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A B S T R A C T

A dataset of seventy-two (72) cytotoxic compounds of the National Cancer Institute (NCI) was studied by QSAR
and docking approaches to gain deeper insights into ligands selectivity on SK-MEL-2 cell line. The QSAR model
was built using fifty (50) molecules and the best-generated model based on multiple linear regression showed,
respectively good quality of fits (R2 (0.864), R2

adjusted (0.845), Q2
cv (0.799) and R2

pred (0.706)). The model's pre-

dictive ability was determined by a test set of twenty-two (22) compounds. Compounds 30 and 41 were selected
as templates for in silico design because they had high pGI50 activity and are in the model's applicability domain.
The obtained information from the model was explored to design novel molecules by introducing various mod-
ifications. Moreover, the designed compounds with better-predicted activity (pGI50) values were selected and
docked on the active site of the protein (PDB-CODE: 3OG7) which is responsible for melanoma cancer to elucidate
their binding mode. AN2 (�12.1kcalmol-1) and AC4 (�12.4kcalmol-1) showed a better binding score for the target
when compared with (vemurafenib, �11.3kcalmol-1) the known inhibitor of the target (V600E-BRAF). These
findings may be very helpful in early anti-cancer drug development.
1. Introduction

Melanoma is identified as one of the most dangerous forms of the skin
tumor, having quick metastasizing, progression and a high burden of
death, especially when detected late [1]. Even though a significant figure
of therapies have been established recently for the late-stage melanoma
cancer, this disease has not been defeated yet, resistance develops
through cancer heterogeneity, an alternative pathways (signaling) and
some serious adverse conditions limiting the potency of the novel
treatments [2]. Thus, though therapeutic alternatives are now available
and better for the patients with an advanced stagemelanoma than before,
there is however need to develop new potent drugs that target melanoma
and several techniques are being used from exploring a better delivery
system for old compounds to assessing new targets [3, 4].

To obtain a complete drug product requires a long period of about
twelve years and the estimated expenses for the sold drug are also very
high [5, 6]. This lengthy and expensive process may cause delays and
failure of drugs development. Therefore, it is very vital to predict the
failures before the clinical stage to reduce the costs of drug development
[7]. To filter out the possible failures in the drug development stage,
several approaches are being used like the in silico, in vitro, etc. An
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example of an in silico approach is the modeling of a quantitative
structure-activity relationships (QSARs) which can be used to screen
chemical libraries, understand drugs action and design novel compounds
[8, 9]. Combinatorial approaches are an influential technique adopted in
the selection to reduce the time of drug development with various
mechanisms of action and it has been used to treat cancer [10, 11]. QSAR
modeling has now become very crucial in the understanding the bio-
logical and physicochemical properties of the molecules [12, 13]. This
method is the most essential means adopted in the ligand-based design of
drug and have been used severally for the determination of assorted
parameters like stability, carcinogenicity, toxicity, retention time, ADME
and some other physicochemical parameters apart from the prediction of
the biological activity [14, 15, 16, 17, 18].

In the current study, we generate a QSARmodel that can be applied to
predict the cytotoxic effect of various anticancer compounds against the
SK-MEL-2 human melanoma cell-line utilizing the dataset obtained from
the database of National Cancer Institute (NCI). A QSAR analysis was
conducted on this data to bring out the key structural features responsible
for the anti-melanoma activity and also to design a novel template that
resembles the most potent bioactive conformation. This QSAR approach
served as a fundamental predictive tool and used primarily in the design
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of pharmaceuticals [19]. Further, docking simulation studies were con-
ducted on the V600E-BRAF protein receptor which is responsible for
melanoma cancer.

2. Computational methods

2.1. Data collection and structure preparation

Seventy-two (72) set of compounds and their pGI50 activities on SK-
MEL-2 melanoma cell-line was retrieved from National Cancer Institute
(NCI) database. The anticancer activity, chemical name and NSC number
of these compounds were presented in Table 1. 2D structures of the
studied molecules were converted to the 3D structures utilizing the
Spartan 14 Version 1.1.4 from Wavefunction Inc., on the Dell Intel (R)
Core ((TM)i7-5500U CPU), 16.00GB RAM @ 2.400GHz 2.400GHz pro-
cessor, 64-bit Operating system, a �64-based processor on Windows 8.1
Pro). Molecular optimisation of the molecules was set at the ground state
employing the Density Functional Theory (DFT/B3LYP) approach and 6-
31G* basis set. The optimized 3D structure was formatted to the SD file
and then taken to the PaDEL descriptor tool kit to generate required
descriptors for further studies [20].

