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Cow milk consumption (CMC) and alterations of gut bacterial composition

are proposed to be closely related to human health and disease. Our research

aims to investigate the changes in human gut microbial composition in

Chinese peri-/postmenopausal women with different CMC habits. A total

of 517 subjects were recruited and questionnaires about their CMC

status were collected; 394 subjects were included in the final analyses.

Fecal samples were used for studying gut bacterial composition. All

the subjects were divided into a control group (n = 248) and a CMC

group (n = 146) according to their CMC status. Non-parametric tests

and LEfSe at different taxonomic levels were used to reveal differentially

abundant taxa and functional categories across different CMC groups.

Relative abundance (RA) of one phylum (p_Actinobacteria), three genera

(g_Bifidobacterium, g_Anaerostipes, and g_Bacteroides), and 28 species

diversified significantly across groups. Specifically, taxa g_Anaerostipes

(p < 0.01), g_Bacteroides (p < 0.05), s_Anaerostipes_hadrus (p < 0.01), and

s_Bifidobacterium_pseudocatenulatum (p < 0.01) were positively correlated

with CMC levels, but p_Actinobacteria (p < 0.01) and g_Bifidobacterium

(p < 0.01) were negatively associated with CMC levels. KEGG module analysis

revealed 48 gut microbiome functional modules significantly (p < 0.05)

associated with CMC, including Vibrio cholerae pathogenicity signature,

cholera toxins (p = 9.52e-04), and cephamycin C biosynthesis module

(p = 0.0057), among others. In conclusion, CMC was associated with changes

in gut microbiome patterns including beta diversity and richness of some

Frontiers in Microbiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.957885
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.957885&domain=pdf&date_stamp=2022-08-16
https://doi.org/10.3389/fmicb.2022.957885
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2022.957885/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-957885 August 10, 2022 Time: 15:4 # 2

Tian et al. 10.3389/fmicb.2022.957885

gut microbiota. The alterations of certain bacteria including g_Anaerostipes

and s_Bifidobacterium_pseudocatenulatum in the CMC group should be

important for human health. This study further supports the biological value

of habitual cow milk consumption.
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cow milk consumption, metagenomic, gut microbiota, functional module, network

Introduction

Milk and dairy products are frequently included as
important elements in a healthy and balanced diet, which
can provide the necessary energy and nutrients to ensure
proper growth and development (Pereira, 2014). Epidemiologic
studies confirmed the nutritional importance of milk in the
human diet and reinforce the possible role of its consumption
in preventing several chronic conditions like cardiovascular
diseases (CVDs), osteoporosis (Ilesanmi-Oyelere and Kruger,
2020), some forms of cancer, obesity, and diabetes (Pereira,
2014). Milk also provides a multitude of proteins with anti-
inflammatory properties, and these bioactive factors may
attenuate intestinal inflammation (Chatterton et al., 2013; Thai
and Gregory, 2020).

The human gut is populated by trillions of microorganisms,
known collectively as the gut microbiota (GM) (Ley et al., 2008).
Many human disorders are associated with gut microbiota, such
as gastrointestinal disorders like inflammatory bowel disease
(IBD) (Odamaki et al., 2016), colorectal cancer (Rao et al., 2006),
irritable bowel syndrome, and gastrointestinal cancer (Botteri
et al., 2008); and metabolic diseases like diabetes mellitus
(Cardinali et al., 2020) and obesity (Cuevas-Sierra et al., 2019).
The immune homeostasis of the host is also influenced by
gut microbiota (Mason et al., 2015). Gut microbiota can be
modulated positively or negatively by different lifestyle and
dietary factors (Gilbert et al., 2018).

Several previous studies have assessed the effect of dairy
products on human GM, but many have focused on fermented
dairy like yogurt (Link-Amster et al., 1994; Odamaki et al., 2012,
2016; Yılmaz et al., 2019; Jie et al., 2021) or special dairy products
like casein powder (Beaumont et al., 2017) or whey bars (Reimer
et al., 2017). Some recent studies showed that cow milk could
influence the alpha (Fernandez-Raudales et al., 2012; Shuai et al.,
2021) and beta diversity (Aslam et al., 2021; Shuai et al., 2021) of
GM and relative abundance (RA) of some taxa including phyla
p_Bacteroidetes and p_Proteobacteria and genus g_Roseburia,
g_Lactobacillus, g_Prevotella, g_Bifidobacterium, g_Clostridium,
g_Streptococcus, g_Atopobium, g_ Leuconostoc, and g_Veillonella
in humans (Fernandez-Raudales et al., 2012; Bendtsen et al.,
2018; Swarte et al., 2020; Aslam et al., 2021; de Carvalho et al.,
2022). However, very few studies have reported cow milk’s

effect on human gut bacterial species (Aslam et al., 2020). In
addition, most of the studies were based on animal models
or randomized controlled trials. Population-level observational
studies which could really evaluate the effects of habitual dairy
intake on the gut microbiome were very rare (Aslam et al.,
2021). Women in the postmenopausal stage usually suffered
from many kinds of diseases, and some of them including
osteoporosis and breast cancer were reported to be associated
with gut microbiota (Zhu et al., 2018; Gatti and Fassio,
2019; Ozaki et al., 2021; Rettedal et al., 2021). In this study,
fecal samples from Chinese peri-/postmenopausal women were
collected and metagenomic shotgun sequencing was performed.
Metagenomic analyses were conducted to identify the effect
of cow milk consumption (CMC) on GM patterns, including
some general compositional features and abundance of each
taxon at the phylum, genus, and species levels. In particular,
KEGG functional modules associated with CMC were also
detected. To our knowledge, this is the first gut microbiome-
CMC association study based on shotgun sequencing performed
in Chinese peri-/postmenopausal women.

