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A B S T R A C T   

This research introduces the Multi-Objective Liver Cancer Algorithm (MOLCA), a novel approach 
inspired by the growth and proliferation patterns of liver tumors. MOLCA emulates the evolu-
tionary tendencies of liver tumors, leveraging their expansion dynamics as a model for solving 
multi-objective optimization problems in engineering design. The algorithm uniquely combines 
genetic operators with the Random Opposition-Based Learning (ROBL) strategy, optimizing both 
local and global search capabilities. Further enhancement is achieved through the integration of 
elitist non-dominated sorting (NDS), information feedback mechanism (IFM) and Crowding 
Distance (CD) selection method, which collectively aim to efficiently identify the Pareto optimal 
front. The performance of MOLCA is rigorously assessed using a comprehensive set of standard 
multi-objective test benchmarks, including ZDT, DTLZ and various Constraint (CONSTR, TNK, 
SRN, BNH, OSY and KITA) and real-world engineering design problems like Brushless DC wheel 
motor, Safety isolating transformer, Helical spring, Two-bar truss and Welded beam. Its efficacy is 
benchmarked against prominent algorithms such as the non-dominated sorting grey wolf opti-
mizer (NSGWO), multiobjective multi-verse optimization (MOMVO), non-dominated sorting ge-
netic algorithm (NSGA-II), decomposition-based multiobjective evolutionary algorithm (MOEA/ 
D) and multiobjective marine predator algorithm (MOMPA). Quantitative analysis is conducted 
using GD, IGD, SP, SD, HV and RT metrics to represent convergence and distribution, while 
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qualitative aspects are presented through graphical representations of the Pareto fronts. The 
MOLCA source code is available at: https://github.com/kanak02/MOLCA.   

1. Introduction 

Long before human civilization, nature had been adeptly addressing intricate issues through evolutionary processes. It is only 
logical to seek inspiration from nature when confronted with complex problems. In the realm of optimization, 1977 marked a pivotal 
moment when Holland introduced the idea of emulating natural evolutionary principles on computers to address optimization 
challenges [1]. This gave birth to the renowned heuristic method known as Genetic Algorithms (GA) [2], offering a fresh perspective 
on addressing multifaceted problems across various disciplines. The GA’s core principle is straightforward, emulating natural pro-
cesses like selection, gene recombination and mutation. Darwin’s evolutionary theory was the cornerstone for this algorithm. In GA, 
the optimization journey commences with a random assortment of potential solutions for a specified problem. Each problem variable is 
perceived as a gene, with the collective set likened to chromosomes. A cost function determines each chromosome’s viability, with the 
entire solution set viewed as a population. The most viable chromosomes are then randomly chosen to form the subsequent population, 
mirroring natural processes. This is followed by the fusion of selected individuals, where genes from pairs are randomly amalgamated 
to spawn new entities. Some genes then undergo random alterations, simulating mutation. Over time, GA emerged as a preferred 
optimization method over deterministic strategies [3], primarily due to its ability to bypass local solutions [4]. One limitation of GA 
was its inherent randomness, leading to varied solutions upon each execution. While multiple runs could potentially address this, the 
extensive function evaluations per run remain a concern. GA’s widespread applicability across scientific and industrial sectors has 
catalyzed the development of other heuristic strategies. Notable algorithms like Ant Colony Optimization (ACO) [5], Particle Swarm 
Optimizer (PSO) [6] and Differential Evolution algorithm (DE) [7] are testament to GA’s success. This domain continues to be a focal 
point in the computational intelligence arena. Beyond the aforementioned merit of bypassing local optima, several other factors 
underscore the growing appeal of heuristic methods. For instance, they have used in diverse fields ranging from robotics [8] to vehicle 
testing [9] to topology optimization [10]. They also find ample application in next-generation applications like digital twining [11], 
electric vehicles [12], blockchains [13] etc. 

Heuristic algorithms operate without the necessity to compute the derivation of a problem for its resolution. This is attributed to 
their design, which does not rely on gradient descent to pinpoint the global optimum. Instead, they perceive a problem as a closed 
system characterized by specific inputs and outputs. The inputs correspond to the problem’s variables, while the outputs relate to the 
objectives. The heuristic exploration initiates by generating a random set of inputs, representing potential solutions. This exploration 
progresses by assessing each solution, monitoring the objective values and subsequently adapting, merging, or evolving the solutions 
based on their results. This cycle persists until a predefined termination criterion is achieved, which could be a set iteration limit or a 
maximum count of function evaluations. While heuristics demonstrate proficiency in addressing intricate real-world challenges, they 
encounter numerous obstacles in optimization tasks [14]. Moreover, optimization challenges are diverse, each with unique traits. 
Some complexities or features include dynamicity [15], unpredictability [16], constraints [17], multiple objectives [18] and extensive 
objectives [19]. Each of these challenges has carved out its niche within the heuristic domain, drawing significant research interest. In 
dynamic scenarios, the global optimum’s position is mutable. Hence, a heuristic must incorporate appropriate mechanisms to monitor 
these shifts without losing sight of the global optimum [20]. Real-world challenges often present varying degrees of uncertainty across 
components. Addressing these demands heuristics that can identify resilient solutions with a high tolerance for errors. Constraints, 
which delineate the search domain, further complicate matters. They categorize solutions into feasible and non-feasible groups. 
Consequently, heuristics must be equipped with mechanisms to filter out non-feasible solutions during the optimization process, ul-
timately zeroing in on the optimal feasible solution. Numerous effective techniques for handling constraints exist in scholarly literature 
[21]. However, as this study’s proposed method pertains exclusively to unconstrained challenges, a detailed review of such techniques 
is omitted, directing interested readers to Refs. [18–21]. Numerous effective techniques for handling constraints exist in scholarly 
literature. For instance, the Dynamic Levy Flight Chimp Optimization technique discussed [22] and the Weighted Chimp Optimization 
Algorithm by Ref. [23] are notable examples. These methods demonstrate advanced approaches in the categorization of feasible 
solutions. Additionally, the Multi-objective Chimp Optimizer proposed [24] offers insights into handling multiple objectives, which 
can be pertinent in distinguishing between feasible and non-feasible solutions. While this study’s proposed method pertains exclusively 
to unconstrained challenges and thus a detailed review of constraint-handling techniques is omitted as well as earlier works [25–27], 
which further elaborate on the evolution and applications of chimp optimization algorithms in various contexts. 