2.2. QSAR model development and validation

The dataset was split into two (2) subsets, the training (modelling)
data set and testing (pridicting) data set using Kennard Stone Algorithm
[21, 22]. The training data set is utilized in building the QSAR model
which contains 70% of the data and the remaining 30% is for the testing
data set that was utilized to describe the predictive capability of the
model [23]. All the studied molecules were screened using the generated
QSAR model for pGI50 activity prediction.

Material Studio version 8.0 Software from BIOVIA-Accelrys, was
adopted in performing GA and model building. The genetic algorithm
(GA) was utilized in chosen proper descriptors as this improves the model
accuracy [24]. Multiple Linear Regression (MLR) was applied to the
training set to determine the correlation between dependent variable
pGI50 (Y) and independent variable, descriptors (X). In this regression
study, the contingent mean of the pGI50 (dependent variable) relies on X
(descriptors). The best model QSAR was chosen based on the statistical
validation parameters like the correlation coefficient of determination
(R2), Adjusted correlation coefficient R2 (R2

adj), Cross-validated coeffi-
cient of determination (Q2

CV) and correlation coefficient for an external
prediction set (R2

pred) all are represented in Eqs. (1), (2), (3), and (4):

R2 ¼ 1�
P�

Yexp � Ypred

�2
P�

Yexp � Ymtraining

�2 (1)

R2adj ¼ 1� �
1�R2

� N � 1
N � P� 1

¼ðN � 1ÞR2 � P
N � Pþ 1

(2)

Q2
CV2CV ¼ 1�

P�
Ypred � Yexp

�2
P�

Yexp � Ymtraining

�2 (3)

R2
pred ¼ 1�

P�
Ypred � Yexp

�2
P�

Yexp � Ymntrng

�2 (4)

Where P represents the number (total) of descriptors in the QSAR model
and N is the sample size. Yexp; Ypred; Ymtraining is the activity (experi-
mental), the activity (predicted) and the mean activity (experimental) of
the compounds in the modeling set [23].

2.3. Ligand-protein preparation and docking studies

The selected ligands (compounds) were optimized and formatted to
PDB files for docking utilizing Spartan 14. The X-ray structure of the
2

V600E-BRAF (receptor) in complex with ligand (vemurafenib) (PDB
CODE: 3OG7) [25, 26, 27] was retrieved from (www.rcsb.org).
V600E-BRAF was imported into the Discovery Studio Visualizer version
16.1.0.15350 and the PDB file was prepared by updating the hydrogen
atoms and removing the excess water molecules present in the X-ray
structure. This complex structure comprises two homo-dimeric chains A
and B. Our goal was to target the mutated chain A of the V600E-BRAF.
Thus, chain B was removed from the structure of 3OG7 and the bound
ligand also removed from chain A. All the selected compounds (ligands)
were docked into the active kinase domain of V600E-BRAF using Auto
Dock vina of PyRx docking and virtual screening programme.

3. Results and discussions

3.1. Developed QSAR model and validation

By using pGI50 values (activity) as dependent variables and calculated
descriptors as independent variables, Kennard stone algorithm was
applied in splitting the data into two subsets, that is, fifty compounds as
training data set while twenty-two compounds as the test set as presented
in Table 1 and regression were executed for QSAR analysis. The robust-
ness of the generated model was depicted via the activity interactive
graph that presents the predicted against experimental (pGI50) activity
plot as in Figure 1. The best QSARmodel is represented by Eq. (5) and the
statistical parameters of all the generated models with threshold values
were presented in Table 2:

pGI50ðSK�MEL�2Þ ¼ � 2:360005510ðSM1 DzeÞþ 0:010830214ðSiÞ
� 0:131575817ðVE3 DtÞþ 0:385665511 ðMLFER BHÞ
þ 42:432325759ðJGI4Þþ 0:128296620ðVE3 DÞ
þ 2:645302

(5)

Ntraining ¼ 50;R2 ¼ 0:864;R2
adjusted: ¼ 0:845; Q2

cv: ¼ 0:799; Ntest ¼ 22; R2
test

¼ 0:706

Further, the generated model has achieved high activity-descriptor
relationship efficiency of 86.4% as shown by the regression-coefficient
(R2 ¼ 0.864) and a good activity prediction efficiency of 79.9% as
shown by the cross-validated regression-coefficient (Q2

CV ¼ 0.79.9).
Knowing the high predictive and descriptive ability, the generated model
was considered to be highly robust in predicting the anti-cancer activity
of these compounds against the SK-MEL-2 melanoma cancer cell line.

