbent is higher, the plot slope is steeper in the early
stages, and the removal percentage is at its highest [95]. As a result, when the starting dye
concentration was higher, there were more ions vying for available sites on the adsorbent’s
surface, resulting in a higher MB adsorption capacity [96–98].
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3.2.2. Adsorbent Dosage

Examining the amount of adsorbent is useful for selecting the optimum amount of
adsorbent for industrial applications from an economic standpoint. As shown in Figure 7,
when the dosage was changed from 0.05 to 0.4 g, the dye removal increased, and the
largest quantity of dye removal was attained with adsorbent masses of at least 0.4 g,
with a percentage removal of 99.4%. It is obvious that when the adsorption dosage is
increased, the number of accessible adsorption sites increases, resulting in efficient dye
adsorption. As previously noted in multiple articles [28,33,69,99], this is attributable to
increases in adsorbent surface areas, which increase the number of adsorption sites available
for adsorption. The coagulation of A. platensis nanoparticles arose, as a result, resulting in a
small surface area and a small reactive site. This phenomenon provides a steady state in the
percentage of MB ions adsorbed. However, the uptake decreased at the higher adsorbent
dosage (0.8 g). This is due to the partial aggregation of A. platensis nanoparticles in solution,
which restricts the amount of accessible adsorption sites, as previously reported [100,101].
Therefore, the effective surface area and the total number of binding sites of A. platensis
nanoparticles decreases, and the diffusion path length increases [102]. From an economic
standpoint, the effect of adsorbent dosage gives a concept of a dye’s ability to be adsorbed
with the smallest amount of adsorbent, enabling the recognition of a dye’s capability [103].
In other words, the likelihood of adsorbent–pollutant collisions is enhanced, resulting in
improved removal efficiency [104].
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dosage of A. platensis nanoparticles from 0.05 to 0.8 g at a dye initial concentration of 5 mg L−1; pH
value 6; contact time 180 min; initial volume: 50 mL; and 180 rpm).

3.2.3. Effect of pH

The management of the adsorption process was influenced by the pH of the solution.
When a basic dye was dissolved, the adsorption of these charged dye groups onto the
adsorbent surface was predominantly impacted by the adsorbent’s surface charge, which
was influenced by the pH solution. The experiments were conducted at various pH levels
ranging from 2 to 10 for 3 h at a constant beginning dye concentration of 5 mg L−1, optimum
adsorbent dose of 0.1 gm, and contact period of 180 min, with the findings presented in
Figure 8. The elimination efficiency was enhanced from 84.2% to 90.3% over the pH range
of 2 to 6. MB is a cationic dye that resides in an aqueous solution as positively charged ions.

Furthermore, the low percentage of removal of MB dye at acidic pH (2–4) can be
related to the existence of additional H+ ions, and the amount of positively charged sites
decreases. Meanwhile, due to electrostatic attraction, the number of negatively charged
sites grows, favoring MB dye adsorption [105]. The percentage elimination of the MB dyes
fell from 90.34% to 83.31% when the pH ranged from 6 to 10. This is due to the formation
of a soluble hydroxyl compound between the adsorbent and the MB dye.
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180 rpm; and initial volume: 50 mL).

During dissolution, MBD occurs, releasing positively charged ions into the solution.
The adsorbent surface charge, which is regulated by the solution pH, is the most important
factor in cation adsorption onto the adsorbent surface [106]. Furthermore, the results are
consistent with those found in the literature [78,107].

3.2.4. Effect of Temperature

The temperature factor must also be managed in adsorption operations. The effect of
temperature on removal efficiency was investigated throughout a temperature range of
303 to 333 K, and the results are given in Figure 9. As can be seen, the removal rate of the
MBD was highest at 333 K, with a removal rate of 94.4%. Several studies have shown that
as the temperature rises above 303 K, the percentage of removal also increases. This could
be explained by high temperatures inducing dye molecule diffusion in the interior porous
structure of the sorbent [79]. Furthermore, there are two possible explanations for this
outcome. At higher temperatures, the pore diameters of adsorbent particles would increase.
Due to the breaking of some internal bonds along the edge of the adsorbent’s active surface
sites, the number of adsorption sites would increase as well [108]. The effect is stronger at
larger concentrations and during endothermic processes, which become more spontaneous
as the temperature rises. Abedi et al. [109] reported that as the temperature increases, it
causes pollutant ions to separate from the adsorbent surface. As a result, the functional
group linkages between pollutant ions and active sites would break down, reducing the
pressures between them.

