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Staphylococcus aureus and Staphylococcus epidermidis are associated with 

life-threatening infections. Despite the best medical care, these infections 

frequently occur due to antibiotic resistance and the formation of biofilms 

of these two bacteria (i.e., clusters of bacteria embedded in a matrix). As a 

consequence, there is an urgent need for effective anti-biofilm treatments. 

Here, we describe the antibacterial properties of a combination treatment of 

diethyldithiocarbamate (DDC) and copper ions (Cu2+) and their low toxicity in 

vitro and in vivo. The antibacterial activity of DDC and Cu2+ was assessed in vitro 

against both planktonic and biofilm cultures of S. aureus and S. epidermidis 

using viability assays, microscopy, and attachment assays. Cytotoxicity of DDC 

and Cu2+ (DDC-Cu2+) was determined using a human fibroblast cell line. In 

vivo antimicrobial activity and toxicity were monitored in Galleria mellonella 

larvae. DDC-Cu2+ concentrations of 8 μg/ml DDC and 32 μg/ml Cu2+ resulted 

in over 80% MRSA and S. epidermidis biofilm killing, showed synergistic and 

additive effects in both planktonic and biofilm cultures of S. aureus and S. 

epidermidis, and synergized multiple antibiotics. DDC-Cu2+ inhibited MRSA 

and S. epidermidis attachment and biofilm formation in the xCELLigence 

and Bioflux systems. In vitro and in vivo toxicity of DDC, Cu2+ and DDC-Cu2+ 

resulted in > 70% fibroblast viability and > 90% G. mellonella survival. Treatment 

with DDC-Cu2+ significantly increased the survival of infected larvae (87% 

survival of infected, treated larvae vs. 47% survival of infected, untreated larvae, 

p < 0.001). Therefore, DDC-Cu2+ is a promising new antimicrobial with activity 

against planktonic and biofilm cultures of S. epidermidis and S. aureus and low 
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cytotoxicity in vitro. This gives us high confidence to progress to mammalian 

animal studies, testing the antimicrobial efficacy and safety of DDC-Cu2+.

KEYWORDS

biofilm, antibacterial, diethyldithiocarbamate, copper ions, Staphylococcus aureus, 
Staphylococcus epidermidis, new treatment

Introduction

The Gram-positive bacteria Staphylococcus aureus and 
Staphylococcus epidermidis are notable human pathogens, causing 
infections ranging from mild skin infection to life-threatening 
bacteremia (Kleinschmidt et al., 2015; López-Cortés et al., 2020), 
endocarditis (Cahill et al., 2017), osteoarticular (Kaushik and Kest, 
2018) and medical device related infections (Otto, 2008; Zheng 
et al., 2018; Patiniott et al., 2022). Furthermore, S. aureus is the 
most common pathogen isolated from surgical site infections 
(Tong et al., 2015). Typically, a bacterial infection is treated with 
antibiotics (Stevens et al., 2005), e.g., intervention against S. aureus 
infections is executed with either β-lactams, lincosamides, 
lipopeptides, tetracyclines, glycopeptides, linezolid, or adjunct 
trimethoprim-sulfamethoxazole therapy (Liu et  al., 2011). 
However, these therapies are frequently failing due to the rise of 
antibiotic resistance and the formation of biofilms (Santajit and 
Indrawattana, 2016).

Biofilms are aggregates of bacteria embedded in a protective 
matrix (Costerton et al., 1999) and are known to be up to 1,000-
fold more tolerant to antimicrobial agents compared to planktonic 
cells (Mah and O’Toole, 2001). The biofilm matrix, a 
conglomeration of extracellular polymeric substances, prevents 
diffusion of the drug and modulates or reduces their metabolic 
activity (Crabbé et al., 2019). In addition, staphylococci developed 
penicillin-resistance, including methicillin-resistant S. aureus 
(MRSA) with rates varying between 1.5 and over 50% in different 
parts of the world (Australian Commission on Safety and Quality 
in Health Care (ACSQHC), 2019; Craft et al., 2019; European 
Centre for Disease Prevention and Control, 2022) and methicillin-
resistant S. epidermidis with reported rates over 70% (Lee et al., 
2018). The implications of antimicrobial resistance are devastating, 
as exemplified by MRSA-associated surgical site infections, which 
is associated with 2- to 11-fold increased patient mortality 
(Anderson et al., 2007). Therefore, S. aureus is listed as a high 
priority pathogen for research and development by the World 
Health Organization, emphasizing the urgency for new treatments 
(World Health Organization, 2017).

Innovative strategies against S. aureus and S. epidermidis in 
the research and development pipeline include newly synthesized 
compounds (Dinarvand et al., 2020; Sovari et al., 2020; Wang 
et al., 2021), bacteriophages (Feng et al., 2021; Walsh et al., 2021), 
metals (Richter et  al., 2017a; Sánchez-López et  al., 2020) and 
repurposed drugs (Thangamani et  al., 2015; Richter, 2019). 
Repurposing of drugs has a history of multiple benefits and safe 

uses, allowing for a faster bench to bedside translation and lower 
drug development costs (Pushpakom et al., 2018).

An excellent candidate for drug repurposing is 
diethyldithiocarbamate (DDC). DDC is the metabolite of 
disulfiram, an FDA-approved drug for the treatment of chronic 
alcoholism, which have both recently resurfaced as potentially 
useful in other medical fields, such as cancer, cocaine addiction, 
or infections with fungi, parasites, viruses and bacteria (Kaul et al., 
2021). DDC showed high antifungal activity against Candida 
albicans and Candida tropicalis biofilms (Harrison et al., 2007), 
reduced the load of Leishmania braziliensis (Khouri et al., 2010; 
Celes et al., 2016) and, in combination with copper ions (Cu2+), 
showed anti-SARS-CoV-2 activity by targeted oxidation strategies 
(Xu et  al., 2021). The suggested mechanisms behind the 
antimicrobial activity of DDC is based on chelating vital metals 
and inhibiting enzymes (Phillips et al., 1991), such as the carbonic 
anhydrases present in Legionella pneumophila (Nishimori et al., 
2014) or the superoxide dismutase present in Candida albicans 
(De Brucker et al., 2013), Leishmania braziliensis (Khouri et al., 
2010) or Bacillus anthracis (Frazier et al., 2019). An additional 
advantage of DDC is a lack of teratogenic, mutagenic or 
carcinogenic effects in animal models (Gessner and Gessner, 1992).