The developed model, which was generated using the training data
set compounds, was used to predict the (pGI50) activity of the testing
data set of compounds. These predicted activities of the studied com-
pounds for SK-MEL-2 cell line by the built QSAR model are shown in
Table 1. Lower values of residual found from both training set and testing
set as presented in Table 1 indicate that the model has a high ability to
establish the correlation between the activity and structure. The corre-
lation between the experimental activity and predicted activity according
to the model was highly significant as determined by statistical analysis.
The closeness of regression-coefficient (R2) to 1.0 indicates that the
developed model elaborated a great portion of the descriptor-variation
large enough for a good QSAR model. The 0.864 value, demonstrates
that about 86.4% of the variation is found within the residual indicating
that the model highly predictive and very good.

The large adjusted regression-coefficient R2 (R2
adj) value presented

in the generated QSAR model and its closeness to the value of
regression-coefficient (R2) indicates that the developed model has per-
fect descriptive ability to descriptors in it and it further illustrates the
true impact of used descriptors on the pGI50. Additionally, the closeness
of cross-validated regression-coefficient (Q2

cv) to the regression coeffi-
cient (R2) and its high value showed that the built model was not
overfitted. The high R2

test as shown in the developed model explains

http://www.rcsb.org


Table 1. NSC-numbers, Names and pGI50 activities of the studied compounds with residuals.