Among the aforementioned challenges, managing multiple objectives stands out. When multiple objectives are in play, heuristic 
algorithms grapple with solution comparisons. To navigate this, researchers have employed the PD operator [28]. Given the nature of 
such challenges, there often exists more than a single optimal solution for a multi-objective problem [29]. Many heuristics in scholarly 
literature are equipped with specialized operators tailored for multi-objective challenges. The foundational structure of these 
multi-objective heuristics is strikingly similar. At their core lies an archive or storage system dedicated to preserving the NDS 
throughout the optimization journey [30]. As the process unfolds, these heuristics consistently refine this archive, enhancing both the 
caliber and volume of the non-dominated solutions it contains [31] a post-optimization activity. Researchers have employed the PD 
operator, as exemplified in the work of multi-objective mutation-based dynamic Harris Hawks optimization for IoT botnet detection 
[32]. Given the nature of such challenges, there often exists more than a single optimal solution for a multi-objective problem, as 
demonstrated in study on improved African vulture’s optimization algorithms for image segmentation [33]. Many heuristics in 
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scholarly literature are equipped with specialized operators tailored for multi-objective challenges. The foundational structure of these 
multi-objective heuristics is strikingly similar. At their core lies an archive or storage system dedicated to preserving the NDS 
throughout the optimization journey, a concept explored in the context of community detection in social networks [34]. As the process 
unfolds, these heuristics consistently refine this archive, enhancing both the caliber and volume of the non-dominated solutions it 
contains. This is evident in the comprehensive survey of slime mould algorithm variants and applications, which highlights the 
importance of such archives in multi-objective optimization [35]. Finally, the post-optimization activity is crucial, as seen in the work 
of Piri et al. (2022) on using artificial gorilla troop optimization for feature selection in biomedical data, including COVID-19 data 
[36]. 

The academic realm is replete with algorithms tailored for multi-objective challenges [37–39]. In the context of Genetic Algorithms 
(GA), the NSGA [40] stands out as a prominent multi-objective (MO) variant. Other noteworthy algorithms encompass MOPSO [41], 
MOACO [42], MO Differential Evolution [43] and Multi-objective Evolution Strategy [44]. These algorithms have consistently 
demonstrated their efficacy in identifying non-dominated solutions for multi-objective dilemmas. Yet, a pertinent question arises: is 
there a need for additional algorithms? The No Free Lunch theorem for optimization [45] posits that no singular algorithm can 
universally address all optimization challenges. This theorem, grounded in logic, paves the way for the introduction of novel algo-
rithms or the enhancement of existing ones. Consequently, there remains ample scope for the development or refinement of algorithms 
to adeptly address contemporary challenges and those that remain elusive to current methodologies. 

In metaheuristic approaches three primary strategies have been identified for addressing multi-objective problems using meta-
heuristics: a priori [46], a posteriori [47] and interactive [48]. The a priori method consolidates multiple objectives into a singular 
objective. This transformation essentially reframes the multi-objective challenge into a single-objective one. By aggregating objectives, 
single-objective optimizers can adeptly pinpoint Pareto optimal solutions. Yet, this approach is not without its limitations. It neces-
sitates multiple algorithm executions to discern various Pareto optimal solutions, confronts challenges in each run, lacks inter-solution 
communication during optimization, demands expert consultation for optimal weight determination and struggles with identifying 
concave regions of the POF due to objective amalgamation. As the name suggests, decision-making in the a priori approach precedes 
optimization, primarily during weight determination. The inherent challenges of this method often overshadow its advantages. 
Typically, designers employing this strategy must execute the algorithm repeatedly, adjusting weights to delineate the Pareto optimal 
front. Conversely, the a posteriori approach defers decision-making until post-optimization. This method abstains from aggregation, 
preserving the multi-objective nature of the problem. Its strengths lie in its capacity to identify the Pareto optimal solution (POS) set in 
a singular run, facilitate information exchange between POS during optimization and ascertain any type of Pareto optimal front. 
However, posteriori techniques demand specialized mechanisms to manage multiple, often divergent, objectives. Moreover, their 
computational demands usually surpass those of aggregation-based methods. Lastly, the interactive approach to multi-objective 
optimization implies concurrent decision-making during the optimization process. Often termed "human-in-the-loop" optimization, 
this method continually integrates expert preferences throughout the optimization journey, aiming to pinpoint the most suitable 
Pareto optimal solutions. 