3.2.5. Effect of Contact Times

The effect of contact time on MB dye removal effectiveness was investigated. The
adsorption experiments were examined for various contact times (10–180 min) through
the addition of a fixed adsorbent dosage 0.1 g in an experiment dye solution of 50 mL at
an initial concentration of 5 mg L−1 at pH = 10. A rotary shaker was used to agitate the
system at a speed of 180 rpm. The findings of the adsorption efficiency versus contact time
for the MBD solutions are shown in Figure 10. The rate of removal of MB dye was found
to slight decrease gradually from 88.1% to 84.2% in the contact time range of 10–180 min.
Within the first 10 min, rapid dye adsorption was seen, with a percentage clearance of
88.1%; then, it slowly slowed until they reached a plateau. Rapid dye adsorption was
observed within the first 10 min with a percentage removal of 88.1%; slowly after then, it
gradually slowed down until reaching a plateau. The high availability of active sites for
dye interaction causes rapid adsorption, which declines with contact time. Additionally,
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the number of available sites is influenced by kinetic. Furthermore, Idris et al. [96] noted
that rapid adsorption at first may be owing to a large number of available surface sites
for adsorption, but that after a period of time, the remaining surface sites are difficult to
occupy. This is due to the repulsion between the solid and bulk phases’ solute molecules,
which takes a long time to reach equilibrium. Additionally, it is mostly due to active site
saturation, which prevents further adsorption [110].
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However, the rate of dye removal slows until equilibrium is reached after 3 h, when the
amount of dye molecules occupying active sites increases [78]. According to Peng et al. [111],
adsorption by adsorbents seems to be mostly dependent on the porous structure; hence,
adsorbents take time to diffuse through pores. Moreover, Afroze and Sen [112] noted that
there are more free binding sites available at first, but as the number of available sites for
binding metal ions on the surface declines, the number of available sites begins to decrease
and stagnate [112].
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3.3. Mechanism of Adsorption

As demonstrated by FTIR analysis, the adsorption of MB dye from an aqueous solution
by A. platensis nanoparticles is strongly dependent on the numerous functional groups on
the adsorbent’s surface, such as hydroxyl, carbonyl, NH2, aromatics, etc. After protonation
and deprotonation, the functional groups on the surface of A. platensis nanoparticles can
be charged (negative and positive) or neutral. The following are examples of a hypo-
thetical adsorption mechanism: (i) under acidic conditions, hydrogen atoms (H+) in the
solution can protonate the amine and hydroxyl groups of A. platensis nanoparticles; (ii) the
carboxylic groups are deprotonated, resulting in negatively charged carboxylate ligands
(–COO−) binding the charged MB. In addition, (iii) the electrostatic and hydrogen-bonding
interactions can be established between the surface hydrogens of the hydroxyl groups
(H–donors) on the A. platensis nanoparticles surface and the nitrogen atoms (H–acceptors)
on the MB surface. Dipole–dipole hydrogen bonding is another label for this phenomenon.
The n–π interactions develop between electron donor atoms with pairs of electrons, such as
oxygen or nitrogen, and aromatic rings as acceptors. Furthermore, oxygen in the carbonyl
groups on the adsorbent’s surface works as an electron donor in this study, while the
aromatic rings of MB act as electron acceptors. These results are comparable to Tran et al.
and Salazar-Rabago et al. [113]. According to Singh and Singh [114], the reducing agent
potential of various algal aqueous extracts could cause extracellular nanoparticle synthesis.
It has the required potential because of the presence of proteins, polysaccharides, reducing
sugar, pigments, and other compounds that can activate metal ion reduction on pollu-
tants and then precipitate as nanoparticles. While in the case of intracellular production,
the ability to lower the ionic pollutant component is due to several factors such as algal
metabolism, which includes respiration and photosynthesis, which might be advantageous
in a reduction circumstance.