S/N NSC Chemical Name pGI50 pGI50 (Pred.) Residual

1t 267,469 Deoxydoxorubicin 6.904 6.618 0.286

2 269,148 Menogaril 5.614 6.591 -0.977

3 268,242 N,N-Dibenzyldaunorubicin Hydrochloride 8.000 7.143 0.857

4 126,771 Dichloroallyl Lawsone 4.756 5.467 -0.711

5 136,044 Rhodomycin A 7.644 7.455 0.189

6 140,377 Arnebin 1 5.697 5.357 0.340

7 196,524 Epsilon.-Rhodomycinone 5.506 5.206 0.300

8t 212,509 4beta-Hydroxywithanolide 6.346 6.156 0.190

9t 215,139 Bikaverin 6.063 5.604 0.459

10 236,613 Plumbagin 5.732 5.564 0.168

11 252,844 Shikalkin 5.710 5.705 0.005

12 257,450 Dermocybin 4.000 4.366 -0.366

13 143,095 Pyrozofurin 4.072 4.885 -0.813

14 629,971 9-Aminocamptothecin (R,S) 6.540 6.432 0.108

15t 606,173 11-Hydroxymethyl-20(Rs)-Camptothecin 4.744 5.644 -0.900

16 364,830 Camptothecin,(N-Diethyl) Glycinate 6.418 6.247 0.171

17 94,600 Camptothecin 6.506 6.504 0.002

18 606,985 Campothecin Analog 6.308 5.617 0.691

19 606,499 Camptothecin Butylglycinate Ester Hydrochloride 5.503 6.689 -1.186

20 606,497 Camptothecinethylglycinate Esterhydrochloride 5.557 5.587 -0.030

21t 176,323 9-Methoxycamptothecin 7.000 6.840 0.160

22 3,088 Chlorambucil 4.498 4.636 -0.138

23 338,947 Clomesone 3.463 2.401 1.062

24 95,678 Picolinaldehyde 4.671 4.817 -0.146

25 264,880 Dihydro-5-Azacytidine 5.941 4.842 1.099

26 163,501 Acivicin 4.567 4.000 0.567

27t 71,851 Alpha.-Thiodeoxyguanosine 3.746 3.911 -0.165

28 132,483 L-Aspartic Acid 4.000 4.470 -0.470

29t 308,847 Amonafide 5.566 5.893 -0.327

30 355,644 Anthra[1,9-Cd]Pyrazol-6(2h)-One Der 9.924 9.658 0.266

31 63,878 Cytosine, Monohydrochloride 5.000 4.449 0.551

32t 182,986 Diaziquone 5.200 6.108 -0.908

33t 139,105 Triazinate 4.832 5.759 -0.927

34 409,962 Carmustine 4.037 3.476 0.561

35* 337,766 Bisantrene Hydrochloride 8.000 7.982 0.018

36 750 Busulfan 3.606 3.548 0.058

37t 95,382 Camptothecin, Acetate 4.097 4.856 -0.759

38 107,124 10-Hydroxycamptothecin 6.381 6.226 0.155

39 79,037 Lomustine 4.644 4.314 0.330

40 132,313 Dianhydrodulcitol 4.072 4.258 -0.186

41 376,128 AC1L2OAS 9.904 10.033 -0.129

42 73,754 Fluorodopan 3.612 4.632 -1.020

43 148,958 Uracil 3.101 4.345 -1.244

44 1895 Guanazole 2.027 2.342 -0.315

45 329,680 Hepsulfam 3.419 3.140 0.279

46t 142,982 Hycanthone Mesylate 5.104 6.731 -1.627

47 32,065 Hydroxyurea 2.767 2.133 0.634

48 153,353 Alanosine Monosodium Salt 4.013 4.090 -0.077

49 249,992 Amsacrine 5.265 5.936 -0.671

50t* 740 Methotrexate 4.042 4.432 -0.390

51t 95,441 Semustine 4.691 4.654 0.037

52t 26,980 Mitomycin C 5.743 6.215 -0.472

53 353,451 Mitozolomide 4.000 4.627 -0.627

54t* 268,242 N,N-Dibenzyldaunorubicin Hydrochloride 5.695 5.913 -0.218

55t 95,466 Urea, 3.558 3.792 -0.234

56 25,154 Pipobroman 4.023 4.528 -0.505

57t 56,410 Profiromycin 4.850 5.720 -0.870

58t 366,140 Pyrazoloacridine Mesylate 6.139 6.440 -0.301

(continued on next page)
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Table 1 (continued )

S/N NSC Chemical Name pGI50 pGI50 (Pred.) Residual

59 51,143 Pyrazoloimidazole 2.100 3.426 -1.326

60t 172,112 Spiromustine 3.611 4.607 -0.996

61 125,973 Paclitaxel; 7.295 8.423 -1.128

62 296,934 Teroxirone 4.211 3.739 0.472

63t 363,812 5-((4-Chlorobenzyl)Thio)-3-(Trifluoromethyl)-1h-1,2,4-Triazole 5.242 4.558 0.684

64 361,792 3-Demethylthiocolchicine; 7.656 6.152 1.504

65 752 6-Thioguanine 5.770 6.093 -0.323

66 6396 Thiotepa 4.526 4.582 -0.056

67 9,706 Triethylenemelamine 4.746 4.409 0.337

68t 83,265 Tritylcysteine 6.265 6.046 0.219

69 49,842 Vinblastine Sulfate 9.015 8.059 0.956

70 67,574 Vincristine Sulfate 6.870 7.711 -0.841

71t 757 Colchicine 8.402 8.029 0.373

72 33,410 N-Benzoyl-Deacetylcolchicine 7.921 7.314 0.607

‘t’ indicate testing sets.
‘*’ indicate compounds outside the defined AD of the model.

Figure 1. Predicted versus experimental pGI50 values for both the training and testing sets.

Table 2. Statistical parameters of the first Three QSAR models and Threshold values.

Parameters Threshold Value Model 1 Model 2 Model 3

Coefficient of determination (R2) �0.6 0.864 0.863 0.863

Cross-validation coefficient (Q2
cv) <0.5 0.799 0.798 0.805

The coefficient of determination for external test set (R2
test) �0.6 0.706 0.688 0.650

Difference between R2 and Q2 �0.3 0.065 0.065 0.058

Minimum number of an external test set (Ntest) �5 22 22 22
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that the generated model can provide a good and valid prediction for
the new compounds. A good and acceptable QSAR model must obey the
following criteria: regression-coefficient (R2) and adjusted regression-
coefficient (R2adj) values close to one. The Cross validated regression-
coefficient (Q2

cv) > 0.5, R2 - Q2
cv

� 0.3, R2
test � 0.6, and Ntest � 5

[23,28,29]. The generated QSAR model satisfied the criteria and
therefore acceptable statistically. We can, therefore, conclude that the
developed model will correctly predict the anti-melanoma pGI50 activity
of a given compound.
4

3.2. Contribution and interpretation of descriptors

Molecular descriptors imply the physicochemical and structural in-
formation in the form of numbers, each descriptor represents specific
information that can be implored to enhance the overall biological ac-
tivity of a molecule. By defining the descriptors that in the developed
model, it is likely to understand the features that are related to anti-
melanoma activity. Therefore, concise descriptions of the selected de-
scriptors are presented in Table 3 and an acceptable interpretation is
provided. The contribution and significance of every descriptor in the



Table 3. Description of the descriptors in the model with their mean effect (ME).