Existing literature underscores the dominance of a posteriori methods in multi-objective optimization. Many esteemed algorithms, 
originally designed for single-objective, have been adapted to cater to a posteriori MOO. It is worth noting that these algorithms 
predominantly rely on Pareto dominance for solution comparisons and utilize an archive to retain the top-tier POS discovered. The 
foundational blueprint of all a posteriori methodology remains consistent. They embark on the optimization journey with a collection 
of random solutions. Once the POS are identified and archived, efforts are channeled towards refining these solutions to unearth 
superior Pareto optimal outcomes. This refinement phase concludes upon meeting a specific criterion. The primary goal of an a 
posteriori MO is to derive an exceptionally precise approximation of the genuine POS for a designated MO challenge. Given that 
decision-making transpires post-optimization, It is imperative for solutions to be uniformly distributed across all objectives. A sig-
nificant hurdle in this domain is the inherent tension between achieving precise Pareto optimal solutions (convergence) and ensuring 
solution distribution (coverage). An adept multi-objective optimization should strike a harmonious balance between these contrasting 
elements. To enhance coverage, various strategies are employed. For instance, in MOPSO, Pareto optimal solutions in sparsely 
populated archive segments are more likely to be selected as leaders for other particles. Meanwhile, NSGA-II employs non-dominated 
sorting to rank Pareto optimal solutions, assigning them a specific value. This ranking system amplifies the likelihood of superior 
Pareto optimal solutions contributing to the genesis of the subsequent generation. 

Other popular Multi-Objective (MO) Algorithms include MO ant lion optimizer (MOALO) [49], MO equilibrium optimizer (MOEO) 
[50], MO slime mould algorithm (MOSMA) [51], MO arithmetic optimization algorithm (MOAOA) [52], non-dominated sorting ions 
motion algorithm (NSIMO) [53], MO evolutionary algorithm based on decomposition (MOEA/D) [54], Non-dominated sorting genetic 
algorithm (NSGA-II) [55], multi-objective multi-verse optimization (MOMVO) [56], non-dominated sorting grey wolf optimizer 
(NS-GWO) [57], MO Gradient-Based Optimizer (MOGBO) [58], MO plasma generation optimizer (MOPGO) [59], non-dominated 
sorting Harris hawks optimization (NSHHO) [60], MO thermal exchange optimization (MOTEO) [61], decomposition based 
multi-objective heat transfer search (MOHTS/D) [62], Decomposition-Based Multi-Objective Symbiotic Organism Search (MOSOS/D) 
[63], MOGNDO Algorithm [64], Non-dominated sorting moth flame optimizer (NSMFO) [65], Non-dominated sorting whale opti-
mization algorithm (NSWOA) [66] and Non-Dominated Sorting Dragonfly Algorithm (NSDA) [67]. We aimed to gauge their capa-
bilities in swiftly converging to the true Pareto optimal front and the distribution of the obtained non-dominated solutions. Upon 
assessing their convergence and coverage using MO metrics and the produced Pareto optimal fronts on benchmark suites (ZDT [54], 
DTLZ [54], Constraint [68,69] and engineering design problems [55,56]), we discerned that these algorithms still exhibited short-
comings in convergence and coverage using metrics like generational distance (GD) [70], inverse generational distance (IGD) [71], 
hypervolume [72], Spacing [73], Spread [72] and run time (RT). The approximations of the Pareto-front produced by our method are 
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evaluated using these metrics. The field of optimization encompasses various challenges like dynamicity, unpredictability, constraints 
and multiple objectives [74]. MOLCA is designed to handle these complexities more effectively, particularly in dynamic and unpre-
dictable environments. Traditional multi-objective algorithms often struggle to maintain a balance between converging to optimal 
solutions and preserving diversity among solutions. MOLCA introduces novel mechanisms like the Information Feedback Mechanism 
(IFM) and Crowding Distance, which collectively enhance this balance. The MOLCA algorithm divides the search process into distinct 
phases – an initial phase focusing on convergence and a subsequent phase emphasizing diversity. This structured approach allows for a 
more efficient search process. 

This paper presents several key findings and contributions:  

• A new Multi-objective Liver Cancer Algorithm (MOLCA) proposed.  
• An Information Feedback Mechanism (IFM) is introduced to balance convergence and diversity. This strategy divides the search 

process into two phases: the initial phase emphasizes convergence, while the subsequent phase emphasizes diversity.  
• The rapid non-dominated sorting technique determines the current phase of the algorithm. If the non-dominated solutions make up 

less than 90% of all solutions, the algorithm is in the initial phase; otherwise, it transitions to the subsequent phase.  
• We used Crowding Distance mechanism to refine the positioning of solutions in the space. This enhances solution diversity and 

ensures a more uniform distribution along the Pareto front.  
• The crowding distance metric is utilized to preserve population diversity. Notably, the elitism strategy is employed. 

Despite the progressive strides in multi-objective optimization, the research community remains fervently committed to refining 
existing methodologies or pioneering novel ones to more effectively address current multi-objective optimization challenges. The 
emulation of liver tumor growth patterns in the context of multi-objective optimization Firstly, the complexity of liver tumors, such as 
hepatocellular carcinoma, is a significant challenge in biomedicine. These tumors exhibit complex behaviors, including interactions 
with the microenvironment, angiogenesis, immune evasion and genetic changes, all of which are crucial factors in their progression. 
By studying these mechanisms, insights can be gained into developing optimization algorithms that mimic these adaptive and robust 
biological processes. The Liver Cancer Algorithm (LCA) [75], inspired by the behavior of liver tumors, serves as an innovative 
approach in optimization. It emulates the growth and spread of liver tumors, utilizing this biological model to address optimization 
problems effectively. The LCA employs an evolutionary search approach, simulating tumor behavior and incorporates genetic oper-
ators and a Random Opposition-Based Learning (ROBL) strategy. These elements enable the LCA to balance exploration and exploi-
tation, which is crucial in finding optimal solutions in complex optimization landscapes. This algorithm’s unique adaptive mechanism 
seamlessly harmonizes exploration and exploitation. Driven by the notable advantages of LCA, this paper introduces its multi-objective 
version, MOLCA. MOLCA employs a rapid non-dominated sorting technique to determine the current phase of the algorithm. This 
allows for a dynamic adjustment between focusing on convergence and promoting diversity, based on the composition of the solution 
set. IFM in MOLCA ensures a dynamic response to the changing landscape of the problem space. By adjusting the focus between 
convergence and diversity, MOLCA can effectively navigate the complex multi-objective optimization terrain. This mechanism refines 
the positioning of solutions, enhancing the diversity and ensuring a more uniform distribution along the Pareto front. This is crucial for 
achieving a comprehensive exploration of the solution space. MOLCA incorporates an elitism strategy, which helps in preserving the 
quality of solutions while maintaining population diversity. This is critical for ensuring that the algorithm does not converge pre-
maturely to suboptimal solutions. This is benchmarked against NSGWO, MOMVO, NSGA-II, MOEA/D and MOMPA algorithms. 