Based on the anti-cancer activity of DDC being linked to the 
addition of Cu2+ and on limited activity against Gram-positive 
bacteria of DDC as monotherapy, DDC was combined with 
copper ions (Cu2+) and showed promising results against 
mycobacteria and streptococci (Dalecki et al., 2015; Menghani 
et al., 2021). However, the combination of DDC with metal ions, 
such as Cu2+ has not been further investigated against 
staphylococci and their biofilms. Thus, this study presents the 
antibacterial activity of DDC and Cu2+ against planktonic and 
biofilm S. aureus and S. epidermidis including in vivo safety and 
efficacy in an infected Galleria mellonella model.

Materials and methods

Bacterial strains and cell cultures

Staphylococcus epidermidis ATCC 35984 and ATCC 14990, 
S. aureus ATCC 25923 and ATCC 700699 (also known as MRSA 
Mu50), and Escherichia coli ATCC 25922 were purchased from the 
American Type Culture Collection (Manassas, VA, United States). 
Three clinical isolates, i.e., MRSA 1, 2 and 3 were obtained from 
Adelaide Pathology Partners (Mile End, Australia). Pseudomonas 
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aeruginosa PAO1 was obtained from the School of Molecular 
Medical Sciences, University of Nottingham (Nottingham, 
United Kingdom). Unless stated otherwise, bacterial suspensions 
were prepared by dissolving colonies in 0.9% saline and adjusted 
to the appropriate McFarland units before being further diluted in 
broth and incubated at 37°C under aerobic conditions. Cell 
culture studies were carried out using control human fibroblast 
cells (Coriell Cat# GM00038, RRID: CVCL_7271) obtained from 
the Coriell Institute for Medical Research (Camden, NJ, 
United  States). Unless stated otherwise, all experiments were 
carried out at least in triplicate and all chemicals, media and 
supplements were purchased from Sigma-Aldrich (Steinheim, 
Germany).

Minimal inhibitory concentration and 
checkerboard analysis

The MIC values of DDC (Carl Roth, Karlsruhe, Germany) and 
the antibiotics methicillin (Meth), ceftazidime (Ceft), vancomycin 
(Van), ciprofloxacin (Cip), doxycycline (Doxy), amikacin (Amik) 
and erythromycin (Erythro) towards the staphylococci S. aureus 
and S. epidermidis and the Gram-negative bacteria E. coli and 
P. aeruginosa were determined in a 96-well microtiter plate using 
the broth microdilution method (Wiegand et al., 2008). Bacterial 
suspensions were adjusted to 0.5 ± 0.1 McFarland units, further 1: 
100 diluted in Mueller-Hinton broth (Thermo Fisher) and mixed 
with equal volumes of treatments or antibiotics. Treatment 
concentrations of DDC ranged from 0.5 to 128 μg/ml and for 
antibiotics from 0.125 to 64 μg/ml. Furthermore, the broth 
microdilution method was adapted to investigate the MIC of 
gallium nitrate hydrate (Ga3+), iron sulphate heptahydrate (Fe2+), 
calcium chloride dihydrate (Ca2+), magnesium sulphate (Mg2+), 
zinc sulphate heptahydrate (Zn2+) and copper sulphate 
pentahydrate (Cu2+) alone or in combination with DDC. The MIC 
was determined as the lowest concentration of treatment required 
to inhibit visual growth by the unaided eye (Wiegand et al., 2008).

Biofilm checkerboard assay

Black 96-well microtiter plates (Costar, Corning Incorporated, 
NY, United States) were inoculated with 100 μl of a 1: 100 diluted 
S. aureus, MRSA or S. epidermidis bacterial suspension in nutrient 
broth, adjusted to 0.5 ± 0.1 McFarland units, and incubated at 
37°C for 24 h on a rotating platform at 70 rpm (3D Gyratory 
Mixer, Ratek Instruments, Boronia, Australia). After washing once 
with sterile 0.9% w/v saline to remove planktonic bacteria, 
biofilms were exposed to serial dilutions of (i) 1 to 256 μg/ml 
DDC, (ii) 4 to 256 μg/ml Cu2+, (iii) mixture of DDC and Cu2+, (iv) 
antibiotics with concentrations ranging from 0.5 to 128 μg/ml, 
including Meth, Ceft, Van, Cip, Doxy, Amik and Erythro or (v) a 
mixture of DDC-Cu2+ and antibiotics, and further incubated at 
37°C on a rotating platform for 24 h. After a second washing step 

to remove the treatments, bacterial viability was assessed by the 
AlamarBlue cell viability assay (Peeters et al., 2008; Richter et al., 
2016). Briefly, 100 μl of a freshly prepared 10% v/v AlamarBlue 
(Thermo Fisher, MA, United States) solution in nutrient broth 
(Thermo Fisher) were added to each well and incubated, protected 
from light, for up to 5 h at 37°C on a rotating platform. The 
fluorescence was determined hourly using a FLUOstar OPTIMA 
plate reader (BMG LABTECH, Offenburg, Germany) at λexcitation/
λemission = 530/590 nm. After reaching maximum fluorescence the 
relative biofilm killing efficacy was quantified according to 
Equation 1.

 

treatment blank

untreated blank
% Biofilm killing 1 100− 

= − ×  −
I I
I I  

(1)

Antibiofilm activity of the different treatments was determined 
as percentage of biofilm killing, where the fluorescence intensity 
of treated and untreated biofilms is represented by Itreatment and 
Iuntreated, respectively, and Iblank represents the background 
fluorescence of the 10% v/v AlamarBlue solution (Richter 
et al., 2016).

Synergy of compounds

The fractional inhibitory concentration index (FICi) was used 
to describe synergistic, additive, and antagonistic effects between 
DDC and Cu2+, or between DDC-Cu2+ and antibiotics. The 
equation for calculating the sum of FICi (ΣFICi) is based on the 
planktonic and biofilm checkerboard assay and exemplified for 
planktonic bacteria in Equation 2 using the MICs.

 

MIC MICFICi
MIC MIC

∑ = +ab ba

a b  
(2)

MICab = MIC of compound a in combination with b; 
MICa = MIC of compound a; MICba = MIC of compound b in 
combination with a; MICb = MIC of compound b (Khouri et al., 
2010). Similarly, the equation for biofilms was adapted by 
replacing the MIC with the minimum biofilm inhibitory 
concentration, correlating to a minimum of 80% biofilm killing. 
According to previous literature, the ΣFICi was interpreted as: (i) 
synergy; ΣFICi ≤0.5, (ii) additivity; ΣFICi between 0.5 and 1, (iii) 
indifference; ΣFICi ≥1 and ≤4, and (iv) antagonism; ΣFICi ≥4 
(Sopirala et al., 2010).