3.4. Adsorption Dynamics
3.4.1. Kinetic Study

Adsorption is the interaction of an adsorbent (a solid phase) with a contaminated
aqueous solution. This process can go on indefinitely until equilibrium is reached, which
refers to the amount of pollutant adsorbed and the proportion remaining in the solution at a
constant concentration [115]. It is vital to be able to forecast the rate at which contaminants
are eliminated from an aqueous solution when planning an adsorption water treatment
facility. The kinetics of MBD solute adsorption data was studied in terms of pseudo-first,
second-order, and intra-particle diffusion mechanisms at optimum conditions to learn more
about the adsorption mechanism and potential rate-controlling phases including mass
transfer and chemical reaction (as presented in Figure 11A, B, and C, respectively). Using
the slope of the linear plots of ln(qe − qt) against t for each solute, the rate constant (K1) for
MBD was calculated using the pseudo-first-order rate formula (Equation (8)). The slope
and intercept of plots of t/qt against t were used to derive the pseudo-second-order rate
constant (K2) using Equation (11). The slope of plotting Equation (12) was used to find the
Kdif of the intra-particle model. The correlation coefficients agreed with experimental data
and model predicted values (R2, values close or equal to 1 [116]). The model’s R2 value
is relatively high, indicating that it accurately represents the kinetics of MBD adsorption.
According to observed results, the experimental data are followed by pseudo-second-order
and the values of the rate constants with the appropriate correlation, as shown in Table 4.
R2 values for pseudo-second-order models are quite high (>0.999) when compared to
pseudo-first-order (Figure 11) and intra-particles diffusion models. These findings imply
that this model accurately represents the kinetics of MB adsorption on microalgae and
that the process is referred to as chemical sorption. Furthermore, the pseudo-second-order
kinetic model’s computed values of qe are substantially closer to the experimental values
of qe than the pseudo-first-order model’s. The pseudo-first-order model relates the number
of adsorption sites on the adsorbent surface occupied by pollutant particles to the number
of vacant sites [117]. Low regression coefficients (R2), on the other hand, indicate that the
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model does not well fit the experimental data and demonstrates that intra-particle diffusion
is not driving the adsorption process.
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Table 4. Adsorption kinetic model rate constants for MB on A. platensis nanoparticles.

Model Parameter Value

Pseudo-First-Order Kinetic

qe (exp.) 0.626

qe (calc.) (mg g−1) 19.45

k1 × 103 (min−1) 5.76

R2 0.169

Pseudo-Second-Order Kinetic

qe (calc.) 0.61

k2 × 103 (g mg−1 min−1) 2283.97

R2 0.999

Intra-Particle Diffusion

C (mg g−1) 0.0024

Kdif (mg g−1 min1/2) 0.645

R2 0.775

3.4.2. Adsorption Isotherm Modeling

The Langmuir, Freundlich, and Tempkin adsorption isotherms of the nano-adsorbents
were employed in nonlinear analysis to investigate the relationship between non-absorbent
adsorption capacity and dye ion concentration, as shown in Figure 12A–C.
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Table 5 lists the values of the associated isotherm variables, their correlation coefficients
(R2), and related standard errors (S.E.). In comparison to the Tempkin isotherm model
(R2 > 0.790), the results demonstrated that fitting experimental data into the Freundlich
isotherm model and Langmuir isotherm model (R2 > 0.936) yielded high R2. These results
demonstrate that the Freundlich isotherm model can provide a good fit to the experimental
data, implying that the Freundlich adsorption system modeling is appropriate. Maximum
adsorption corresponds to a saturated monolayer of adsorbate molecules on the adsorbent
surface, and the energy of adsorption is constant. The highest adsorption capacity found
using the Langmuir model was 58.8 mg−1, as indicated. The adsorption constant ‘b’ is
connected to the affinity of binding sites (L g−1), and a lower value of ‘b’ (3.8) indicates that
the adsorbent particles’ radius was tiny when it came to adsorption. The dimensionless sep-
aration factor, RL, was utilized to forecast the affinity of the nano-adsorbent surfaces toward
the MBD ions using the Langmuir parameters, which are given in the following equation:

RL = 1/(1 + bCi) (13)

Because the values of RL (0.127) are between 0 and 1, MBD adsorption on a nano-
adsorbent appears to be favorable [118]. On the other hand, KF is a Freundlich constant
that represents the adsorption capacity on heterogeneous sites with non-uniform energy
level distribution, and n represents the intensity between adsorbate and adsorbent [119].
The value of KF was found to be 6.66 as the plot yielded. These findings indicate that
this model accurately represents that the isotherm of the MBD adsorption process on the
adsorbent is a chemical sorption process. When 1/n is less than 1, chemical adsorption
occurs; however, when 1/n is more than 1, cooperative adsorption occurs, which is more
physically advantageous and involves strong interactions between adsorbate particles.
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Table 5. Factors of isotherm models and error functions.