Materials and methods

Study subjects and questionnaire

This study was approved by the Third Affiliated
Hospital of Southern Medical University (Guangzhou City,
China) and performed under the principle of the Helsinki
Declaration II. A cohort of 517 unrelated healthy Chinese
peri-/postmenopausal women were recruited from June 2014 to
January 2018 from local communities. Each subject completed
a questionnaire that collected their CMC status and other basic
information like age, weight, medication, alcohol drinking, diet,
smoking history, and use of nutrition supplements. Specifically,
participants selected the CMC from predetermined categories:
none (0 ml/day), 250 ml/day, 500 ml/day, and 750 ml or
more/day. Subjects were divided into a control group and
a CMC group (milk intake ≥ 250 ml/day) according to the
questionnaire. The cow milk was pasteurized. Two inclusion
criteria were applied in this study: (1) aged 40 years or older
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and (2) had lived in Guangzhou City for more than 3 months.
Exclusion criteria included: (1) Used antibiotics, oestrogens,
anticonvulsant, or proton pump inhibitor medications in
the past 3 months; (2) Underwent hysterectomy or bilateral
ovariectomy; (3) Diabetes mellitus, except for easily controlled,
non-insulin-dependent diabetes mellitus; (4) Chronic renal
disease manifest by serum creatinine > 1.9 mg/dL; (5) Chronic
liver diseases; (6) Significant chronic lung disease; (6) Alcohol
abuse; (7) Corticosteroid therapy and anticonvulsant therapy;
(8) Other metabolic diseases or inherited bone diseases; (9)
major gastrointestinal disease including lactose intolerance;
and (10) Any other disease, treatment, or condition that would
be an apparent non-genetic factor underlying the variation of
BMD, etc. A more detailed exclusion criteria were presented in
Supplementary Table 1.

Fecal sampling and DNA extraction

We collected stool samples from all subjects. The fecal
samples were frozen at -80◦C within 30 min of sample
procurement and used for GM DNA extraction with
the E.Z.N.A. R© Stool DNA Kit (Omega, Norcross, GA,
United States). We stored the GM DNA samples at -80◦C
until further analyses.

Metagenomic shotgun sequencing

A fecal DNA library was constructed with the TruSeq
Nano DNA LT Library Preparation Kit (FC-121-4001,
Illumina, San Diego, CA, United States). The fecal DNA
was fragmented by dsDNA Fragmentase (NEB, M0348S,
Massachusetts, United States) and incubated at 37◦C for 30 min.
Fragmented cDNA was used to construct libraries. Blunt-end
DNA fragmentation and size selection were performed with
provided sample purification beads. An A-base was added to
the blunt ends of each strand for the preparation of ligation to
indexed adapters. These adapters also contained sequencing
primer hybridization sites for single, paired-end, and indexed
reads. The ligated products were amplified with polymerase
chain reaction (PCR) under the following conditions: initial
denaturation at 95◦C for 3 min, followed by 8 cycles of 98◦C for
15 s (denaturation), 60◦C for 15 s, 72◦C for 30 s (extension), and
then a final elongation at 72◦C for 5 min.

Metagenomic shotgun sequencing was performed by LC-
Bio Technologies (Hangzhou) CO., LTD. (Hangzhou, China1)
via Hiseq 4000 (Illumina, San Diego, CA, United States) and
PE150 strategy. The relative abundance (RA) of unigenes for
each sample was estimated by transcripts per kilobase million
(TPM, Formula 1, where k was the kth unigene, r was the number

1 www.lc-bio.com

of unigene reads, and L indicated unigene length) based on the
number of aligned reads and the unigene length by Bowtie2
v2.2.0.

Gk =
rk

Lk
×

1∑n
i = 1

ri
Li

× 106(1)

Bioinformatics

Raw data processing
Raw sequencing read data were processed in the following

steps: (1) Cutadapt v1.9. was used to remove sequencing
adapters from sequencing reads. (2) Low-quality reads were
trimmed using Fqtrim v0.94. A sliding window (size = 6 bp)
was set to calculate the average quality of the bases within this
window, and the 3’ end of reads was trimmed when the average
quality value was smaller than 20; we also discarded the reads
when the length was less than 100 bp and the percentage of
“N” was larger than 5% after trimming. (3) Read alignment
to the host genome was performed by Bowtie2 v2.2.0 and
host genomic contamination was removed. Once quality-filtered
reads were obtained, they were de novo assembled to construct
metagenomes for each sample by SPAdes v3.10.0. The coding
sequences (CDS) of metagenomic contigs were predicted by
MetaGeneMark v3.26. The CDS of all samples were clustered by
CD-HIT v4.6.1 to obtain unigenes.

Taxonomic and functional annotation of
unigenes

Unigenes of all samples were aligned according to the
NCBI NR database2 using DIAMOND software with the lowest
common ancestor algorithm. A protein reference based on the
KEGG module dataset3 was applied for functional annotation.
The sum of RA of unigenes within a module represented the RA
of an annotated functional module.

The BLASTP function within DIAMOND was used for
unigene alignments. It determines the bit score and expected
value (E-value) of the computed alignment, which indicates the
alignment quality. We selected the best hit with the highest bit
score from all the potential hits (E-values ≤ 1 × 10−5) as the
respective KEGG Orthology (KO) for each unigene. KOs were
further mapped to GM-associated functional KEGG modules.

Statistical analysis

Differences in covariates like age, weight, body mass index
(BMI), and calcium consumption between the two groups were
checked with a Chi-square test or two independent sample

2 ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz

3 https://www.genome.jp/kegg/module.html
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t-tests according to variable features; p < 0.05 was considered
to achieve statistical significance.

Data normalization methods total sum scaling (TSS) or
centered-log ratio (CLR) were applied, respectively, in different
analyses. Metagenome-Assembled Genome (MAG) counts at
the phylum, genus, and species levels in each group were
calculated within R by the criteria that one feature is taken
into account only if its RA is more than 0.01% after TSS
data transformation. For further community composition
analysis, the data were filtered by several criteria: (1) relative
abundance > 0.1%; (2) detection rate within all samples > 10%;
and (3) low variance filter for comparative analysis: inter-
quantile range (IQR) > 10%. Dominant microbiotas were
calculated within each group at different taxonomic levels via
R according to their RA.

Alpha and beta diversity, which, respectively, demonstrate
within-sample microbiota richness and between-sample
dissimilarities, were computed within R via the Vegan package
in each group at the phylum, genus, and species levels. For alpha
diversity, two indexes (Shannon and Simpson) were computed
and Mann–Whitney test was used to assess the difference within
groups; p < 0.05 was considered significant. For beta diversity,
dissimilarity distances between samples were assessed by the
Bray–Curtis matrix, and Principal Coordinates Analysis (PCoA)
and Nonmetric Multidimensional Scaling (NMDS) were used
to depict it. Permutational analysis of variance (PERMANOVA)
test was used to evaluate the beta diversity difference between
two groups, and p < 0.05 was considered significant.