Confocal microscopy

An 8-well chamber slide (μ-Slide, Ibidi, Gräfelfing, Germany) 
was inoculated with 300 μl of a 1: 100 dilution of a bacterial 
suspension of MRSA Mu50 or S. epidermidis ATCC 35984 
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adjusted to 0.5 ± 0.1 McFarland units in nutrient broth and 
incubated for 24 h at 37°C on a rotating platform at 70 rpm (3D 
Gyratory Mixer, Ratek Instruments, Boronia, Australia). Biofilms 
were rinsed with phosphate buffered saline, followed by exposure 
to DDC-Cu2+ (8 μg/ml DDC + 32 μg/ml Cu2+) or nutrient broth 
alone for 24 h at 37°C on a rotating platform. After a second 
washing step, a 1: 1000 dilution of LIVE/DEAD BacLight staining 
(SYTO 9/propidium iodide; Life Technologies, Scoresby, 
Australia) was incubated in the dark for 30 min, then imaged by 
confocal laser scanning microscopy (Olympus FV3000, Shinjuku, 
Japan) using a 20 × and 100 × objective. The excitation/emission 
wavelengths of the LIVE/DEAD BacLight staining were 
488/520 nm and 543/619 nm, respectively. The images were 
quantified using ImageJ Software (1.53q, NIH, University of 
Wisconsin, WI, United States). Due to the number of layers of 
cells in the biofilm and the magnification objective, live/dead cell 
count was not possible. Instead, measurement of total red and 
green fluorescence ratio was used to semi-quantitatively calculate 
the live/dead cell ratio.

Prevention of bacterial attachment

The activity of DDC-Cu2+ to inhibit bacterial attachment was 
determined using the xCELLigence real-time cell analysis (RTCA; 
Agilent, CA, United  States). This technology measures the 
impedance through gold electrode sensors placed on the bottom 
of each well of the RTCA E-plate 16 (Agilent, CA, United States). 
When cells attach onto the electrodes, a larger impedance is 
detected, leading to an increase of the cell index (CI) compared to 
the baselines.

To measure the baselines, 50 μl of nutrient broth and 100 μl of 
8 μg/ml DDC, 32 μg/ml Cu2+, DDC-Cu2+ (8 μg/ml DDC + 32 μg/
ml Cu2+) dissolved in nutrient broth or media alone were added 
to each well. A bacterial overnight culture in nutrient broth was 
adjusted to OD600 of 0.4 for MRSA Mu50 and S. epidermidis ATCC 
35984. A 1: 4 dilution of the bacterial suspension was added to the 
appropriate wells. The impedance of the cells was continuously 
and automatically measured every 15 min for 48 h while statically 
incubated at 37°C. Wells with bacterial suspension in broth (100% 
bacterial attachment), wells with broth alone (background) and 
wells with compounds in broth (0% bacterial attachment, 
reflecting the compounds’ influence on impedance) were assessed 
as controls.

Bioflux

The Bioflux system (Fluxion, United  States) was used to 
determine inhibition of biofilm growth under flow conditions, as 
previously described (Hoogenkamp, 2021). All media was 
pre-warmed to 37°C before use. Bioflux plates were primed with 
350 μl half-strength tryptone soy broth (TSB, BD, Sparks, MD, 
United States) and inoculated with 70 μl of a bacterial overnight 

culture (either MRSA Mu50 or S. epidermidis ATCC 35984) 
adjusted to OD600 of 0.2. Following bacterial attachment for 30 min 
at 37°C and no flow, bacteria were exposed to either half-strength 
TSB or half-strength TSB supplemented with DDC-Cu2+ (8 μg/ml 
DDC + 32 μg/ml Cu2+) for 24 h at 37°C under steady nutrient flow 
(0.5 dyne/cm2). Biofilm growth was monitored through brightfield 
microscopy (20× objective), and images were automatically taken 
every 15 min.

In vitro cytotoxicity

The GM00038 normal human skin fibroblast cell line was 
cultured in Eagle’s Minimum Essential Medium with Earle’s salts 
and non-essential amino acids supplemented with 15% fetal 
bovine serum (Biochrom, Berlin, Germany) and 2.2 g/l sodium 
bicarbonate anhydrous. Fibroblasts were seeded at 5 × 104 
cells/100 μl culture medium per well in black 96-well flat-bottom 
plates and incubated at 37°C in 5% CO2 for 24 h to allow 
attachment. Cells were separately treated with either 8 μg/ml 
DDC, 32 μg/ml Cu2+ or DDC-Cu2+ (8 μg/ml DDC + 32 μg/ml Cu2+) 
for 18 h. The effect of the compounds on fibroblast viability was 
assessed with the CellTiter-Glo® Luminescent Viability Assay 
(Promega Corporation, WI, United  States) according to the 
manufacturer’s instructions and luminescence was measured on a 
FLUOstar OPTIMA plate reader. Equation 3 was used to quantify 
the percentage of fibroblast viability, where the luminescence 
intensity of treated and untreated fibroblast cells is represented by 
Itreatment and Iuntreated, respectively, and Iblank represents the 
background luminescence of the CellTiter-Glo® reagent.

 

treatment blank

untreated blank
% Fibroblast viability 100− 

= ×  −
I I
I I  

(3)

In vivo cytotoxicity and efficacy

Galleria mellonella larvae (Hengelsport De Poorterwere, 
Ghent, Belgium) were stored in the dark at 13°C and used within 
3 days of receipt. Each treatment group was assigned 30 larvae. 
Larvae were injected in the last proleg with micro-fine (30 gauge) 
needle insulin syringes (BD, Franklin Lakes, NJ, United States). 
Three control groups were included, (i) larvae injected with 0.9% 
saline (uninfected, untreated control), (ii) larvae injected with 
treatment (uninfected, treated control to determine treatment 
toxicity) and (iii) larvae injected with a bacterial suspension 
(infected, untreated control). To determine treatment efficacy, 
larvae were injected with a bacterial suspension (either MRSA 
Mu50 or S. epidermidis ATCC 35984) and with DDC, Cu2+or 
DDC-Cu2+. Considering the dilution factor within the larvae, the 
concentrations of the DDC-Cu2+ were increased a 10-fold and 
based on the average weight of the larvae (250 mg) was determined 
as 6.4 mg/kg DDC and 25.6 mg/kg. A total volume of 20 μl was 
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injected comprising treatment or saline in a 1:1 mix with a 
bacterial suspension in nutrient broth. The final bacterial density 
was OD600 0.05. Larvae were housed in petri dishes in the dark at 
37°C and the larvae mortality was monitored daily over 4 days.