Isotherm Model Isotherm Parameter Value X2

Langmuir

Qmax (mg g−1) 58.82

11.13
RL 0.127
b 3.8

R2 0.936

Freundlich

n 0.595

822.1
1/n 1.682

KF (mg1−1/nL1/ng−1) 6.66
R2 1

Tempkin
A (L g−1) 24.337

233.45B (mg L−1) 36.091
R2 0.790

Furthermore, the value of the factor “1/n” in this study is greater than 1, indicating
that employing this isotherm equation to execute the chemical sorption mechanism on
an outside surface is preferable. Values of n > 1 for MB particles show a heterogeneous
nature of sorption and positive binding [113]. Ion exchange, chelation, and complexation
are referred to as chemisorption, whereas electrostatic interactions and van Waals forces
are referred to as physisorption [120]. In chemisorption processes [121], functional groups
on the adsorbent surface are critical for binding MB dye ions. The electrostatic interactions
between the negatively charged cell walls of the adsorbent and the cations in the solution
are then provided via ion exchange [122]. The Tempkin sorption isotherm model was
preferred to investigate the adsorption abilities of the adsorbent for MBD. The observed
amounts corresponding to the adsorption isotherm plateau are all lower than the theoretical
monolayer saturation capacity in the Tempkin isotherm model produced using nonlinear
regression, showing that the Tempkin isotherm modeling for the adsorption system is
unsuitable, as shown in Table 5. Chojnacka et al. [123] studied the equilibrium process
of blue-green algae Spirulina sp., which confirmed that the adsorptive surface depended
on the morphological form of microalgae. Both autotrophic and lyophilized biomass had
the highest surface area and the highest adsorption capacity. The adsorption capacity is
thus proportional to total bio-sorption capacity. The geometrical surface area of cells is the
sum of the adsorptive surface (3.7% of the total geometrical surface that has the affinity
to bind methylene blue by physical adsorption) and another surface on which there are
found places with high affinity to metal ions. This means that the sorptive surface area of
cells that are different morphologically differs, but the quality of this surface is the same.
This indicated that the nature of the cell wall of microalgae is the same, but the surface is
developed (packed) differently in the unit mass of the sorbent.

3.5. Goodness of Model Fit

The Chi-square statistic and the coefficient of determination (R2) for linearized data
were employed to assess the fit goodness of the applied mathematical equations to the
experimental data [124]. In addition, the isotherm constants were calculated using a
nonlinear regression basin’s percentage error function and compared to the less precise
linearized analytical values (R2 values) [125].

Chi-square error equation is calculated as follows [94]:

X2 =
N

∑
i=1

∣∣∣∣∣ (qe,exp,isotherm − qe,calc)× 2

qe,exp,isotherm

∣∣∣∣∣
i

(14)

where qe,exp is the experimental value, qe,cal is the calculated value, m denotes the number
of observations, and n is the number of data points in the experiment. The Langmuir
isotherm model was determined to have the best fit of the MBD adsorption onto A. platensis
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nanoparticles when the error percentage values were compared, as shown in Table 4. The
model has a low error percentage value and a high correlation coefficient. Meanwhile, the
Chi-square error values found in the Freundlich isotherm model are significantly higher
than those obtained in the other two models.

Table 6 shows the capacity of A. platensis nanoparticles and various functionalized
adsorbents to remove MB dye. It was observed that due to the presence of functional groups
on the surface of A. platensis, this adsorbent outperforms its peers in terms of its ability to
remove a high percentage (97%) and capacity (58.82 mg g−1) of the pollutants exposed to it
in a short amount of time, verifying the novelty and importance of the prepared adsorbent
in the current study among the other listed adsorbents.

Table 6. Comparison of the maximal uptake capacity of MBD with other adsorbents.

Adsorbent Capacity (mg g−1) Conditions Ref.

Eugenia umbelliflora 157.2 pH 10, sorbent dosage 6 g L−1,
and time 35 min, respectively

[126]

MWCNT–SH 166.7 60 (min) 298 K pH 6 [127]

MWCNT 100 60 (min) 298 K pH 6 [127]

Carbon nanotubes 35.4 45 (min) 273 K pH 7 [128]

Composite of graphene–CNT 65.79 30 (min) 283 K pH 7 [129]

The brown alga 38.61 [130]

Modified saw dust 111.46 [131]

Spent rice biomass 8.3 [132]

Banana peel 20.8 pH 7.2 [133]

Artocarpus odoratissimus skin 184.6 pH 4.6 [134]

Polydopamine microspheres 161.29 298 K [135]

Poly-melamine-formaldehyde polymer 80.8 298 K [136]

Ho-CaWO4 nanoparticles 103.09 pH 2.03, time 15.16 min,
adsorbent dosage 1.91 g [137]

Steam-activated carbon produced from
lantana camara Stem 19.84 20 ◦C, 60 min, 2 g, 50 mg L−1,

pH 8.
[98]