A classical univariate analysis (Mann–Whitney test) was
performed to detect differences in RA of each taxon between
the CMC group and the control group; p-value < 0.05
was considered statistically significant. In this analysis, we
applied both TSS and CLR data normalization methods. TSS
is a traditional approach and has been frequently applied in
microbiome analysis; however, it is strongly influenced by highly
abundant taxa (Badri et al., 2020). CLR transformation could
theoretically avoid the compositional effects of microbiome data
(McMurdie and Holmes, 2014).

Linear Discriminant Analysis Effect Size (LEfSe) uses the
Kruskal–Wallis test, Wilcoxon Rank Sum test, and Linear
Discriminant Analysis (LDA) for microbiome biomarker
discovery. For this study, LEfSe was performed given two
indispensable situations: (1) threshold on the logarithmic LDA
score for discriminative features was equivalent to 2.0; and (2)
p-value < 0.05 and FDR-adjusted p < 0.1.

R package NetCoMi was applied to depict the profile of
the gut microbiota’s association. MAG abundance data and
sample data were processed by the phyloseq function in the
phyloseq package in R. We selected the 100 taxa with the
highest abundance to calculate their association in the gut. CLR
data norm method was used and the association was calculated
using the SPRING method (Yoon et al., 2019). For the network
comparison, the 50 most abundant taxa were chosen. To test

the difference in networks between the two groups, the absolute
differences in network properties were computed. To depict the
overall difference of networks in the two groups, the Jaccard
index (j) was computed; the smaller the j was, the more different
the two networks were (Peschel et al., 2021).

For the functional module analysis, Mann–Whitney test
was applied to assess the richness differences. p < 0.05
was significant.

Validation

An American cohort (n = 260) was used to validate the
results of our analysis. These subjects were divided into a control
group (n = 130) and a CMC group (n = 130) according to the
questionnaire, and diversified GMs between these two groups
were identified. The data transformation and statistical analysis
methods were the same as for the Chinese cohort.

Results

Basic characteristics of study subjects

After getting rid of subjects with missing information about
CMC status, a total of 394 subjects were divided into two groups:
the control group (n = 248) and the CMC group (n = 146). All
subjects were female and no significant difference was observed
in their age distribution (P = 0.79). There was no significant
difference in physical characteristics like weight (P = 0.85) or
BMI (P = 0.858), or in dietary habits like diet prone (P = 0.59),
alcohol drinking (P = 0.787), or pickled or fermented foods
(including yogurt) (P = 0.432) across CMC status. However,
subjects in the CMC group tend to consume yogurt more
compared with the control group (Table 1).

Taxonomic composition of gut
microbiota

Number of different taxonomies
After being filtered by the criteria RA > 0.01%, the total

number of phyla was 59 in both groups, but the total number
of genera and the total number of species was slightly lower in
the CMC group: There were 2,097 genera and 3,426 species in
the control group, whereas there were 2,090 genera and 3,354
species in the CMC group (Table 2).

Dominated taxa of gut microbiota in subjects
A total of 214 species belonging to 52 genera and 7 phyla

remained after the data processing. The five most prevalent
phyla were p_Bacteroidetes, p_Firmicutes, p_Proteobacteria,
p_Actinobacteria, and p_Fusobacteria. Bacteria in these phyla
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accounted for 80% of the total bacteria. At the genus level,
g_Bacteroides, g_Prevotella, g_Eubacterium, g_Clostridium,
and g_Faecalibacterium accounted for 65% of the total
bacteria. At the species level, s_Bacteroides_unclassified,
s_Bacteroides_vulgatus, s_Faecalibacterium_prausnitzzi,
s_Prevotella_corpi, and s_Bacteroidales_unclassified were

TABLE 1 Characteristics of Chinese subjects included in the study.

Variables Control
Group

(n = 248)

CMC Group
(n = 146)

P value

Female, n (%) * 248 (100) 146 (100)

Postmenopausal, n (%) * 248 (100) 146 (100) 1.000

Age (years; mean± SD)
#

52.8± 2.7 52.9± 3.4 0.790

Weight (KG;
mean± SD) #

57.2± 8.2 57.3± 7.2 0.850

BMI (mean± SD) # 22.9± 3.0 22.9± 2.6 0.858

Drinking, n (%) * 27 (10.9) 18 (12.3) 0.787

Exercise, n (%) * 168 (67.7) 110 (75.3) 0.138

Daily Sleep Time (hours;
mean± SD) #

6.62± 1.34 6.72± 1.31 0.503

Vitamin history, n (%) * 50 (20.2) 40 (27.4) 0.127

Calcium history, n (%) * 103 (41.5) 63 (43.2) 0.835

Tea Drink, n (%) * 101 (40.7) 62 (42.5) 0.816

Red meat intake,
< 100g/day: > 100g/day,
n (%) *

220 (88.7):28
(11.3)

134 (91.8):12
(8.2)

0.423

Vegetable intake,
250g/day:500g/day: >
750g/day, n (%) *

29 (11.7):102
(41.1): 117 (47.2)

23 (15.8):65
(44.5): 58(39.7)

0.280

Water intake,
0.5–1L/day:1–
1.5L/day: > 1.5L/day, n
(%) *

92 (37.1): 91
(36.7): 65 (26.2)

46 (31.5): 60
(41.1): 40 (27.4)

0.513

Diet, Meat Prone:
Balanced: Vegetarian, n
(%) *

21 (8.5):149
(60.0): 78 (31.5)

14 (9.6):80
(54.8): 52(35.6)

0.590

Pickled or Fermented
Foods,
No: < 3times/week: >
3times/week, n (%)

182 (73.4):53
(21.4): 13 (5.2)

114 (78.1):23
(15.8): 9 (6.1)

0.432

Yoghurt Consumption, n
(%) *

37 (14.92) 49 (33.56) < 0.05

*Chi-squared test.
#Two independent-sample t-test.

TABLE 2 Bacterial composition in each group at different levels.

Phylum Genus Species

Control Group 59 2097 3426

CMC Group 59 2090 3354

Values in the table indicate the number of phyla, genera, and species, respectively, across
all fecal samples after being filtered by relative abundance > 0.01% criteria.
CMC, Cow milk consumption.

most abundant, accounting for about 20% of the total
species (Table 3).