Statistical analysis

Results were statistically analyzed using GraphPad Prism 
(RRID:SCR_002798) version 9.00 for Windows (GraphPad 
Software, CA, United  States) and statistical significance was 
determined with an α = 0.05. Parametric data (MIC, biofilm killing 
and cytotoxicity) are represented by the mean ± standard deviation 
(SD), which was analyzed using one-way analysis of variance 
(ANOVA) with Dunnett’s (for MICs, biofilm checkerboard, 
microscopy) or Tukey’s (for xCELLigence) multiple comparison 
test for finding statistical differences between treatment groups. 
G. mellonella survival data was analyzed using Kaplan–Meier 
survival curves with significant differences between groups 
determined by log-rank test, significance was Bonferroni-Holm-
corrected for multiple comparisons.

Results

Minimal inhibitory concentration

As shown in Table 1, DDC displayed low antibacterial activity 
against S. epidermidis ATCC 35984 with a MIC of 64 μg/ml. To 
increase the antibacterial activity of DDC, a selection of metal 
salts was evaluated against S. epidermidis ATCC 35984  in the 
presence or absence of DDC. The MIC of the metal salts alone was 
128 μg/ml for Cu2+ and above 128 μg/ml for all other metal ions 
(Table 1). In combination with Ga3+, Fe2+ and Ca2+, the MIC of 
DDC was not reduced. In contrast, the MIC of DDC was reduced 
to 16 μg/ml in the presence of Mg2+ and Zn2+ and to 1 μg/ml when 
combined with Cu2+ (Table 1).

Since the DDC combination with Cu2+ resulted in a substantial 
MIC reduction in S. epidermidis ATCC 35984, the MIC of DDC 
in the presence or absence of Cu2+ was further investigated in a 
range of bacteria. In S. aureus, MRSA and S. epidermidis, the MICs 
of DDC ranged from 32 to 128 μg/ml. The MIC of DDC against 
E. coli and P. aeruginosa was above 128 μg/ml. The extensive MIC 
reduction of DDC in the presence of Cu2+ was also observed with 
other S. aureus, MRSA and S. epidermidis strains (Table 2). Both 
the MIC of DDC in the presence of Cu2+ and the MIC of Cu2+ in 
the presence of DDC were reduced in all S. aureus and 
S. epidermidis strains tested. Interestingly, the MIC values of the 
combination were the highest with 4 μg/ml DDC and 64 μg/ml 
Cu2+ in S. aureus ATCC 25923, the most antibiotic susceptible 
strain, while the MIC values of the combination were lowest, with 
0.5 μg/ml DDC and 2 μg/ml Cu2+ in MRSA 2 and MRSA Mu50, 
the strain with the highest antibiotic MICs. In all strains tested, the 
lowest concentration of Cu2+ required to inhibit S. aureus and 
S. epidermidis growth exceeded the lowest DDC concentration.

Effect of different DDC and Cu2+ 
concentrations on biofilms

MRSA and S. epidermidis biofilms were exposed to combined 
treatments of DDC (1 to 256 μg/ml) and Cu2+ (4 to 256 μg/ml). In 
Figure 1, the MRSA Mu50, MRSA 2, S. epidermidis ATCC 35984 
and S. epidermidis ATCC 14990 biofilm killing of different DDC 
and Cu2+ combination (DDC-Cu2+) ratios were compared to the 
effect of single Cu2+ treatment. Overall, treatment with DDC alone, 
Cu2+ alone and combinations involving Cu2+ concentrations below 
16 μg/ml resulted in low antibiofilm activity against S. aureus and 
S. epidermidis with less than 31.2% biofilm killing, except for Cu2+ 
256 μg/ml against S. epidermidis ATCC 14990 resulting in 70.8% 
biofilm killing (Figure 1D). The highest biofilm killing was 95.8, 
99.6, 99.3 and > 99.9% with 256 μg/ml Cu2+ in combination with 
8 μg/ml DDC in MRSA Mu50 (Figure 1A), MRSA 2 (Figure 1B), 
S. epidermidis ATCC 35984 (Figure 1C) and S. epidermidis ATCC 
14990 (Figure 1D), respectively. The minimal concentrations of 
DDC-Cu2+ that resulted in above 80.0% biofilm killing were 8 μg/
ml DDC and 16 μg/ml Cu2+ in MRSA Mu50 (81.0% biofilm killing, 
p ≤ 0.001; Figure 1A), 4 μg/ml DDC and 32 μg/ml Cu2+ in MRSA 2 
(98.6% biofilm killing, p ≤ 0.001, Figure 1B), 4 μg/ml DDC and 
16 μg/ml Cu2+ in S. epidermidis ATCC 35984 (85.0% biofilm killing; 
p ≤ 0.001; Figure  1C) and 8 μg/ml DDC and 32 μg/ml Cu2+ in 
S. epidermidis ATCC 14990 (83.7% biofilm killing, p ≤ 0.01; 
Figure 1D). Complementing the results obtained against planktonic 
MRSA and S. epidermidis, low antibiofilm activity was observed 
when DDC concentrations exceeded Cu2+ concentrations, 
suggesting the importance of a DDC-Cu2+ ratio range. The lowest 
concentration of DDC and Cu2+ with over 80.0% biofilm killing in 
all strains tested was 8 μg/ml and 32 μg/ml Cu2+, therefore this 
concentration was chosen for further experiments. This 
concentration was also effective against S. aureus ATCC 25923, 
MRSA 1 and MRSA 3 biofilms (data not shown).

TABLE 1 Minimum inhibitory concentration (MIC) of 
diethyldithiocarbamate (DDC), metal ions and the combination of 
both against S. epidermidis ATCC 35984.

MIC (μg/ml)

Metal ion DDC Metal ion DDCa-Metal ionb

64

Ga3+ >128 64/>128

Ca2+ >128 64/>128

Fe2+ >128 32/4

Mg2+ >128 16/4

Zn2+ >128 16/4

Cu2+ 128 1/8

aMIC of DDC in combination with metal ion.
bMIC of metal ion in combination with DDC.
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Synergistic effects of DDC and Cu2+ in 
combination with different antibiotics

Synergistic and additive effects of DDC and Cu2+ were 
observed against all planktonic MRSA (ΣFICi: MRSA 
Mu50 = 0.14; MRSA 1 = 0.67; MRSA 2 = 0.19; MRSA 3 = 0.88) 
and S. epidermidis strains (ΣFICi: S. epidermidis ATCC 
14990 = 0.93; S. epidermidis ATCC 35984 = 0.63), except for 

S. aureus ATCC 25923 (ΣFICi = 1.23; Table  2). Against the 
biofilm form of the same strains, the ΣFICi of DDC-Cu2+ was 
reduced in most strains (Table  3). Synergistic effects of the 
combination were reached against MRSA Mu50 (ΣFICi = 0.26), 
and additive effects were reached against both S. epidermidis 
strains (ΣFICi: S. epidermidis ATCC 14990 = 0.86; 
S. epidermidis ATCC 35984 = 0.58), S. aureus ATCC 25923 
(ΣFICi = 0.80) and the other MRSA strains (ΣFICi: MRSA 

A B

C D

FIGURE 1

Effect of diethyldithiocarbamate (DDC) and Cu2+ concentrations (in μg/ml) on the viability of (A) MRSA Mu50, (B) MRSA 2, (C) Staphylococcus 
epidermidis ATCC 35984 and (D) S. epidermidis ATCC 14990 biofilms compared to monotherapy with Cu2+ (n = 3; *p < 0.05; **p < 0.01; ***p < 
0.001).