The subsequent sections of this paper are structured as follows: Section 2 offers an in-depth exploration of the LCA. Section 3 
present proposed multi-objective LCA algorithm. Section 4 presents, scrutinizes and interprets the results, encompassing the experi-
mental framework, test functions and performance metrics. Lastly, Section 5 encapsulates the study’s conclusions and outlines po-
tential avenues for future research. 

2. Liver cancer algorithm (LCA) 

The Liver Cancer Algorithm (LCA) [75] emerges as a groundbreaking bio-inspired optimization tool proposed by Essam H. 
Houssein et all, with its roots in the intricate behaviors exhibited by liver tumors, specifically hepatocellular carcinoma. This form of 
liver cancer, marked by its complexity, presents numerous challenges in both detection and management. The expansion trajectory of 
these tumors is influenced by a myriad of factors, such as their position, magnitude and inherent virulence. By translating these tumor 
behaviors into optimization paradigms, the LCA mirrors the tumor’s adaptive spread and growth within the liver’s confines. The 
algorithm’s architecture is shaped by the tumor’s adaptive tendencies, where it seeks optimal growth conditions within the liver. 
Incorporating both genetic operators and the Random Opposition-Based Learning (ROBL) strategy, the LCA achieves a fine equilibrium 
between localized and expansive search methodologies, facilitating a comprehensive search space exploration. The algorithm’s fitness 
function evaluates candidate solutions across various tumor stages. In instances where a candidate solution exhibits suboptimal fitness, 
the LCA permits an alternate tumor to recalibrate the position based on the optimal tumor size. Empirical results underscore the LCA’s 
adeptness in balancing expansive exploration with focused exploitation, culminating in efficient optimization solutions. This section 
describes the LCA algorithmic structure and offering an in-depth mathematical breakdown of its various phases. Drawing inspiration 
from the dynamics of liver tumors, the LCA incorporates biological concepts into its optimization mechanism, positioning it as a unique 
and effective method for feature selection. 
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2.1. Integration of genetic operators in LCA 

2.1.1. Role of genetic operators 
In the LCA, genetic operators are critical for maintaining diversity among candidate solutions and preventing premature 

convergence. This is analogous to biological evolution, where genetic variation is key to the adaptability and survival of species. 

2.1.2. Implementation of genetic operators 

2.1.2.1. Selection. The LCA selects the fittest individuals from the current population to form a mating pool. This selection is based on 
a fitness function that evaluates how well each solution performs in solving the optimization problem. 

2.1.2.2. Crossover. Crossover operators are used to combine genetic information from two parent solutions to produce new offspring. 
This mimics natural gene recombination and contributes to the exploration of new areas in the search space. 

Fig. 1. LCA flowchart.  
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2.1.2.3. Mutation. Mutation operators introduce random changes in the offspring’s genetic makeup. This process ensures diversity in 
the population and helps in exploring unvisited regions of the search space, thereby avoiding local optima. 

2.1.3. Adaptive nature 
The algorithm’s design, inspired by the adaptive nature of liver tumors, utilizes these genetic operators to adaptively find the most 

favorable solutions in the optimization landscape, similar to how tumors adaptively find favorable environments for growth. 

2.2. Integration of random opposition-based learning (ROBL) in LCA 

2.2.1. Concept of ROBL 
ROBL is an innovative approach for initializing and diversifying the population in optimization algorithms. It involves generating 

solutions that are opposite to the existing ones in the search space. 

2.2.2. Implementation in LCA 

2.2.2.1. Initialization phase. During the initial population setup, alongside generating random solutions, the LCA algorithm also 
creates opposite solutions. This is achieved by calculating the opposite of each individual’s position in the search space. 

Fig. 2. Multi-Objective all definitions in search space of MO-Problem.  

Fig. 3. The procedure of the NDS approach based on MOLCA algorithm.  
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2.2.2.2. Diversification. By incorporating these opposite solutions into the population, the LCA algorithm enhances the diversity of the 
search space explored. This approach is particularly effective in avoiding early convergence to local optima and helps in a more 
comprehensive exploration of the search space. 

Fig. 4. Flowchart of MOLCA algorithm.  
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2.2.3. Balancing exploration and exploitation 
The integration of ROBL in LCA facilitates a balanced trade-off between exploration (searching new areas) and exploitation 

(refining known good areas). This balance is crucial for effectively navigating complex optimization landscapes and finding high- 
quality solutions. 

2.2.4. Dynamic adaptation 
The LCA continuously applies ROBL throughout the optimization process, dynamically adapting its search strategy based on the 

evolving population. This ensures that the algorithm remains robust against stagnation and is capable of discovering optimal or near- 
optimal solutions across diverse problem domains. 