Alpha and beta diversity
To detect any differences in gut bacterial diversity between

the two groups, alpha diversity indexes (Shannon and Simpson)
and a beta diversity index (Bray–Curtis distance) were
computed. For alpha diversity, no significant difference was
observed across the groups at the phylum, genus, or species
levels (P > 0.05) (Figure 1 and Supplementary Table 2). For
beta diversity, at the phylum level, no significant difference
was observed (PPCoA < 0.22 and PNMDS < 0.223) (Figure 2A
and Supplementary Table 2); at the genus level, significant
p-values were achieved (PPCoA < 0.039 and PNMDS < 0.037)
(Figure 2B and Supplementary Table 2); as for the species level,
two nearly significant p-values were observed (PPCoA < 0.055
and PNMDS < 0.055) (Figure 2C and Supplementary Table 2).

Association between gut microbiota
and cow milk consumption

We compared the RA of each taxon between two groups
via Mann–Whitney test at the phylum, genus, and species
levels. Data normalization methods total sum scaling (TSS)
and centered-log ratio (CLR) were applied, respectively, to
minimize the impact of data normalization on the results.
For the TSS transformed data analysis, RA of one phylum
(p_Actinobacteria), three genera (g__Bifidobacterium,
g__Anaerostipes, g__Bacteroides), and 28 species were
altered in the CMC group versus the control group
(P < 0.05) and only two (g__Bacteroides, PCLR = 0.084;

TABLE 3 Dominated taxa in two groups.

Taxa Control group (%) CMC group (%)

p__Bacteroidetes 43.593 45.385

p__Firmicutes 31.235 30.681

p__Proteobacteria 3.609 3.109

p__Actinobacteria 0.597 0.553

p__Fusobacteria 0.220 0.220

g__Bacteroides 38.144 42.886

g__Prevotella 9.996 7.541

g__Eubacterium 6.007 6.469

g__Clostridium 5.257 4.917

g__Faecalibacterium 4.623 4.631

s__Bacteroides_unclassified 9.809 11.003

s__Bacteroides_vulgatus 3.089 3.416

s__Faecalibacterium_prausnitzii 3.201 3.240

s__Prevotella_copri 2.335 1.810

s__Bacteroidales_unclassified 1.647 1.762

Five most abundant taxa and their relative abundance are shown in the table. The data
were normalized by the total sum scaling method.
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FIGURE 1

Alpha diversity of subjects grouped by CMC status. The (A–C) refer to the Shannon index of gut microbiota at different MAG levels. (A) Phylum,
(B) Genus, (C) Species. Data were normalized via the TSS method.

s__Prevotella_copri_CAG_164, PCLR = 0.057) of these taxa
have not been observed to diversify significantly in the
CLR transformed data analysis. The five most significantly
diversified taxa completely overlapped for these two data
normalization methods: p_Actinibacteria (PTSS = 7.02e-4,
FDR PTSS = 0.0049; PCLR = 4.44e-4, FDR PCLR = 0.0031),
g_Bifidobacterium (PTSS = 7.02e-4, FDR PTSS = 0.019;
PCLR = 4.44e-4, FDR PCLR = 0.0115), g__Anaerostipes
(PTSS = 7.33e-4, FDR PTSS = 0.019; PCLR = 8.21e-5, FDR
PCLR = 0.0043), s__Anaerostipes_hadrus (PTSS = 7.33e-4,
FDR PTSS = 0.0932; PCLR = 8.21e-5, FDR PCLR = 0.0176),
and s__Bifidobacterium_unclassified (PTSS = 8.71e-4, FDR
PTSS = 0.0932; PCLR = 4.49e-4, FDR PCLR = 0.048) (Table 4).

Taxonomic biomarkers associated with
cow milk consumption identified by
linear discriminant analysis effect size

Linear discriminant analysis effect size (LEfSe) analysis was
conducted to identify the correlation between gut microbiota
and CMC. An LDA score > 0 means the taxa was positively
associated with CMC, while an LDA score < 0 indicates a
negative association between taxa and CMC. According to the
LEfSe results, a total of 36 taxa correlated with CMC (p < 0.05,
| LDA| > 2.0), but only five of these taxa reached FDR < 0.1.
Among them, RA of p_Actinobacteria (FDR = 0.0049,
LDA score = −2.19), g_Bifidobacterium (FDR = 0.019,
LDA score = −2.19), and s_Bifidobacterium_unclassified
(FDR = 0.093, LDA score = −3) decreased in the CMC
group, but RA of g_Anaerostipes (FDR = 0.019, LDA
score = 3.21) and s_Anaerostipes_hadrus (FDR = 0.093,
LDA score = 3.21) increased. These taxa were the same as

those most significant ones in the Mann–Whitney test. Some
other taxa such as g_Bacteroides (p = 0.031, LDA = 5.29) and
s_Bifidobacterium_pseudocatenulatum (p = 0.005, LDA = 2.92)
were also observed to increase in CMC group, though their
FDR > 0.1 (Figures 3, 4 and Supplementary Table 3).

Yogurt consumption was not
associated with cow milk
consumption-associated gut
microbiota

We have observed some differences in yogurt consumption
between the two groups, we further explored its possible
association with CMC-associated GM via Mann–Whitney test.
No significant association was observed and the results were
presented in Supplementary Table 4.

Network construction and comparison

Constructing a single microbial interplay
network

We constructed a taxa network with all the samples
studied, and numerous associations between different taxa were
observed. The positive edge percentage was 74.61%, which
indicated that most of these taxa had positive associations
with others. The five hub taxa with the largest empirical
quantiles of centralities were s__Eubacterium_siraeum
(X171), s__Firmicutes_bacterium_CAG.103 (X176),
s__Bacteroides_unclassified (X2), s__Oscillibacter_sp._ER4
(X36), and s__Roseburia_hominis (X66). X66 had the highest
degree of 23, highest closeness centrality of 0.836, and
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FIGURE 2

Beta diversity of subjects grouped by CMC status. (A–C) depict beta-diversity of gut microbiota according to Bray–Curtis (BC) distance via
principal coordinates analysis (PCoA) method. (A) Phylum, (B) Genus, (C) Species. Data were normalized via the TSS method, PERMANOVA
(Permutational ANOVA) test was applied to detect the difference significance in the two groups and #P < 0.1 or ∗P < 0.05.

TABLE 4 Gut microbiota associated with cow milk consumption (CMC) viaMann–Whitney test at phylum, genus, and species levels.