TABLE 2 Minimal inhibitory concentration of the antibiotics methicillin (Meth), ceftazidime (Ceft), ciprofloxacin (Cip), vancomycin (Van), 
doxycycline (Doxy), amikacin (Amik), erythromycin (Erythro) and the compounds diethyldithiocarbamate (DDC) and Cu2+ towards planktonic S. 
aureus, MRSA, S. epidermidis, E. coli and P. aeruginosa.

Bacterial 
strain

MIC (μg/ml) Synergy

Meth Ceft Cip Van Doxy Amik Erythro DDC Cu2+ DDCa-
Cu2+b ΣFICic Resultd

S. aureus 

ATCC 25923

32 0.25 1 ≤0.125 8 0.5 32 >128 4/64 1.23 Indifferent

MRSA Mu50 >64 >64 16 2 4 32 >64 64 >128 ≤0.5/2 0.14e Synergy

MRSA 1 2 32 0.25 1 ≤0.125 8 0.25 128 >128 2/8 0.67 Additive

MRSA 2 >64 2 1 ≤0.125 8 0.5 32 >128 ≤0.5/2 0.19e Synergy

MRSA 3 2 32 0.5 1 ≤0.125 4 >64 128 >128 2/16 0.88 Additive

S. epidermidis 

ATCC 14990

8 ≤0.125 1 ≤0.125 0.5 ≤0.125 32 >128 2/16 0.93 Additive

S. epidermidis 

ATCC 35984

64 64 ≤0.125 1 ≤0.125 8 >64 64 128 1/8 0.87 Additive

E. coli ATCC 

25922

>128 >128 ND ND ND

P. aeruginosa 

PAO1

>128 >128 ND ND ND

Antibacterial activity and synergistic effects of the combination of both compounds (DDC-Cu2+) against planktonic S. aureus, MRSA and S. epidermidis.
aMIC of DDC in combination with Cu2+.
bMIC of Cu2+ in combination with DDC.
cAverage of all calculated fractional inhibitory concentration index sums of DDC-Cu2+ (ΣFICi) (n = 3).
dResults: synergy ≤ 0.5; additivity > 0.5 to ≤ 1; indifferent > 1.
eΣFICi values calculated with the lowest concentration of DDC in combination with Cu2+ measured (0.5 μg/ml) and not with MIC. 
ND, not determined.
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1 = 0.53; MRSA 2 = 0.64; MRSA 3 = 0.66). The synergistic effects 
of DDC-Cu2+ in planktonic MRSA 2 and planktonic and 
biofilm MRSA Mu50 were not observed in the other MRSA 
strains tested, which showed additive effects of DDC-Cu2+. This 
difference should be investigated based on the phenotype and 
genotype of the different strains tested. As the MICs of multiple 
antibiotics were the highest for MRSA Mu50 and S. epidermidis 
ATCC 35984, respectively, these strains were chosen as 
representatives for S. aureus and S. epidermidis in the 
following experiments.

The ΣFICi of the DDC-Cu2+ combination was further 
investigated with representatives of different classes of antibiotics 
against MRSA Mu50 biofilms (Table 4). The MRSA Mu50 strain 
was chosen based on the high antibiotics MICs in the planktonic 
form and on the biofilms not inhibited by antibiotics at 
concentrations of 128 μg/ml or lower, except for the tetracycline 
representative Doxy and the cell wall synthesis inhibitor Van (over 
70% biofilm killing with concentrations of 16 μg/ml). When the 
antibiotics were combined with DDC-Cu2+, the minimum 

concentration to kill at least 80% of bacteria within the biofilm, 
was reduced at least 16-fold, except for the combination of Erythro 
with DDC-Cu2+ (no change). In addition, DDC-Cu2+ showed 
additive effect with Amik and the β-lactam antibiotics Meth and 
Ceft. Synergistic effects were observed when DDC-Cu2+ was 
combined with Cip, Doxy, and Van. However, no difference was 
observed with Erythro.

Visualizing biofilms after DDC-Cu2+ 
treatment

Confocal microscopy images of the untreated control of 
S. epidermidis ATCC 35984 biofilms were characterized by a large, 
dense, and undisturbed biofilm with mostly viable bacteria 
(Figure 2A). After exposure to DDC-Cu2+ (8 μg/ml DDC + 32 μg/
ml Cu2+), the biofilm structure was disturbed and less dense. In 
addition, an increase in number of red, indicating dead bacteria 
was observed (Figure 2B). Similar observations were made in 
MRSA Mu50 biofilm images (Supplementary Figure  1). The 
quantification of the fluorescence showed a significant decrease of 
the green/red ratio between untreated biofilm and biofilm treated 
with DDC-Cu2+ (Figure 2C). This ratio was also observed when 
using a 100 × objective on a DDC-Cu2+ treated S. epidermidis 
ATCC 35984 biofilm that showed dead bacteria with only few 
viable bacteria (Figure 2D).

DDC-Cu2+ inhibits bacterial attachment

Prevention of biofilm growth was examined in MRSA 
Mu50 (Figures  3A,B) and S. epidermidis ATCC 35984 
(Figures 3C,D) with the xCELLigence RTCA system over 48 h. 
A high cell index (CI) correlates with bacteria attaching to the 
gold electrodes located at the bottom of the well (Abrantes and 

TABLE 3 Synergistic effects of diethyldithiocarbamate in combination 
with Cu2+ against S. aureus, MRSA and S. epidermidis biofilms.

Bacterial strain
Synergy

ΣFICia Resultsb

S. aureus ATCC 25923 0.80 Additive

MRSA Mu50 0.26 Synergy

MRSA 1 0.53 Additive

MRSA 2 0.64 Additive

MRSA 3 0.66 Additive

S. epidermidis ATCC 14990 0.86 Additive

S. epidermidis ATCC 35984 0.58 Additive

aAverage of all calculated fractional inhibitory concentration index sums (ΣFICi) (n = 3).
bResults: synergy ≤ 0.5; additivity > 0.5 to ≤ 1; indifferent > 1.

TABLE 4 Minimal concentration to kill over 80% biofilm and synergistic effects of antibiotics, diethyldithiocarbamate and Cu2+ (DDC-Cu2+) and the 
combination against MRSA Mu50 (n = 3).