2.3. Mathematical representation of the liver cancer algorithm (LCA) 

The LCA is conceptualized to simulate the expansion and proliferation patterns of liver tumors, which are malignant growths in the 

Fig. 5. Mathematical and Schematic view of the (a) GD, (b) IGD, (c) SP, (d) SD and (e) HV metrics.  
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liver that can significantly compromise bodily functions. To emulate the tumor’s dynamics, the LCA is structured into multiple phases, 
each characterized by specific mathematical models. 

2.3.1. Estimation of tumor dimensions 
Central to the LCA is the assessment of the tumor’s dimensions, which is pivotal for the phases that follow. The tumor’s size is 

gauged using a mathematical framework that presumes tumors adopt a hemi-ellipsoid form, a characteristic seen in various cancer 
forms, including liver cancer. The tumor is delineated by three parameters: width, length and depth. Given the complexity of directly 
measuring the depth, we resort to a mathematical approximation. The initial estimation of the tumor’s size (or position) utilizes Eq. 
(1), which integrates random opposition-based learning (ROBL) to initiate a population with a broad spectrum of search exploration 
potentials. 

Position ∗j
i =

π
6
(

length j) ⋅
(

width j) ⋅
(

height j) −
(
lb+(ub − lb) − rd ∗ Position j

i
)

(1)  

In this context i = 1, 2,…,N, j = 1,2,…,D.lb and ub signify the maximum and minimum limits of the decision variables, D represents 
the search area’s dimension and rd is a random value between [0, 1] influenced by the optimal objective of the current Position i and 
its opposite Position j

i, thus setting the initial population. The tumor’s position size is deduced from the dimensions of the tumor 
(width, depth and length); where width, depth and length are random values between [0,1]. This study mathematically portrays the 
growth in the liver tumor’s position to craft the LCA and facilitate optimization. The growth in the tumor’s position size is determined 
using Eq. (2), 

Position=
π
6

⋅ f ⋅ (l ⋅ w)3/2 (2)  

where f = 1 represents a constant specific to a tumor type. 

Table 1 
Results of GD metric of different multi-objective algorithms on ZDT and DTLZ, benchmark problems.  

Problem M MOLCA NSGWO MOMVO NSGA-II MOEA/D MOMPA 

ZDT1 2 8.7675e-4 (±1. 
54e-4) +

2.9643e-2 (±4. 85e- 
3) - 

3.3414e-3 (±9. 67e- 
4) =

1.2003e-3 (±4. 
01e-4) +

2.2214e-3 (±8. 08e- 
4) =

4.0499e-3 (±2. 
52e-3) 

ZDT2 2 6.5216e-4 (±3. 
71e-4) +

4.1249e-2 (±1. 34e- 
2) =

7.2967e-3 (±5. 09e- 
3) +

1.0337e-2 (±8. 
86e-3) =

4.4292e-3 (±3. 35e- 
3) +

3.0494e-2 (±2. 
37e-2) 

ZDT3 2 5.1979e-4 (±1. 
25e-4) +

5.7743e-2 (±2. 10e- 
2) - 

1.9822e-3 (±4. 18e- 
4) =

8.9194e-4 (±4. 
50e-4) =

1.3473e-3 (±7. 49e- 
4) =

2.7297e-3 (±1. 
29e-3) 

ZDT4 2 3.5684e-3 (±5. 
71e-3) =

5.7787e-2 (±3. 41e- 
2) - 

1.0049e-2 (±1. 04e- 
2) =

3.8763e-3 (±6. 
91e-3) =

1.6251e-3 (±8. 37e- 
4) =

8.4223e-3 (±1. 
01e-2) 

ZDT6 2 1.0722e-3 (±5. 
78e-4) =

4.0135e-2 (±1. 19e- 
2) - 

9.7698e-3 (±2. 47e- 
3) =

1.9075e-3 (±9. 
29e-4) =

2.3352e-3 (±6. 83e- 
4) =

3.8651e-3 (±4. 
30e-3) 

DTLZ1 2 4.0568e-4 (±3. 
30e-4) =

2.7363e-2 (±3. 75e- 
2) - 

1.0563e-3 (±1. 03e- 
3) =

1.0074e-2 (±1. 
89e-2) =

7.8004e-4 (±3. 65e- 
4) =

4.2362e-4 (±2. 
59e-4) 

3 2.2961e-2 (±3. 
52e-2) =

5.3174e-3 (±5. 07e- 
3) =

4.1232e-2 (±3. 29e- 
2) =

9.4125e-4 (±2. 
96e-4) =

3.1451e-2 (±3. 19e- 
2) =

3.8623e-1 (±7. 
19e-1) 

DTLZ2 2 1.3673e-5 (±2. 
09e-6) +

2.5826e-4 (±9. 97e- 
5) =

7.9963e-5 (±2. 85e- 
5) =

1.1263e-4 (±1. 
80e-5) =

2.0039e-4 (±1. 57e- 
5) =

2.2872e-3 (±2. 
51e-3) 

3 4.7746e-4 (±5. 
12e-6) +

5.8552e-4 (±2. 11e- 
5) +

7.0563e-4 (±1. 89e- 
4) +

1.3096e-3 (±1. 
79e-4) =

2.2396e-3 (±1. 56e- 
4) - 

1.1159e-3 (±9. 
11e-5) 

DTLZ3 2 9.6007e-1 (±3. 
56e-1) =

2.1304e+0 (±5. 54e- 
1) - 

1.4074e+0 (±1. 
28e+0) =

6.2777e-1 (±3. 
30e-1) =

1.0995e+0 (±8. 91e- 
1) =

8.9649e-1 (±5. 
40e-1) 