Descriptors Description ME

SM1_Dze Spectral moment of order 1 from Barysz matrix/weighted by Sanderson electronegativities -1.36906

Si Sum of first first ionization potentials (scaled on carbon atom) 1.365518

VE3_Dt Logarithmic coefficient sum of the last eigenvector from detour matrix 0.768067

MLFER_BH Overall or summation solute hydrogen bond basicity 0.311063

JGI4 Mean topological charge index of order 4 0.671447

VE3_D Logarithmic coefficient sum of the last eigenvector from topological distance matrix -0.74704
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built model were evaluated by the computation of the mean effect (ME)
value [30] of every descriptor by using Eq. (6). The values for the ME are
shown in Table 3:

MEj ¼
βj
Pi¼n

i¼1dijPm
j βj

Pn
i dij

(6)

Where: MEj is the mean effect (ME) of the descriptor j, βj represents the
coefficient of the descriptor j, dij represents the value of the selected
descriptors of each compound and m is the total number of the de-
scriptors in the generated model.

The ME value indicates the significance of a specific descriptor when
compare to the other descriptors. Descriptors found to have high ME
values influences anti-melanoma activity (pGI50). The pGI50 changes
with the ME values of a descriptor, as presented in Table 3. According to
ME values, the selected descriptors were arranged in order about their
contributions towards the overall pGI50 of the studied compounds, in
following the increasing order of pGI50 of the compounds. Based on ME
values, the descriptors were arranged in a sequential order about their
contributions towards the overall pGI50 of the studied compounds an
increasing sequence of pGI50 of the compounds.

Si > VE3_Dt > JGI4 > MLFER_BH > VE3_D > SM1_Dze

Si is the Sum of first ionization potentials (scaled on carbon atom).
This descriptor had a positive ME value in Table 3. This indicates its
relative significance in influencing the activity of the compounds. Thus,
the introduction of the substituent that will improve the ionization of
Figure 2. The plot of the standardized residu
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carbon in the molecular structure of a compound might improve pGI50
activity for the compound.

VE3_Dt is the Logarithmic coefficient sum of the last eigenvector from
detour matrix. The positive value of the mean effect (Table 3) for VE3_Dt
suggests a positive contribution to the activity. JGI4 is defined as the
Mean topological charge index of order 4. The ME of JGI4, when
increased, was found to positively affect the anti-cancer activity of the
compound.

MLFER_BH is a 2D molecular linear free energy relation descriptor.
The descriptor was found to have positive ME value as seen in Table 3,
indicating that the free energy connected with the linearity of the
molecule if large would improve the value of pGI50 of a compound
thereby strengthening its stability but decreasing its entropy and spon-
taneity in interacting with the protein target. Hence, the less linear the
compound is the better its activity.

SM1_Dze is defined as Spectral moment of order 1 from Barysz ma-
trix/weighted by Sanderson electronegativities. The negative ME value
of the descriptor (Table 3) shows the decrease in the value of the
descriptor would improve the pGI50 of the compounds.

VE3_D is described as the Logarithmic coefficient sum of the last
eigenvector from the topological distance matrix. It has a negative ME of
high magnitude, meaning a decrease in its value favors an increase in the
anti-cancer activity value of the molecule. VE3_D is an index of branching
with a lower value implying to increase branching. The descriptors
selected for developing the model in this research encoded electronic,
topological, and other geometrical aspects of the compounds. The pres-
ence of the descriptors in the QSAR model indicates the role of steric and
als against the leverages (Williams plot).
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electronic interactions in influencing anti-melanoma pGI50 activity on
SK-MEL-2 cell line.