Treatment
Minimal concentration to kill over 80% biofilm (μg/ml) Synergy

Antibiotic DDC-Cu2+ Antibiotica/DDC-
Cu2+b ΣFICic Resultsd

DDC-Cu2+ 4–16

Meth >128 8/0.5–2 0.63 Additive

Ceft >128 8/0.5–2 0.71 Additive

Van 16 0.5/0.5–2 0.50 Synergy

Cip >128 4/0.5–2 0.45 Synergy

Doxy 16 1/0.5–2 0.44 Synergy

Amik >128 1/0.5–2 0.55 Additive

Erythro >128 >128/4–16 1.43 Indifferent

aLowest concentration of antibiotic in combination with DDC-Cu2+.
bLowest concentration of DDC-Cu2+ in combination with antibiotic.
cAverage of all calculated fractional inhibitory concentration index sums (ΣFICi) (n = 3).
dResults: synergy ≤ 0.5; additivity > 0.5 to ≤ 1; indifferent > 1.
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A B

C D

FIGURE 2

Comparison of stained MRSA Mu50 and S. epidermidis ATCC 35984 biofilms with LIVE/DEAD BacLight staining after treatment with 8 μg/ml 
diethyldithiocarbamate and 32 μg/ml Cu2+ (DDC-Cu2+). Confocal microscopy images results: green = viable bacteria; red = dead bacteria. 
(A) Untreated S. epidermidis ATCC 35984 biofilm at 20×. S. epidermidis ATCC 35984 biofilm after treatment with DDC-Cu2+ at (B) 20× and 
(D) 100×. (C) Quantification of images as green/red ratio of untreated control (black) and treatment with DDC-Cu2+ (grey) of MRSA and S. 
epidermidis ATCC 35984 biofilms (n = 3–8; ***p < 0.001).

Africa, 2020). For both S. aureus and S. epidermidis, the 
untreated control showed a high increase in CI within the first 
12 h, reaching a CI of 0.32 in MRSA Mu50 (Figure 3A) and 
0.25 in S. epidermidis ATCC 35984 (Figure 3C), before steadily 
increasing at a slower rate to reach 0.5 in MRSA Mu50 and 
0.45 in S. epidermidis ATCC 35984 after 48 h. Monotherapy of 
DDC (8 μg/ml) and Cu2+ (32 μg/ml) resulted in a faster CI 
increase compared to the untreated control, reaching a 
maximum after 5 h in MRSA Mu50 (CI: DDC = 0.40; 
Cu2+ = 0.19) and 6 h in S. epidermidis ATCC 35984 (CI: 
DDC = 0.35; Cu2+ = 0.18). The fast CI increase of DDC or Cu2+ 
treated bacteria should not be a result of DDC or Cu2+ salts 
interacting with the gold electrodes or the impedance, as these 
were assessed with the baselines. The initial increased bacterial 
attachment when treated with DDC or Cu2+ can be explained 
by the subinhibitory concentration of DDC or Cu2+ alone used 
in this experiment. Treatment with DDC and Cu2+ can induce 
oxidative stress and the production of reactive oxygen species 

in S. aureus, which play a role in the control of different cellular 
processes, such as biofilm formation (Seixas et  al., 2021). 
Treatment with DDC alone showed no significant difference 
from the mean CI (12–48 h) compared to the untreated control 
(CI: 0.44 MRSA Mu50 and 0.38 S. epidermidis ATCC 35984). 
Treatment with Cu2+ alone resulted in approximately half the 
CI compared to untreated control (CI: 0.22 MRSA Mu50 and 
0.18 S. epidermidis ATCC 35984), translating in less bacteria 
attaching to the bottom of the well and forming biofilms. 
Lastly, treatment with DDC-Cu2+ (8 μg/ml DDC + 32 μg/ml 
Cu2+) resulted in a CI of 0 after 12 h and a mean CI of 0.04 and 
0.03 after 48 h in MRSA Mu50 (Figure 3B) and S. epidermidis 
ATCC 35984 (Figure 3D), respectively. Therefore, treatment 
with DDC-Cu2+ prevented the attachment of bacteria over 48 h, 
which can be  a result of high bacterial killing at the tested 
concentrations. To determine if bacterial killing was 
responsible for prevention of bacterial attachment, lower 
DDC-Cu2+ concentrations can be investigated.
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DDC-Cu2+ inhibits biofilm growth

Similar results were observed with the Bioflux system 
(Figure 4). In the untreated control, under constant nutrient flow, 
MRSA Mu50 bacteria started to aggregate within 8 h, formed 
biofilms within 16 h that continuously increased in size within 24 h 
(Figure 4, top time lapse). When DDC-Cu2+ was added to the 
constant nutrient flow, inhibition of biofilm growth was achieved 
over 24 h (Figure 4; bottom time lapse. Supplementary File 1: 
Video footage). Similar observations were made in S. epidermidis 
ATCC 35984 biofilms (data not shown).

Cytotoxicity of DDC-Cu2+ in vitro

The in vitro cytotoxicity of the compounds was investigated in 
fibroblast cells over 18 h (Figure 5A). Monotherapy with DDC and 
Cu2+ showed 70 and 94% fibroblast viability, respectively. 
Treatment with DDC-Cu2+ resulted in 75% fibroblast viability, 
showing no difference compared to DDC monotherapy.

Toxicity and efficacy of DDC-Cu2+ in vivo 
using Galleria mellonella larvae

To investigate potential toxic treatment effects in vivo, 
G. mellonella larvae were injected with DDC, Cu2+, DDC-Cu2+ or 
vehicle control (saline) and the survival was monitored over 
4 days. DDC, Cu2+ and DDC-Cu2+ showed similar survival rates as 
the vehicle control, indicating no treatment toxicity in 
G. mellonella (Figure 5B).

To assess the antimicrobial activity of DDC-Cu2+ in vivo, the 
survival of MRSA- or S. epidermidis-infected G. mellonella was 
examined over 4 days. In infected larvae, treatment with DDC or 
Cu2+ resulted in a poor survival rate, similar to the vehicle control 
for both MRSA- and S. epidermidis-infected G. mellonella 
(p > 0.05; Figures 5C,D, respectively). However, MRSA-infected 
and DDC-Cu2+ treated larvae, displayed a significantly higher 
survival rate of 87% (26/30 larvae) compared to MRSA-infected, 
vehicle control larvae that showed 47% survival (14/30 larvae, 
p = 0.0004; Figure  5C). Moreover, the survival rate of MRSA-
infected, DDC-Cu2+ treated larvae was significantly higher 

A B

C D

FIGURE 3

Effect of 8 μg/ml diethyldithiocarbamate (DDC; orange), 32 μg/ml Cu2+ (blue) and combined DDC-Cu2+ (grey) on (A) the cell index of MRSA Mu50 
and (C) S. epidermidis ATCC 35984 over 48 h compared to the untreated control (black). Comparison of the mean cell index between 12 and 48 h 
for each treatment of (B) MRSA Mu50 and (D) S. epidermidis ATCC 35984 (n > 3; ***p < 0.001).
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FIGURE 4

Monitoring of MRSA Mu50 biofilm formation over 24 h when left untreated or treated with a combination of 8 μg/ml diethyldithiocarbamate and 
32 μg/ml Cu2+ combination (DDC-Cu2+) using the Bioflux system. Scale bar represents 50 μm.