3 2.6689e-1 (±1. 
21e-1) =

2.0899e+0 (±1. 
10e+0) =

8.6509e-1 (±5. 49e- 
1) =

7.7575e-1 (±6. 
92e-1) =

1.1528e+0 (±1. 
02e+0) =

1.2206e+0 (±9. 
99e-1) 

DTLZ4 2 1.7263e-5 (±4. 
54e-6) =

2.6500e-4 (±8. 24e- 
5) =

3.4396e-5 (±2. 81e- 
5) =

7.1913e-5 (±5. 
18e-5) =

1.3560e-4 (±1. 17e- 
4) =

4.3533e-3 (±4. 
28e-3) 

3 3.8818e-4 (±8. 
14e-5) =

5.9420e-4 (±1. 03e- 
5) =

5.9794e-4 (±1. 51e- 
5) =

1.3074e-3 (±1. 
81e-4) =

1.3429e-3 (±7. 76e- 
4) =

6.0688e-3 (±3. 
34e-3) 

DTLZ5 2 1.2702e-5 (±3. 
51e-6) =

3.4014e-4 (±1. 74e- 
4) =

5.8399e-5 (±1. 20e- 
5) =

1.1579e-4 (±1. 
95e-5) =

2.2649e-4 (±3. 30e- 
5) =

8.7670e-5 (±2. 
35e-5) 

3 1.5901e-4 (±3. 
47e-5) =

5.8576e-2 (±2. 78e- 
2) =

1.8026e-4 (±1. 31e- 
5) =

2.4462e-4 (±1. 
98e-5) =

5.2623e-4 (±1. 33e- 
4) =

7.4104e-4 (±4. 
27e-4) 

DTLZ6 2 4.5676e-6 (±3. 
32e-7) =

5.6867e-5 (±6. 40e- 
5) =

4.7033e-6 (±1. 59e- 
7) =

4.7450e-6 (±1. 
77e-7) =

4.3955e-6 (±3. 42e- 
7) =

5.9014e-2 (±5. 
12e-2) 

3 4.9259e-6 (±1. 
74e-7) =

1.2547e-1 (±1. 58e- 
1) =

4.4588e-6 (±5. 09e- 
7) =

5.1619e-6 (±1. 
96e-7) =

5.0840e-6 (±8. 42e- 
8) =

5.6963e-6 (±2. 
29e-7) 

DTLZ7 2 1.2114e-4 (±5. 
16e-5) =

8.4829e-3 (±1. 24e- 
3) =

2.0324e-4 (±1. 00e- 
4) =

1.3795e-4 (±4. 
32e-5) =

3.9810e-4 (±4. 27e- 
5) =

9.3196e-5 (±3. 
91e-5) 

3 1.8816e-3 (±6. 
51e-5) =

1.1236e-2 (±1. 06e- 
3) =

3.2221e-3 (±5. 98e- 
4) =

3.4792e-3 (±1. 
11e-4) =

7.1230e-3 (±1. 10e- 
3) =

3.4115e-3 (±1. 
36e-3)  
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2.3.2. Tumor duplication 
This phase signifies the perilous progression of the disease, ensuing once the tumor’s size has evolved. Tumors have the ability to 

reproduce in another location within the same liver. the exponential growth formula, applicable to breast cancer and liver tumors 
(hepatocellular carcinoma), is apt for gauging the growth of the tumor’s position, as depicted in Eq. (3). The consistency in cell division 
ensures that the tumor’s position V size remains consistent, irrespective of the tumor’s actual size. 

(PG)
i
=

dV
dt

= r ∗ Positiont ∈ [1…T] and i ∈ [1…N] (3)  

Where PG represents the tumor position’s growth, signifies the r radius, taking the form of an ellipse and is defined within [0,1]. The 
tumor’s size and position are derived from the preceding equation. T denotes the maximum iteration count and N stands for the 
number of search agents. The tumor’s proliferation intensifies to pinpoint the best location for disease management within the liver. 
This mechanism is depicted by the L’evy flight function, as documented and is illustrated in Eqs. (4) and (5). 

Lv(D)= 0.01 ×
rand (1,D) × σ
|rand (1,D)|

1
β

(4)  

σ =

⎛

⎜
⎝

Γ(1 + β) × sin
(

πβ
2

)

Γ
(

1+β
2

)

× β × 2

⎞

⎟
⎠

1
β

(5) 

At this juncture of the LCA, inspired by real-world tumor propagation patterns, it is postulated that tumors can strategically select 
optimal liver sections for dominance in competitive scenarios. As a result, it is believed that the tumor can determine its subsequent 
move based on a specific rule to finalize this segment. This process is outlined in Eqs. (6)–(8). 

Table 2 
Results of IGD metric of different multi-objective algorithms on ZDT and DTLZ, benchmark problems.  

Problem M MOLCA NSGWO MOMVO NSGA-II MOEA/D MOMPA 

ZDT1 2 5.4023e-2 (±7. 71e- 
2) =

3.3067e-1 (±7. 12e- 
2) - 

7.0648e-2 (±4. 92e- 
2) =

1.1412e-1 (±9. 42e- 
2) =

1.4638e-1 (±1. 16e- 
1) =

1.5460e-1 (±1. 
01e-1) 

ZDT2 2 4.9232e-1 (±1. 14e- 
1) =

1.3738e-1 (±8. 17e- 
2) +

2.9003e-1 (±1. 40e- 
1) +

3.6520e-1 (±1. 61e- 
1) =

4.0609e-1 (±5. 28e- 
2) =

5.3069e-1 (±1. 
21e-1) 