Activated carbon/
ureaformaldehyde composite 1.414

T = 298 K; MB Conc. = 5 mg L−1;
Shaking speed = 100 rpm; Natural

pH = 6.4
[138]

Activated carbon coated with zinc oxide
(ZnO nanoparticles) 66.66

MB Conc. = 5 mg L−1, contact
time = 120 min and AC–ZnO

conc. = 1.5 g/L
[107]

MWCNTs/Gly/β-CD 90.90 20 min; MB Conc. = 5 mg L−1 [139]

Sargassum latifolium 7.8 MB Conc. = 5 mg L−1; 120 min;
temperature of 50 ◦C

[6]

Hydrolyzed wheat straw 5.8 MB Conc. = 5 mg L−1; 5 to 15 min [140]

3.6. Reuse of the Adsorbent

The regeneration of dye ions from biomass produced after biotreatment is a crucial
factor in the regeneration of the adsorbent to reduce the process cost and ensure the
adsorbent’s continuous supply. The sorbent was employed in both its newly synthesized
and reused forms following dye adsorption from the loaded sorbent (the regenerated
sorbent may be reused many times). Because the A. platensis nanoparticle is not a readily
available substance, it must be regenerated. The efficiency of the adsorption cycle was
demonstrated in Figure 13. At pH 6 and 30 ◦C for 180 min, MB dye solution (0.1 g)
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was combined with A. platensis nanoparticles for regeneration experiments. To estimate
adsorbed dye on the adsorbent, the remaining dye concentration in the solution was
measured. After that, the adsorbent was filtered and washed to remove the adsorbed
dye, which was then dried in a vacuum oven at 50 ◦C for 24 h. At 10 mg L−1 of MB,
dye-loaded adsorbent was allowed to come into contact with 50 mL of distilled water
in a 100 mL conical flask, which was stirred at 150 rpm on the shaker for 180 min. A
spectro-photometer was used to determine the amount of dye desorbed. A batch test
revealed that the adsorbent can remove up to 70.5% of the MBD after the first round, which
reduced slightly to 70.55% and 65.86%, after the second and third cycles. According to the
plot, adsorption values were higher than regeneration analysis values, indicating that the
adsorbed MBD dropped during the third phase as the amount of biomass in the solution
and the number of accessible sites for the adsorption process decreased. The ability of
each biomass-based adsorbent to function well in an adsorption process would decrease
the time until it reached an irreversible phase after repeated adsorption cycles. Once a
saturated bio-adsorbent has operated unreliably for further use due to an extreme decline
in its adsorption capacity, it must be disposed of and managed correctly in accordance
with relevant parties’ requirements, and it must be labeled as hazardous waste [141].
Regeneration investigations displayed that it is possible to fully eliminate the ions of MBD
bound with the biomass and to regenerate the adsorbent allowing its successive use [123].
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4. Conclusions

This study measured the effect of initial pH, biomass amounts, temperature, con-
tact time, and dye concentrations on the adsorption of MBD ions by Arthrospira platensis
NIOF17/003 nanoparticles as green synthesis. Batch operations were used to conduct
adsorption kinetic and equilibrium experiments. Langmuir isotherm, Freundlich, and
Tempkin were used to analyze the adsorption data acquired under ideal conditions. The
Freundlich isotherm with R2 = 1 accurately depicted the equilibrium process. In addition,
the outcomes for the pseudo-second-order kinetic model indicated a high correlation coeffi-
cient. According to the adsorption kinetic estimates, the MBD ion removal rate was at its
maximum at the start of the procedure. The highest percentage removal (99%) of MBD from
aqueous solution by nanoparticles of A. platensis was discovered under the following ideal
conditions: an initial MBD concentration of 40 mg L−1, temperature 333 K, pH 6, adsorbent
0.4 g, and equilibrium state reached after 15 min of agitation. In addition, FTIR, SEM, UV,
particle size, pore volume, and pore diameter were used to analyze the adsorption process
of the adsorbent. The FTIR spectrum revealed that carboxyl and carbonyl were the main
functional groups involved in the sorption process. The sorption equilibrium research
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confirms a chemical process for dye removal on nano-adsorbents. The substance can be
reused in future dye sorption–desorption cycles after the residual dyes have been desorbed,
and the sorptive capacity has been kept within noteworthy high limits. Since A. platensis is a
low-cost biomass with significantly high adsorption ability at low concentrations, biomass
is an alternative adsorbent for the treatment of wastewater MBD ions.
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