3.3. Applicability domain (AD) and in-silico screening

The applicability domain, AD of the model is the theoretical space in
the chemical region comprising of both the descriptors of the QSAR
model and the modeled response. This domain permits prediction of
uncertainty in the identification of a specific molecule based on the data
set of the compounds used in developing the model. The AD is also
applied to define the X-outliers in case of the training data set and
identify the molecules residing outside the defined AD in case of the
testing set utilizing the fundamental theory of standardization method
[29]. Several techniques had been employed to define AD of a QSAR
model [31]. The generally used one was demonstrated by Gramatica
[32], which employed the leverages for each of the compounds of the
data set. The leveraged approach enables the evaluation of the status of a
novel compound in a model [32]. Therefore, Leverage method is utilized
and is shown as hi in Eq. (7):
Figure 3. The template structure (Compound 30) used for the design.

Figure 4. The template structure (Co
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hi ¼ xiðXTXÞ�1xTi (7)
Where x: represents descriptor's vector of the selected molecule, X: refers
to the descriptor matrix obtained from the training data set descriptor
values and the h* (warning leverage) was calculated as in Eq. (8):

h* ¼ 3ðpþ 1Þ
N

(8)

Where N represents the number of the training set compounds and pre-
fers to the number of the descriptors in the built model.

The defined ADwas then visualized withWilliams plot, the plot of the
standardized residuals versus the leverages (h) of the molecules. A
molecule with hi> h* seriously affects the QSAR model performance and
can be eliminated from the AD. Further, �3 value range of standardized
residuals is always accepted as a threshold value for affirming predictions
of a molecule, because points that lie within�3 of standardized residuals
from the mean cover 99% of the normally distributed data [33]. In this
regard, the leverage approach with standardized residuals was combined
for the determination and characterization and of the AD. The Williams
plot of the constructedmodel is presented in Figure 2. 0.420 was found to
be the h* (warning leverage) for the built model. According to leverages
(hi > 0.420), only one training set compound (35) and two test set
compounds (50 and 54) was outside the AD (Figure 2) of the constructed
model, thus, were recognized as structurally influential compounds
based on the large leverage values (hi > h*) they posses [34].

The in silico screening method is a valuable tool for predicting and
recognizing novel biologically potent molecules with enhanced proper-
ties before their actual synthesis [23, 34]. Consequently, the in silico
method decreases the cost and time involved in recognizing potent leads.
Virtual screening was achieved by deletion, insertion, and substitution of
various substitutes at different positions on the original templates of
molecules [29, 35] and the results of the structural adjustments on the
biological activity were studied. Later, the domain of applicability of the
QSAR model was established to apply the developed model in screening
novel compounds. Therefore, the in silico screening was employed to
design novel compounds with good pGI50 based on the built model and
was validated by the developed QSAR model. For this purpose, com-
pound 30 and 41 listed in Table 1, were selected as templates, because
they had relatively high anti-melanoma activity (pGI50, 9.924 and
9.904); they are within the model's AD and changes can simply be done
around the benzene ring of the main structure. The structure of the
templates used for modifications is presented in Figures 3 and 4
respectively. The molecules were adjusted in such a way that their syn-
thesis was experimentally achievable. Next, in silico screen was
employed by replacing various groups in the R1 and R2 sites of the ring;
which lead to compounds with improved predicted anti-melanoma ac-
tivity values as shown in Tables 4 and 5 respectively. Before the pre-
diction of the pGI50 activity values of newly designed compounds by the
mpound 41) used for the design.



Table 4. Structural alteration of Compound 30 and Predicted pGI50 and Leverage
limit.

ID R1 R2 Predicted pGI50 Leverage-limit

AN1 NH2 NH2 10.935 0.259

AN2 NH2 CH3 11.051 0.253

AN3 CH3 Br 10.756 0.342

AN4 OCH3 Cl 10.802 0.148

AN5 Br OCH3 10.804 0.304

Table 5. Structural alteration of Compound 41 and Predicted pGI50 and Leverage
limit.

ID R1 R2 Predicted pGI50 Leverage-limit

AC1 NH2 NH2 11.877 0.334

AC2 Cl CH3 11.967 0.178

AC3 NH2 CH3 11.699 0.372

AC4 NH2 NHSO2CH3 12.014 0.283

AC5 Cl Br 11.274 0.289
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developed model, their geometry has been optimized, descriptors
computed and their leverages determined as explained for the training
set. The warning leverage (limit) for the model (h* ¼ 0.420) was used as
the threshold value to screen the designed compounds. Among various
molecules designed, the compound AC4 revealed the best activity (pGI50
¼ 12.014). Consequently, it is confirming that adopting a simple QSAR
model, it is feasible to concurrently identify compounds with enhanced
activity and to discover the structural alterations that don't fall within the
defined applicability domain of the model. Lastly, this result proves the
reliability of the QSAR models and it confirms that with the development
of the QSAR model and application of in silico screening method, it is
feasible to recognize new synthetic targets for drug development.
Table 6. Molecular interactions of V600E-BRAF (PDB ID: 3OG7) with some designed