ZDT3 2 2.1423e-1 (±3. 25e- 
2) =

2.0548e-2 (±1. 68e- 
2) +

1.0791e-1 (±1. 08e- 
1) +

9.0405e-2 (±3. 94e- 
2) +

1.7507e-1 (±9. 67e- 
2) =

3.1687e-1 (±1. 
54e-1) 

ZDT4 2 4.6353e-2 (±5. 24e- 
2) +

4.8557e-1 (±2. 69e- 
1) =

2.3999e-1 (±1. 36e- 
1) =

1.2309e-1 (±6. 26e- 
2) +

2.0149e-1 (±1. 51e- 
1) =

2.2709e-1 (±4. 
20e-2) 

ZDT6 2 1.1049e-2 (±4. 97e- 
3) =

1.8204e-1 (±5. 62e- 
2) - 

6.8082e-2 (±1. 50e- 
2) - 

1.8323e-2 (±8. 25e- 
3) =

2.0725e-2 (±5. 42e- 
3) =

3.2556e-2 (±2. 
43e-2) 

DTLZ1 2 5.6177e-3 (±2. 61e- 
3) =

1.1239e-1 (±1. 92e- 
1) - 

1.1570e-2 (±1. 11e- 
2) =

9.6068e-2 (±1. 72e- 
1) =

7.7516e-3 (±3. 21e- 
3) =

5.2738e-3 (±2. 
09e-3) 

3 1.2296e-1 (±1. 83e- 
1) =

8.3588e-2 (±2. 90e- 
2) =

1.4858e-1 (±1. 32e- 
1) =

3.0571e-2 (±2. 77e- 
3) =

1.9111e-1 (±1. 67e- 
1) =

9.6056e-2 (±1. 
37e-1) 

DTLZ2 2 4.0276e-3 (±4. 33e- 
5) +

5.3732e-3 (±4. 55e- 
4) =

4.8678e-3 (±4. 75e- 
4) +

5.0937e-3 (±1. 12e- 
4) +

5.1877e-3 (±1. 41e- 
4) +

5.8068e-3 (±1. 
30e-4) 

3 5.4558e-2 (±5. 78e- 
5) +

5.4893e-2 (±1. 96e- 
4) +

5.7645e-2 (±2. 35e- 
3) +

6.8567e-2 (±2. 19e- 
3) =

6.9630e-2 (±1. 47e- 
3) =

6.6784e-2 (±2. 
02e-3) 

DTLZ3 2 2.0893e+0 (±5. 
74e-1) =

5.2161e+0 (±2. 
25e+0) =

4.6150e+0 (±3. 
24e+0) =

2.5535e+0 (±1. 
52e+0) =

3.3415e+0 (±2. 
54e+0) =

3.7628e+0 (±1. 
78e+0) 

3 1.8723e+0 (±6. 
89e-1) =

8.0894e+0 (±4. 
15e+0) =

5.0417e+0 (±3. 
53e+0) =

5.1527e+0 (±4. 
08e+0) =

9.2679e+0 (±9. 
20e+0) =

6.0276e+0 (±2. 
97e+0) 

DTLZ4 2 4.0318e-3 (±4. 55e- 
5) =

5.4589e-3 (±8. 48e- 
4) =

1.8888e-1 (±3. 69e- 
1) =

1.8930e-1 (±3. 69e- 
1) =

2.5102e-1 (±4. 25e- 
1) =

2.5155e-1 (±4. 
25e-1) 

3 3.7881e-1 (±2. 81e- 
1) =

5.4995e-2 (±2. 95e- 
4) =

5.6948e-2 (±1. 13e- 
3) =

6.7180e-2 (±3. 08e- 
4) =

2.2566e-1 (±2. 73e- 
1) =

2.2579e-1 (±2. 
73e-1) 

DTLZ5 2 3.9997e-3 (±1. 15e- 
5) =

6.6857e-3 (±1. 56e- 
3) =

4.5553e-3 (±1. 86e- 
4) =

5.1760e-3 (±5. 35e- 
5) =

5.4136e-3 (±2. 66e- 
4) =

5.9856e-3 (±4. 
71e-4) 

3 5.4540e-3 (±2. 61e- 
5) =

8.0434e-2 (±1. 10e- 
2) =

1.1413e-2 (±5. 01e- 
4) =

6.1093e-3 (±3. 86e- 
4) =

6.8058e-3 (±3. 52e- 
4) =

1.1479e-2 (±6. 
08e-4) 

DTLZ6 2 3.9745e-3 (±1. 00e- 
5) =

4.0703e-3 (±6. 95e- 
5) =

4.4929e-3 (±2. 50e- 
4) =

5.7368e-3 (±1. 92e- 
4) =

5.3769e-3 (±2. 76e- 
4) =

1.5914e-2 (±3. 
70e-3) 

3 5.2848e-3 (±4. 39e- 
4) =

9.8160e-2 (±2. 09e- 
2) =

1.4158e-2 (±1. 49e- 
3) =

5.6812e-3 (±1. 91e- 
4) =

5.5162e-3 (±5. 47e- 
5) =

1.4137e-2 (±2. 
72e-4) 

DTLZ7 2 5.6154e-3 (±2. 17e- 
4) =

5.3661e-2 (±7. 30e- 
3) =

5.6368e-3 (±5. 05e- 
4) =

5.3668e-3 (±2. 18e- 
4) =

7.1034e-3 (±3. 15e- 
4) =

1.6780e-1 (±2. 
50e-1) 

3 6.8965e-2 (±8. 15e- 
4) =

1.2323e-1 (±7. 90e- 
4) =

7.9463e-2 (±4. 76e- 
3) =

7.5169e-2 (±2. 07e- 
3) =

9.4369e-2 (±2. 04e- 
3) =

1.4590e-1 (±2. 
23e-2)  
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y=Position + PG (6)  

Z = Y + S × LF(D) (7)  

Position i
t+1 =

{
y iffit (y) < fit

(
Position i

t

)

z iffit (z) < fit
(

Position i
t

) (8) 

Here, D symbolizes the dimensional space, S contains D components randomly generated within the [0,1] range. Lastly, fit( ⋅)
represents the optimization target fitness function. 