Taxonomic level PTSS FDR PTSS PCLR FDR PCLR

Phylum

p__Actinobacteria 0.00070225** 0.0049158** 0.00044415** 0.0031091**

Genus

g__Bifidobacterium 0.00070225** 0.019068* 0.00044415** 0.011548*

g__Anaerostipes 0.00073337** 0.019068* 0.0000821** 0.0042673**

g__Bacteroides 0.031533* 0.38963 0.083658# 0.48336

Species

s__Anaerostipes_hadrus 0.00073337** 0.093206# 0.0000821** 0.017562*

s__Bifidobacterium_unclassified 0.00087109** 0.093206# 0.00044877** 0.048018*

s__Bacteroides_sp__3_1_23 0.0041976** 0.27991 0.0052025** 0.18556

s__Bifidobacterium_pseudocatenulatum 0.005232** 0.27991 0.0016195** 0.11552

s__Firmicutes_bacterium_CAG_882 0.0072482** 0.30944 0.0036398** 0.18385

s__Prevotella_sp__CAG_1092 0.0093964** 0.30944 0.00722848** 0.22098

s__Bacteroides_salyersiae 0.010122* 0.30944 0.0042957** 0.18385

s__Bacteroides_ovatus_CAG_22 0.015228* 0.32567 0.017047* 0.28486

s__Alistipes_sp__CAG_29 0.016095* 0.32567 0.010642* 0.28468

s__Bacteroides_ovatus 0.016339* 0.32567 0.039262* 0.28486

s__Bacteroides_sp__D2 0.018318* 0.32567 0.036142* 0.28486

s__Bacteroides_finegoldii_CAG_203 0.02347* 0.32567 0.015735* 0.28486

s__Alistipes_finegoldii 0.023582* 0.32567 0.015151* 0.28486

s__Prevotella_sp__CAG_386 0.024969* 0.32567 0.030745* 0.28486

s__Sutterella_sp__CAG_351 0.025507* 0.32567 0.020654* 0.28486

s__Bacteroides_stercoris_CAG_120 0.025871* 0.32567 0.02895* 0.28486

s__Bacteroides_sp__CAG_98 0.033541* 0.33056 0.046391* 0.28486

s__Bacteroides_xylanisolvens 0.035496* 0.33056 0.034624* 0.28486

s__Bacteroides_dorei_CAG_222 0.035737* 0.33056 0.039701* 0.28486

s__Bacteroides_sp__9_1_42FAA 0.035899* 0.33056 0.03377* 0.28486

s__Bacteroidales_bacterium_ph8 0.037464* 0.33056 0.026991* 0.28486

s__Bacteroides_sp__1_1_30 0.038397* 0.33056 0.036964* 0.28486

s__Prevotella_copri_CAG_164 0.042142* 0.33056 0.057165# 0.28486

s__Oscillibacter_sp__ER4 0.043743* 0.33056 0.030183* 0.28486

s__Firmicutes_bacterium_CAG_65 0.044708* 0.33056 0.024733* 0.28486

s__Roseburia_inulinivorans_CAG_15 0.045198* 0.33056 0.038226* 0.28486

s__Firmicutes_bacterium_CAG_95 0.046998* 0.33056 0.044127* 0.28486

s__Firmicutes_bacterium_CAG_124 0.049597* 0.33056 0.027181* 0.28486

PTSS value, P-value of Classical univariate analysis of data transformed by TSS.
PCLR value, P-value of Classical univariate analysis of data transformed by CLR.
Difference achieved significance of #P < 0.1, *P < 0.05, or **P < 0.01.
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FIGURE 3

Biomarkers identified by LEfSe. LEfSe indicates differences in the bacterial taxa at different levels (p, phylum; g, genus; s, species), only the taxa
having P < 0.05, FDR < 0.1, and LDA value > 2 are shown in the figure.

FIGURE 4

Differences of taxa abundance present in subjects. Data were normalized via total sum scaling (TTS) method and are expressed as relative
abundance. Some significantly CMC-associated GM are displayed (g, genus; s, species).

highest eigenvector centrality of 1.000. Nevertheless, taxa
X2 had the highest betweenness centrality (Figure 5A and
Supplementary Table 5).

Comparing networks between control group
and cow milk consumption group

We further constructed the taxa interplay network for the
control group and the CMC group and found that the GM’s
association diversified across CMC status. First, we compared
the hub taxa between the two groups (j = 0.125) (Table 5):
s__Ruminococcus_gnavus (X117), s__Bacteroides_unclassified
(X2), s__Clostridium_sp._CAG.7 (X44), s__Prevotella_copri
(X158), and s__Roseburia_sp._CAG.18 (X138) were the
five most significant hub taxa in the CMC group, but
s__unclassified (X1), s__Faecalibacterium_prausnitzii
(X9), s__Bacteroides_unclassified (X2), and
s__Prevotella_sp._CAG.386 (X530) were hub taxa in the control
group (Figure 5B). Second, as shown in Table 6, the degree,
betweenness centrality, closeness centrality, and eigenvector
centrality of certain nodes were different across groups. For
example, s__Clostridium_sp._CAG.7 (X44) had a higher degree
in the CMC group while s__Prevotella_sp._CAG.386 (X530)
had a higher degree in the control group. Third, the overall
characteristics of the two networks also diversified, especially

the most central nodes defined regarding betweenness centrality
(j = 0.077) and closeness centrality (j = 0.000) (Table 5).
Finally, the network clustering solution was also dissimilar
(adjusted Rand index = 0.0157). As shown in Figure 5B, an
apparent dissimilarity of the network clustering across groups
is that the cluster comprising s__Bacteroides_stercoris (X3)
and s__Bacteroides_stercoris_CAG.120 (X4) only existed in
the CMC group. In the control group, these two bacteria were
assigned to a large cluster connected by the correlation of
s__Bacteroides_stercoris (X3) with s__Bacteroidales_unclassified
(X8) and s__Bacteroides_unclassified (X2).

Cow milk consumption-associated
functional modules

A total of 596 KEGG modules were analyzed, and 48 of
them diversified significantly (p < 0.05) across the groups as
detected by the Mann–Whitney test (Figure 6). Of these, 38
significant modules increased in the CMC group, including
dissimilatory sulfate reduction (p = 0.0016); PTS system, lactose-
specific II component (p = 0.0021); PTS system, fructose-
specific II component (p = 0.0035); pimeloyl-ACP biosynthesis
(p = 0.005), and others. Ten modules, including Vibrio cholerae
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FIGURE 5

Bacterial associations of samples in two groups. The SPRING method is used as an association measure. The estimated partial correlations are
transformed into dissimilarities via the “signed” distance metric and the corresponding (non-negative) similarities are used as edge weights.
Green edges correspond to positive estimated associations and red edges to negative ones. Eigenvector centrality is used for defining hubs
(nodes with a centrality value above the empirical 95% quantile) and scaling node sizes. Hubs are highlighted by black borders. Node colors
represent clusters, which are determined using greedy modularity optimization. The 100 most abundant taxa were analyzed in this part and (A)
the complete association network where the 50 nodes with the highest degree are shown. (B) Comparison of bacterial associations in two
groups. Centrality and clustering measures are adopted from the complete network. Species represented by the nodes are given in
Supplementary Table 5.

pathogenicity signature, cholera toxins (p = 9.52e-04), and
cephamycin C biosynthesis module (p = 0.0057), among others,
decreased in the CMC group (Figure 6).