Molecular System Binding Free Energy
(Kcal/mol)

Hydrogen
Bond (HB)

Bond Length
(Å) for HB

BRAF/AN1 ─11.9 GLN530
THR529
CYS532
PHE595
GLY596

2.32456
2.73479
2.56856
2.43786
2.106

BRAF/AN2 ─12.1 ASP594
THR529
PHE595
GLY596

2.50828
2.8518
2.41353
2.1919

BRAF/AC2 ─11.6 CYS53
SER536
ASN580

2.11094
2.75709
2.13187

BRAF/AC4 ─12.4 THR529
LYS578
LYS578
ASN580
ARG662
THR529
GLN530
THR529
GLN530

2.35841
2.26453
2.47978
2.51789
2.61203
2.6315
2.52962
2.68757
2.40948

BRAF/Vemurafenib ─11.3 CYS532
GLN530ASP594
PHE595
GLY596

3.04242
2.44521
2.29258
2.67992
2.14527
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3.4. Molecular docking simulation studies

Designed molecules AN1, AN2, AC2, and AC4 were chosen for the
molecular docking simulation study to represent molecules shown in
Tables 4 and 5 respectively as they have the highest predicted pGI50
activity values with low leverage when compared with the model
warning leverage limit. The best docking result for the selected com-
pounds was shown in Table 6. To validate the docking protocol and
productivity, the co-crystalized ligand (vemurafenib) was also docked to
the binding site of V600E-BRAF with the binding affinity of �11.3 kcal
mol�1 and the RMSD value for both upper and lower bounds were
measured (0.0) which proved the docking protocol and productivity.

The obtained docking poses from the Discovery Studio visualizer
were shown in Figures 5, 6, 7, 8, and 9 respectively. The designed mol-
ecules had negative free energy of binding higher in magnitude when
compared with vemurafenib and this indicates a better binding affinity
with the receptor. This shows that the designed compounds could be used
as an anti-melanoma drug. The docking poses of the designed compounds
showed that they interacted with the binding pocket of a protein target in
a way similar to vemurafenib with additional number interactions.

AN1 docks with the V600E-BRAF domain with the binding free en-
ergy of –11.9 kcal mol�1 as presented in Figure 5. Six H-bonds were
present between the receptor and molecule (ligand), five of which were
the conventional H-bonding with GLN530, THR529, CYS532, PHE595
and GLY596 of the protein with a bond lengths of 2.32456, 2.73479,
2.56856, 2.43786 and 2.106 respectively, from the ligand and one C–H
bond with CYS532. Besides, VAL471, ALA481, and CYS532 formed pi
alkyl bonds with the ligand, while TRP531 and PHE583 formed pi-pi
stacked interaction with the ligand.

The docked structure of AN2 shown in Figure 6 indicates a negative
free binding energy of (�12.1kcalmol-1), suggesting that binding is
practicable, because most of the interactions (energies) are of H-bond
type with these amino acids (ASP594, THR529, PHE595, and GLY596),
thus ensuing in the total negative value. The complex stability result can
Anti-melanoma compounds.

Alkyl Pi-Sigma Pi-Pi Pi-Alkyl Pi-sulphur/
cation

C–H

PHE583
TRP531

VAL471
ALA481
CYS532

CYS532

VAL471 TRP531
PHE583

PHE468
VAL471
ALA481
CYS532

ASN580
LYS483

VAL471
ALA481
LEU514
CYS532
LEU514

PHE583 TRP531
PHE583

VAL471
ALA481
ILE463
PHE583

CYS532
TRP531

SER465
GLY534
ILE463
GLY466
SER535

ILE617
ARG662

TRP531 PHE468 PHE583
VAL471
ALA481

LYS483
SER616
ASN581
ASP594
SER465

CYS532 TRP531
PHE583

TRP531
PHE583
ALA481
LEU514
CYS532
LYS483
ILE463

LYS483



Figure 5. 2D interactions diagram of AN1 with V600E-BRAF.