A B

C D

FIGURE 5

Effect of diethyldithiocarbamate [DDC; orange; 8 μg/ml (A), 6.4 mg/kg (B–D)], Cu2+ [blue; 32 μg/ml (A), 25.6 mg/kg (B–D)] and DDC-Cu2+ (grey) on 
(A) fibroblast viability (n = 3), on (B) probability of Galleria mellonella survival (30/group; n = 120), on the probability of survival of Galleria mellonella 
infected with (C) MRSA Mu50 (30/group; n = 120), and (D) infected with S. epidermidis ATCC 35984 (30/group; n = 120; NS = not significant; *p < 0.05; 
***p < 0.001).

https://doi.org/10.3389/fmicb.2022.999893
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kaul et al. 10.3389/fmicb.2022.999893

Frontiers in Microbiology 11 frontiersin.org

compared to treatment with DDC alone (9/30 larvae; p = 0.0003) 
or Cu2+ alone (14/30 larvae; p = 0.0003). Similar results were found 
in S. epidermidis-infected G. mellonella, which showed a 
significantly higher survival rate of 80% (24/30 larvae) for 
S. epidermidis-infected, DDC-Cu2+ treated larvae compared to 
47% survival (14/30 larvae) for S. epidermidis-infected, vehicle 
control larvae (p = 0.0152; Figure 5D). Survival of S. epidermidis-
infected, DDC-Cu2+ treated G. mellonella (26/30 larvae) was also 
significantly higher compared to mono treatment with DDC 
(15/30 larvae; p = 0.0152) or Cu2+ (9/30 larvae; p = 0.0003).

Discussion

DDC is the metabolite of disulfiram, an FDA-approved drug 
for the oral treatment of chronic alcoholism, that has been 
previously investigated for its activity against fungi (Harrison 
et al., 2007; De Brucker et al., 2013), parasites (Khouri et al., 2010; 
Celes et al., 2016) and bacteria (Taylor et al., 1987; Dalecki et al., 
2015; Long, 2017; Sheppard et al., 2018; Frazier et al., 2019). In the 
current study, DDC was repurposed and combined with Cu2+ for 
pre-clinical validation as a novel antibacterial treatment. 
Confirming previous results, DDC showed limited antibacterial 
activity against S. aureus and S. epidermidis, with MICs ranging 
from 16 to above 32 μg/ml and no growth inhibition of Gram-
negative bacteria with MICs above 64 μg/ml. The lack of 
antibacterial activity of DDC against E. coli and P. aeruginosa was 
explained by the elevated presence of glutathione in Gram-
negative bacteria. Cellular glutathione interacts with DDC and 
disulfiram by thiol-disulfide exchange reaction (Long, 2017; 
Frazier et al., 2019). While monotherapy with disulfiram showed 
antibacterial and antibiofilm activity against S. aureus in vitro and 
in vivo and synergized with multiple antibiotics (Long, 2017; 
Thakare et al., 2019), these results were not observed with the in 
vivo formed metabolites of disulfiram (Frazier et al., 2019). As 
disulfiram is hypothesized to form disulfides with thiophilic 
residues of bacterial cofactors, metabolites and enzymes (Long, 
2017; Sheppard et al., 2018), the lack of antibacterial activity of 
DDC and other metabolites can be explained by lack of thiol-
disulfide exchange. In addition, disulfiram and DDC differentiate 
in their chemical and physical properties (Gessner and Gessner, 
1992). While disulfiram shows poor water solubility and 
physiological instability, therefore limiting local clinical 
applications (Xie et  al., 2022), DDC is highly water soluble 
(Gessner and Gessner, 1992), a labile molecule and a very strong 
metal chelator (Butcher et  al., 2018). Specifically, Cu2+ was 
investigated, as disulfiram dissociates in the presence of Cu2+, to 
form DDC, which chelates the metal ion and forms the stable 
Cu(DDC)2 complex that can be  visualized by a color change 
(Dalecki et al., 2015) and has been shown to result in anticancer 
activity (Viola-Rhenals et al., 2018).

Dalecki et al. (2015) were the first to reveal that disulfiram and 
DDC displayed antimycobacterial effects only in the presence of 
Cu2+, as the presence of iron and zinc ions did not increase the 

antimicrobial activity of DDC against Mycobacterium tuberculosis. 
In addition, 90% of Mycobacterium tuberculosis inhibition occurred 
with 0.3 μM disulfiram, equivalent to 0.6 μM DDC and 0.3 μM 
Cu2+, which is consistent with the molar ratio of 2:1 and 
consequently the formation of the Cu(DDC)2 complex (Dalecki 
et al., 2015). Based on these results, Saputo et al. (2018) investigated 
the effect of disulfiram with Cu2+ on Streptococcus mutans and 
observed a reduction of disulfiram MIC from 16 μg/ml to 4 μg/ml 
(equivalent to 8 μg/ml DDC) in the presence of 106.6 μg/ml Cu2+. 
The concentration of disulfiram required to inhibit S. mutans 
biofilm formation was even lower with 2 μg/ml (equivalent to 4 μg/
ml DDC) in the presence of 106.6 μg/ml Cu2+, resulting in 
synergistic effects of disulfiram and Cu2+ against both the 
planktonic and biofilm forms. We obtained comparable results 
against S. aureus and S. epidermidis, with concentrations as low as 
0.5 μg/ml DDC and 2 μg/ml Cu2+ against planktonic MRSA Mu50 
and 4 μg/ml DDC and 16 μg/ml Cu2+ against biofilm MRSA Mu50, 
respectively, reaching synergistic effects in both forms. In contrast 
to the concentrations required for the antimycobacterial activity, 
the Cu2+ concentrations necessary to enhance the activity of DDC 
against S. mutans, S. aureus and S. epidermidis exceeded the DDC 
concentration. This concentration-dependent antibacterial activity 
was also observed by Menghani et  al. (2021) against 
Streptococcus pneumoniae.