Validation

The basic characteristics of the American cohort
were shown in Supplementary Table 6. No significant
difference in either postmenopausal status (p = 0.494) or

BMI (p = 0.484), or exercise (p = 0.281) (Supplementary
Table 6) was detected between the CMC group and the
control group. Just same as that in the Chinese cohort,
the data were normalized via TSS or CLR and LEfSe
was used to detect the differential microbiota across
groups in the American cohort. As is shown in Table 7,
s__Bacteroides_salyersiae (P1 = 0.010, P2 = 0.044) and
s__Bifidobacterium_pseudocatenulatum (P1 = 0.002, P2 = 0.016)
showed consistent association results in both American cohort
and Chinese cohort.
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Discussion

Cow’s milk is conventionally considered to be beneficial.
In this research, we tried to elucidate the association of
CMC with human gut microbiota composition and functional
modules, which will be helpful for understanding the possible
mechanisms of its effects on human health.

Cow milk consumption associated with
gut microbiotas composition features

We first computed the number of taxa and determined
the dominating taxa in the control and CMC groups. The
dominated taxa in the two groups were the same, which
indicated that CMC may not influence human’s most abundant
gut microbiota. We also compared the alpha and beta diversity
between groups. Several research have studied the association
of CMC with GM diversity; however, their results were
inconsistent. Fernandez-Raudales et al. (2012) reported that
CMC was negatively associated with alpha diversity; Bendtsen
et al. (2018) concluded that there’s no association between CMC
and alpha/beta diversity); Aslam et al. (2021) reported that
beta diversity of gut microbiota differed among milk consumer
and non-consumers. In the current study, we figured that the
two groups had different beta diversity at levels of genus and
species, while no difference in alpha diversity between groups
was found. This was partially consistent with Bendtsen and
Hajara Aslam’s results.

Cow milk consumption associated with
the relative abundance of some taxa

Following the analysis of GM general composition features,
we detected the association (by Mann–Whitney test) and
correlation (by LEfSe) between RA of taxa and CMC status

TABLE 5 Jaccard index values corresponding to the networks shown
in Figure 5B.

j P(J ≤ j) P(J ≥ j)

Degree 0.389 0.77674 0.39149

Betweenness centrality 0.077 0.038537 0.995

Closeness centrality 0.000 0.132 1.000

Eigenvec. centrality 0.615 0.991 0.034655

Hub taxa 0.125 0.195 0.961

Index values j express the similarity of the sets of most central nodes and also of the sets
of hub taxa between the two networks. “Most central” nodes are those with a centrality
value above the empirical 75% quantile. Jaccard’s index is 0 if the sets are completely
different and 1 for exactly equal sets. P (J ≤ j) is the probability that Jaccard’s index takes
a value less than or equal to the calculated index j for the present total number of taxa in
both sets and P (J ≥ j) is defined analogously. Jaccard index ranges from 0 (completely
different) to 1 (sets equal).

in two cohorts. It was found that the abundance of certain
taxa was significantly different between the control group
and the CMC group.

s_Bifidobacterium_pseudocatenulatum,
g_Bifidobacterium, and
p_Actinobacteria

The abundance of s_Bifidobacterium_pseudocatenulatum
was positively associated with CMC in both the Chinese and
American cohorts (P < 0.05, and LDA > 2 in both cohorts).
Such association has not been reported before. It has been
reported that a strain of s_B. pseudocatenulatum could reverse
the adverse effects of diet-induced obesity through the gut-bone
axis (Fernández-Murga et al., 2020). Some studies also show
an advantage of s_B.pseudocatenulatum in treating obesity-
associated diseases (Mauricio et al., 2017; Sanchis-Chordà et al.,
2019). In addition, s_B.pseudocatenulatum was reported to
be beneficial for human health as an inflammation regulator
(Moya-Pérez et al., 2015; Sanchis-Chordà et al., 2019). It could
also ameliorate gut flora dysbiosis, especially the depletion of the
SCFA-producing bacteria Anaerostipes (Muñoz-Tamayo et al.,
2011). In our results, s_B.pseudocatenulatum was positively
associated with CMC. We hypothesized that CMC is likely to
promote human health at least partially through the positive
effect of gut microbiota s_B. pseudocatenulatum.

s_B.pseudocatenulatum belongs to genus
g__Bifidobacterium (a branch of p_Actinobacteria). Of
note, in the Chinese cohort, both p_Actinobacteria and
g_Bifidobacterium were detected to be negatively associated
with CMC (FDR < 0.1 and LDA < −2). The association of
CMC with p_Actinobacteria has not been reported before. An
explanation for the decrease of g_Bifidobacterium observed in
the CMC group might be that milk is a provider of calcium since
Shili et al. (2020) showed that subjects with reduced calcium
consumption had a higher abundance of g_Bifidobacterium.

g_Anaerostipes

An increase in abundance of g_Anaerostipes was observed
in the CMC group in our research. Although this association
had not been replicated in the validation American cohort,
it was consistent with Xq. Li.’s conclusion that whole
milk consumption significantly increased Anaerostipes (p
< 0.01) (Li et al., 2018). The increase of the bacteria
g_Anaerostipes in the CMC group may also contribute
to intestinal health. Genus g_Anaerostipes is a branch of
phylum Firmicutes, which is a dominant bacterial taxon in
the human gut. The anaerobic bacteria g_Anaerostipes can
produce butyrate from lactic acid (Muñoz-Tamayo et al.,
2011; Thomas et al., 2014). Our genomic sequencing data
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also confirmed the potential butyrate-producing capability
of g_Anaerostipes since it encoded genes of the “Reductive
acetyl-CoA pathway (Wood-Ljungdahl pathway)”. This is an
important pathway involved in the biosynthesis of SCFAs
butyrate (Portincasa et al., 2022). Butyrate is an SCFA
responsible for regulating mucosal gene expression and
maintaining gut barrier integrity. It can regulate the release of
insulin and glucagon and provide energy for host cells (Hague
et al., 1997). Butyrate also inhibits histone deacetylase-induced

apoptosis of colon cells and activates gluconeogenesis through
a cAMP-dependent mechanism (Davie, 2003). In another
study, the Anaerostipes genus was associated with a higher
estimated glomerular filtration rate in the overall population
and non-diabetes mellitus subgroup, which also indicated
that g_Anaerostipes is beneficial for renal function (Thomas
et al., 2014). Species s__Anaerostipes_hadrus (P = 7.32e-4,
LDA score = 3.21), which belongs to g_Anaerostipes, were also
identified to be positively associated with CMC in our study.