A.B. Umar et al. Heliyon 6 (2020) e03640
be connected with an extra Pi/sigma interaction associated with VAL471,
Pi/alkyl interactions associated with (PHE468, VAL471, ALA481, and
CYS532) and Pi-Pi interactions (TRP531 and PHE583) as reported in
Table 6.
Figure 6. 2D interactions diagram
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The docked structure of AC2 depicted in Figure 7 shows negative free
binding energy of (�11.6kcalmol-1) which indicates the possibility of
stable interactions between the ligand and the protein target. There are
three conventional Hbonds identified between this ligand and receptor;
of AN2 with V600E-BRAF.



Figure 7. 2D interactions diagram of AC2 with V600E-BRAF.

A.B. Umar et al. Heliyon 6 (2020) e03640
CYS53, SER536 and ASN580 and five carbon-hydrogen with SER465,
GLY534, ILE463, GLY466, and SER535. The complex stability may be
attributed with an extra alkyl interaction with VAL471, LEU514 and
CYS532, Pi-sigma interaction with PHE583, Pi-alkyl interactions
Figure 8. 2D interactions diagram
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(PHE583), Pi-Pi interactions (TRP531 and PHE583) and additional Pi-
Sulphur interactions with CYS532, TRP531 as reported in Table 6.

The free binding energy of AC4 with a receptor is –12.4kcalmol-1, this
interaction was achieved by nine (9) H-bonds with the ligand and Pi/
of AC4 with V600E-BRAF.



Figure 9. 2D interactions diagram of Vemurafenib with V600E-BRAF.

A.B. Umar et al. Heliyon 6 (2020) e03640
sigma interaction that introduces stabilizing charges responsible for
intercalating the drug within the protein (V600E-BRAF) as presented in
Figure 8. There were nine (9) conventional H-bonds present in the
complex and seven (7) hydrophobic interactions with seven (7) amino
acids (Table 6). The Pi/Cation interactions with PHE583, VAL471, and
ALA481 which formed a Pi/donor H-bond with the amino acids in the
binding segment of the receptor. Other identified interactions are the
alkyl interaction with (ILE617 and ARG662), pi/alkyl interaction with
PHE468 and Pi/Pi interaction with TRP531 similar to vemurafenib.

It has been reported that H-bonding is the main force regulating the
interaction between the docked compounds (ligands) and the receptors
and also the binding score of the ligand increases with the number of
hydrogen bonding/distance [36, 37]. It can be seen that the number of
amino acids involved in the conventional hydrogen bonding with the
designed molecules was better than that of vemurafenib as presented in
Table 6 and Figures 5, 6, 7, 8, and 9 respectively. This might inform the
better free binding affinity of the designed molecules for V600E-BRAF.
Additionally, some of the designed molecules interacted more with the
target amino acids through strong electrostatic forces especially com-
pound AC4 (Figure 8).

4. Conclusion

In this study, a QSAR with molecular docking simulation methods
was used to study a series of seventy-two anti-cancer compounds, not
only to develop a highly predictive QSAR model but also to identify the
key features required to design novel candidates and to explore the
interaction mechanism between the compounds and V600E-BRAF pro-
tein. The regression coefficients of the model showed an equally good
model with sufficient statistical validation keys (R2 (0.864), R2

adjusted

(0.845), Q2
cv (0.799) and R2

pred (0.706)) for the internal and external data
sets. The information derived from the model suggests that if changes
occur in some regions of the molecules, it might be feasible that the
inhibitory activity would improve. As for the new templates design,
followed the molecular modification approach in the existing data set,
10
molecule 30 and 41 were selected because they had relatively high anti-
melanoma activity; they are within the AD of the QSAR model and
adjustment can be done easily around their benzene ring. Based on the
results, we predicated the pGI50 activity of proposed molecules by the
built QSAR model. The predicted activities of most of the designed
molecules were found to be better than the templates and Compound
AC4 was found to be the most active (pIG50 12.014) within all designed
compounds. Further, Molecular docking simulation was applied to better
understand the binding mechanism and produce the binding poses of
some selected proposed compounds (AN1, AN2, AC2, and AC4) into the
V600E-BRAF receptor. The newly designed compounds were proved to
have a better binding score for V600E-BRAF (PDB CODE: 3OG7) compare
to vemurafenib. Thus, these new proposed compounds would be better to
investigate the chance of the specificity and higher selectivity toward
V600E-BRAF protein. These findings may be helpful in early anti-cancer
drug development.
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