The concentrations of DDC and Cu2+ play an important role 
in the proposed mode of action for the antibacterial activity of 
DDC-Cu2+. The mechanism of DDC can in part be explained by 
inhibition of the S. aureus carbonic anhydrase (Urbanski et al., 
2021) and the chelation and extraction of required metal cofactors, 
including Cu2+ from metallo-enzymes, such as superoxide 
dismutase, rendering bacteria more susceptible to oxidative stress 
(Frazier et al., 2019). In addition, at high levels Cu2+ is toxic by the 
generation of reactive oxygen species through the Cu+/Cu2+ redox 
cycle and by competing with other metals at the enzymatic 
binding sites, leading to the inactivation and oxidation of free thiol 
groups of various proteins (Baker et al., 2010; Dupont et al., 2011). 
Therefore, bacteria have developed mechanisms to regulate the 
intracellular copper concentration and to evade copper induced 
toxicity, staphylococci have efflux systems in form of a P1-type 
ATPase transporter, copper-binding chaperones and copper-
responsive regulators (Solioz, 2018), explaining the low 
antimicrobial activity of Cu2+ with a MIC above 128 μg/ml.

To explain the mode of action behind the antimycobacterial 
activity of DDC and Cu2+, Dalecki et al. (2015) proposed a Trojan 
Horse model, where the Cu(DDC)2 complex transports Cu2+ into 
the cytoplasm, thereby protecting Cu2+ from the bacterial copper 
resistance mechanisms, which in turn, allows access to targets that 
usually are not available to free Cu2+ (Dalecki et  al., 2015). 
However, in the present study the concentrations closest to 
corresponding to the Cu(DDC)2 complex, 8 μg/ml DDC with 4 μg/
ml Cu2+ and 32 μg/ml DDC with 16 μg/ml Cu2+, resulted in less 
than 25% S. aureus and S. epidermidis biofilm killing. Therefore, 
the antibiofilm activity of DDC and Cu2+ against S. aureus and 
S. epidermidis could not exclusively be  associated to the 
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FIGURE 6

Putative diethyldithiocarbamate and copper (DDC-Cu2+) mode of action against S. aureus and S. epidermidis. (A) The antibacterial activity of Cu2+ 
is limited by copper resistance mechanisms of bacteria. (B) The Cu(DDC)2 complex inhibits the bacterial copper resistance mechanism but does 
not kill bacteria. (C) The combination of Cu(DDC)2 complex and excessive Cu2+ (called DDC-Cu2+) effectively kills bacteria, as the Cu(DDC)2 
complex inhibits the copper resistance mechanisms, allowing for the excess Cu2+ to increase copper induced toxicity.

Cu(DDC)2-complex. The lowest concentration of the mix leading 
to a statistical increase in S. aureus and S. epidermidis biofilm 
killing compared to monotherapy with Cu2+ was 8 μg/ml DDC in 
combination with 32 μg/ml Cu2+. Hence, the antibacterial activity 
of DDC-Cu2+ against S. aureus and S. epidermidis seems to 
be  based on the formation of the Cu(DDC)2 complex and an 
excess of free Cu2+. Based on these results, we hypothesize that the 
Cu(DDC)2 complex inhibits at least one of the copper homeostasis 
components such as the efflux transporter, allowing for the 
additional Cu2+ to accumulate within the bacteria and cause 
copper induced toxicity (Figure  6). In addition, the extensive 
inhibition of MRSA biofilm attachment and aggregation by 
DDC-Cu2+ observed with the xCELLigence and the Bioflux 
systems depended on the combination of DDC and Cu2+ and can 
be caused by excess Cu2+ that represses the expression of positive 
biofilm formation regulators, such as agr and sae (Baker 
et al., 2010).

While the DDC-Cu2+ combination of 8 μg/ml DDC and 
32 μg/ml Cu2+ inhibited planktonic S. aureus and S. epidermidis 

growth and biofilm formation, the same concentrations showed 
low cytotoxic effects against fibroblasts. As antimicrobial and 
cytotoxic results obtained in vitro do not always accurately 
predict activity under in vivo conditions (Tsai et al., 2016), both 
the antibacterial activity and the toxicity of DDC-Cu2+ was 
investigated using the G. mellonella model. These larvae have 
been shown to be good models to assess the safety and efficacy of 
antimicrobial agents against S. aureus (Brackman et al., 2011; 
Desbois and Coote, 2011; Tsai et al., 2016). The high survival rate 
of uninfected, treated larvae confirmed the non-toxicity of 
DDC-Cu2+ and the significant increase of survival of MRSA- and 
S. epidermidis-infected, DDC-Cu2+ treated G. mellonella 
confirmed the in vitro antibacterial activity. To the best of our 
knowledge, this is the first study to report the antibacterial 
activity and non-toxicity of DDC in combination with Cu2+ in the 
G. mellonella model. The promising results obtained with the 
G. mellonella model pre-screening experiment increases the 
confidence in the performance of Cu(DDC)2 and excess Cu2+ to 
progress to preclinical mammalian models. A pharmaceutical 
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development of the DDC-Cu2+ combination is ongoing to provide 
a drug delivery platform for the treatment of infected wounds 
and for surgical applications. A DDC-Cu2+ formulation has 
potential to synergistically enhance standard-of-care with oral or 
topical antibiotics and reduce the pressure on resistance  
development.

In conclusion, the combination of DDC-Cu2+ showed 
considerable in vitro antimicrobial activity against planktonic and 
biofilm cultures of S. aureus and S. epidermidis. By enhancing 
multiple antibiotic classes, preventing biofilm formation, showing 
non-toxicity and antibacterial activity in vivo, the DDC-Cu2+ 
combination represents an effective novel treatment strategy to 
control S. aureus and S. epidermidis biofilms. Ongoing studies are 
focused on developing drug delivery platforms containing the 
DDC-Cu2+ combination for clinical application and to determine 
whether similar safety and antimicrobial efficacy can be observed 
in other in vivo models of infection.
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SUPPLEMENTARY FIGURE 1

Confocal microscopy images of stained MRSA Mu50 biofilms with LIVE/
DEAD BacLight staining after treatment with 8 μg/ml 
diethyldithiocarbamate and 32 μg/ml Cu2+. Confocal microscopy images 
results: green = viable bacteria; red = dead bacteria. (A) Untreated MRSA 
Mu50 biofilm at 20 ×. (B) MRSA Mu50 biofilm after treatment with DDC-
Cu2+ at 20 ×.

SUPPLEMENTARY FILE 1

Video footage of MRSA Mu50 biofilm formation over 24 h when exposed 
to constant nutrient flow or when nutrient flow is supplemented with a 
combination of diethyldithiocarbamate and Cu2+ combination (DDC-
Cu2+) using the Bioflux system. Scale bar represents 50 μm, 8 FPS 
corresponding to 2 h/s.
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