TABLE 6 Results from testing global network metrics and centrality measures of the networks in Figure 5B.

CMC group Control group abs.diff.

Global network measures:

Average path length [1] 1.996 1.907 0.089

Clustering coefficient [2] 0.294 0.329 0.035

Modularity [3] 0.486 0.531 0.045

Vertex connectivity [4] 1.000 1.000 0.000

Edge connectivity [5] 1.000 1.000 0.000

Density [6] 0.131 0.118 0.013

Degree [7]:

s__Roseburia_sp._CAG.18 (X138) 8 3 5

s__Clostridium_sp._CAG.7 (X44) 5 1 4

s__Prevotella_sp._CAG.386 (X530) 4 6 2

s__Bacteroides_stercoris (X3) 1 3 2

s__Bacteroides_dorei (X14) 3 5 2

Betweenness centrality [8]:

s__Prevotella_sp._CAG.386 (X530) 4 113 109

s__unclassified (X1) 9 108 99

s__Bacteroides_unclassified (X2) 57 153 96

s__Roseburia_sp._CAG.18 (X138) 98 3 95

s__Faecalibacterium_prausnitzii (X9) 34 193 69

Closeness centrality [9]:

s__Bacteroides_stercoris (X3) 2.885 19.713 16.827

s__Bacteroides_stercoris_CAG.120 (X4) 2.885 16.422 13.537

s__Prevotella_sp._CAG.386 (X530) 19.32 25.916 6.597

s__Clostridium_sp._CAG.7 (X44) 21.449 15.646 5.804

s__unclassified (X1) 20.144 25.228 5.084

Eigenvector centrality [10]:

s__Clostridium_sp._CAG.7 (X44) 0.158 0.010 0.147

s__Ruminococcus_gnavus (X117) 0.185 0.052 0.133

s__Bacteroides_dorei (X14) 0.171 0.293 0.122

s__Bacteroides_massiliensis (X5) 0.108 0.227 0.119

s__Bacteroides_stercoris (X3) 0.034 0.150 0.116

Shown are, respectively, the computed measure for CMC group and control group, the absolute difference between groups was computed; for degree, betweenness centrality, closeness
centrality, and eigenvector centrality analysis: the five taxa with the highest absolute group difference are shown. Local and global network properties implemented in NetCoMi: [1]
Arithmetic mean of all shortest paths between vertices in a network. [2] Proportion of triangles with respect to the total number of connected triples2 , Expresses how likely the nodes are
to form clusters. [3] Expresses how well the network is divided into communities (many edges within the identified clusters and only a few between them). [4][5] Minimum number of
edges or vertices (nodes) that need to be removed to disconnect the network, respectively. Not meaningful for a fully connected network. [6] Ratio of the actual number of edges in the
network and the possible number of edges. Not meaningful for a fully connected network. [7] Number of adjacent nodes. [8] Fraction of times a node lies on the shortest path between all
other nodes. A central node has the ability to connect sub-networks. [9] Reciprocal of the sum of shortest paths between this node and all other nodes. The node with the highest closeness
centrality has the minimum shortest path to all other nodes. [10] Calculated via eigenvalue decomposition: Ac = λc, where λ denotes the eigenvalues and c denotes the eigenvectors of the
adjacency matrix A. Eigenvector centrality is then defined as the i-th entry of the eigenvector belonging to the largest eigenvalue A node is central if it is connected to other nodes having
themselves a central position in the network.
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FIGURE 6

CMC alters the functional potential of the gut microbiome. (A) Microbial genes annotated to Kyoto Encyclopedia of Genes and Genomes
(KEGG) orthologs (KOs). The bar chart displays the log2 fold change of the relative abundance median of all individual KOs within a module
following the Control group (pink bars) or the CMC group (blue bars), respectively. (B) Dot plot of the negative log10 of the P-value from the
Mann–Whitney test of KEGG module abundance of two groups.

s__Bacteroides_salyersiae and
g_Bacteroides

Relative abundance (RA) of s__Bacteroides_salyersiae
diversified in both Chinese and American cohorts (p < 0.05).
This species belongs to g_Bacteroides, which was observed
to increase (p = 0.03, LDA = 5.29) in the CMC group in
the Chinese cohort. This is consistent with a report showing
that an increase of g_Bacteroides usually results from the
long-term intake of protein and animal fat (Wu et al., 2011).
g_Bacteroides were reported to be beneficial for human health.
Aerobic exercise can increase g_Bacteroides abundance and
thus improve cardiopulmonary function (Morita et al., 2019). It
is also an inflammation regulator; a decrease in g_Bacteroides
level can lead to a decrease in inflammatory cytokines (Fan
et al., 2019). Another study has shown that g_Bacteroides can
activate T cells in the bodies of infants, thereby promoting their
immune system development (Walker and Iyengar, 2015).

Cow milk consumption may alter gut
microbiota association network

We further studied the GM association network in each
group via the NetCoMi package to better understand the

TABLE 7 Gut microbiota that showed replicated results in the
American cohort.

GM Data transform
method

P1 P2 LDA

s__Bacteroides
_salyersiae

TSS 0.010 0.044 4.12

s__Bifidobacterium
_pseudocatenulatum

CLR 0.002 0.016 3.73

P1 , P-value in Chinese cohort.
P2 , P-value in American cohort.
LDA, LDA score of LEfSe analysis of American cohort.
TSS, Total sum scaling.
CLR, Centered-log ratio.

complex interplay of microbial communities. We compared the
networks of subjects with different CMC statuses and found
that they were essentially different. We observed different hub
taxa in the CMC group compared with the control group,
which indicated that CMC may at least partially change the
interaction of GM. Hub taxa usually act as connector nodes
linking multiple clusters/modules in the network, thus their tiny
abundance changes may affect the balance of microbe clusters
apparently. By comparing the five centrality measures of each
taxon and the network clustering between the CMC and control
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groups, s__Bacteroides_stercoris (X3) attracted our attention.
The degree, the closeness centrality, and the eigenvector
centrality of s__Bacteroides_stercoris all changed a lot across
groups. The correlations of s__Bacteroides_stercoris with
s__Bacteroides_unclassified and s__Bacteroidales unclassified
disappeared in the CMC group, which directly altered
the clustering of the network. In this study, the RA of
s__Bacteroides_stercoris was a little bit higher in the CMC
group than the control group, but the difference was not
statistically significant. Recently, Gaundal et al. (2022) reported
that the abundance of human gut Bacteroides Stercoris was
associated with higher adherence to Healthy Nordic Food
Index (HNFI) and lower diastolic blood pressure. However,
the milk intake was not studied in that research. Based
on the changes of the five centrality measures (degree,
betweenness centrality, closeness centrality, eigenvector
centrality, and hub taxa), there were also some other bacteria
that should be highlighted. They are s__Ruminococcus_gnavus
(X117), s__Faecalibacterium_prausnitzii (X9),
s__Prevotella_copri (X158), s__Clostridium_sp._CAG.7 (X44),
s__Roseburia_sp._CAG.18 (X138), s__Prevotella_sp._CAG.386
(X530), and s__Bacteroides_dorei (X14). Further studies
of them, especially those focused on their interplay
with other microbes, should be helpful for elucidating
CMC’s effects on GM.

Cow milk consumption associated with
richness of functional categories

Following the GM profile analysis, we sought to identify
the varied modules between groups and found that many
modules diversified greatly. The most striking result is that
the KEGG module M00850 (Vibrio cholerae pathogenicity
signature, cholera toxins) was decreased in the CMC group
(p = 9.52e-04). The reduction of M00850 came from the
reduced richness of gut pathogenic bacteria carrying genes
ctxB and rtxA, which may induce gastroenteritis in humans
(Fang et al., 2019). The reduction of M00850 in the CMC group
indicated that CMC habit may be good for maintaining the
correct balance between helpful bacteria and harmful bacteria.
Cephamycin C biosynthesis module also decreased in the CMC
group (p = 0.0057). According to our metagenome sequencing
results, Cephamycin C biosynthesis genes were encoded by the
s__Clostridiales_bacterium, s__Paenibacillus_chitinolyticus,
s__Paenibacillus_sp._G4, and so on. The inhibition of
cephamycin C biosynthesis may also be beneficial to gut
probiotics, as it is a kind of antibiotic and may affect the balance
of intestinal flora.

A total of 38 KEGG biology modules were positively
associated with CMC, four of which are correlated to
biotin synthesis. Biotin is a B-complex vitamin that acts
as an essential coenzyme for five carboxylases. These
carboxylases participate in several chemical processes in
the cell, including gluconeogenesis, amino acid metabolism,

and fatty acid synthesis. Mammals obtain biotin from food,
but it can also be produced from gut bacteria (Saleem and
Soos, 2022); According to our metagenome sequencing
results, biotin synthesis genes were encoded by a lot of
microbes such as s__Anaerostipes_hadrus, s__Escherichia_coli,
s__Bacteroides_vulgatus, s__Bacteroides_dorei, and so on.
Biotin regulates immunological and inflammatory functions.
It plays a key role in the function of natural killer (NK)
lymphocytes and the generation of cytotoxic T lymphocytes
(Kuroishi, 2015; Agrawal et al., 2016). Our results indicated that
CMC could improve the gut bacteria’s biotin synthesis and thus
should be good for host health.

We also observed alterations in the richness of PTS-related
modules. Module galactose-specific component decreased in
the CMC group while modules mannose-, lactose-, fructose-,
and D-glucosaminate-specific II component increased in the
CMC group. It was indicated that CMC may influence the
proportional composition of gut microbiota which utilize
different PTS-related enzymes.

The strengths of the present study include: (1) We applied
shotgun sequencing technology and detected the RA of taxa
at the species level; (2) The GM sequencing was done in a
relatively large cohort and the statistical power of our study was
well guaranteed. We did the power assessment with a recently
published R package “Powmic” (Chen, 2020), which enables
power analysis for metagenomic sequencing case-control study
for identifying differentially abundant microbes. For non-
parametric Wilcoxon rank sum test, given a nominal FDR level
of 0.1, with our dataset (N1 = 248, N2 = 146, and the taxa
filtering criteria used in this study), the overall power evaluation
results are as follows: empirical statistical Power “true positive
rate” TPR[TPR = TP/(TP+FN)] = 0.81, False Positive Rate
FPR[FPR = FP/(FP+TP)] < 0.00001; (3) The data processing
and filter were strict.

The weaknesses of our research are as follows: (1) All
subjects were women, so it is not known whether CMC has
similar effects on men; (2) Our research was cross-sectional.
Although we have determined the correlations between GM
and CMC, further studies are still needed to elucidate its
mechanisms; (3) This study does not allow for controlling
all potential confounding factors that might have effect on
human gut microbiome, which may lead to some statistical
artifacts; (4) In this study, we used an American cohort
as the validation cohort. There should be great differences
between the Chinese cohort and the American cohort in the
genetic background of the host, the lifestyles, or maybe the
gastrointestinal microbial community environment. This may
be one of the reasons why only two differential taxa are being
replicated in the American cohort. We encourage researchers
to use a validation cohort that is as similar as possible to the
discovery cohort.

Overall, we have identified several gut microbiota taxa and
modules significantly associated with CMC in the present study.
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Some of the positively associated differential taxa or functional
modules have been reported to have positive effects on
humans health. Women at peri/postmenopausal stage usually
suffered from many kinds of diseases, such as osteoporosis,
breast cancer, and obesity. Further studies are still needed to
elucidate the effects and underlying mechanisms of CMC habit
on peri/postmenopausal women’s health that is mediated by
the gut microbiome.

Conclusion

The present study has revealed alterations in gut bacterial
composition and functional modules associated with CMC.
These results suggest that cow milk consumption was associated
with the beta diversity and abundance of some beneficial
bacterial taxa such as s__B.pseudocatenulatum, g_Anaerostipes,
and g_Bacteroides. In addition, cow milk consumption was
associated with the abundance of many functional modules such
as Vibrio cholerae pathogenicity signature, cholera toxins, and
biotin synthesis, which further support the biological value of
habitual cow milk consumption.
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