2.3.3. Tumor proliferation via crossover and mutation 
This concluding phase of the LCA depicts the tumor’s evolution into metastatic liver cancer, a severe variant of the ailment that, 

while originating in the liver, can invade other body parts. To simulate this, the LCA employs genetic mechanisms like mutation and 
crossover to infuse further variability. 

Mutation: 
Within the LCA’s framework, the mutation function serves as an objective solution. Each element is allocated a random value 

between [0,1]. If this value nears the mutation rate (zeta), the target agent’s tumor position is taken into account. If the value is below 
the mutation rate (zeta), a component from either the y or z vectors is leveraged to refresh the preceding vector. The mutation function 
is constructed using equations from Eq. (9) to Eq. (12), showcasing tumor growth via the mutation mechanism. Here, the j th 
dimension is characterized by lbj and ubj, S have D elements sourced from random values in [0,1]. 

yMut =

{
Position if rand1 ≥ ζ

y else and (9)  

Table 3 
Results of SP metric of different multi-objective algorithms on ZDT and DTLZ, benchmark problems.  

Problem M MOLCA NSGWO MOMVO NSGA-II MOEA/D MOMPA 

ZDT1 2 5.9825e-3 (±1. 
37e-3) +

2.0148e-2 (±2. 88e- 
3) =

7.9935e-3 (±8. 
35e-4) +

9.7799e-3 (±3. 15e- 
3) +

6.2573e-3 (±1. 32e- 
3) +

5.8727e-2 (±5. 96e- 
2) 

ZDT2 2 5.2658e-3 (±2. 
87e-3) =

3.7342e-2 (±2. 08e- 
2) =

1.6943e-2 (±1. 
43e-2) =

2.4635e-2 (±3. 41e- 
2) =

2.6723e-2 (±2. 38e- 
2) =

4.2508e-2 (±4. 53e- 
2) 

ZDT3 2 6.8647e-3 (±7. 
45e-4) +

6.1931e-2 (±2. 32e- 
2) =

7.5627e-3 (±1. 
00e-3) +

1.0160e-2 (±1. 45e- 
3) +

1.5509e-2 (±2. 22e- 
2) =

3.6570e-2 (±3. 39e- 
2) 

ZDT4 2 3.9553e-2 (±4. 
06e-2) 

4.3735e-2 (±2. 63e- 
2) =

1.0387e-2 (±4. 
15e-3) =

1.4384e-2 (±8. 68e- 
3) =

7.2322e-3 (±4. 02e- 
3) +

6.5081e-3 (±7. 70e- 
4) +

ZDT6 2 3.0909e-2 (±8. 
25e-3) 

3.1727e-2 (±1. 27e- 
2) =

1.6553e-2 (±5. 
93e-3) +

5.5241e-3 (±4. 29e- 
4) +

6.4902e-3 (±1. 16e- 
3) +

6.7695e-3 (±1. 19e- 
3) +

DTLZ1 2 4.1513e-3 (±1. 
92e-3) =

4.7272e-2 (±4. 72e- 
2) - 

6.3036e-3 (±5. 
23e-3) =

5.1322e-3 (±2. 77e- 
3) =

4.1170e-3 (±1. 33e- 
3) =

5.1457e-3 (±3. 85e- 
4) 

3 2.1477e-2 (±3. 
17e-3) =

5.2907e-2 (±1. 82e- 
2) =

4.8904e-2 (±1. 
69e-2) =

4.8500e-2 (±3. 59e- 
2) =

5.4268e-2 (±2. 99e- 
2) =

3.7813e+0 (±7. 
09e+0) 

DTLZ2 2 6.9890e-3 (±5. 
10e-4) +

5.6192e-3 (±1. 45e- 
4) +

7.1417e-3 (±1. 
14e-3) =

6.5408e-3 (±1. 21e- 
4) +

6.3595e-3 (±6. 59e- 
4) +

2.6726e-2 (±2. 08e- 
2) 

3 6.0344e-2 (±4. 
57e-3) =

5.6667e-2 (±4. 35e- 
4) =

5.2238e-2 (±8. 
13e-3) =

8.2043e-2 (±1. 39e- 
3) - 

5.8508e-2 (±2. 31e- 
3) =

5.7817e-2 (±5. 43e- 
3) 

DTLZ3 2 3.0375e-1 (±2. 
05e-1) =

9.8587e-1 (±4. 03e- 
1) - 

6.0747e-1 (±3. 
91e-1) =

1.4810e+0 (±1. 
78e+0) =

1.2159e+0 (±1. 
88e+0) =

2.5172e-1 (±1. 91e- 
1) 

3 5.4941e-1 (±5. 
42e-1) =

1.2707e+0 (±5. 
45e-1) =

6.9643e-1 (±6. 
54e-1) =

1.9799e-1 (±9. 99e- 
2) +

7.0098e-1 (±5. 63e- 
1) =

5.6124e+0 (±9. 
51e+0) 

DTLZ4 2 5.0969e-3 (±3. 
41e-3) =

6.1294e-3 (±1. 04e- 
3) =

4.9496e-3 (±3. 
34e-3) =

6.2592e-3 (±2. 42e- 
4) =

None 4.2788e-2 (±4. 24e- 
2) 

3 3.8998e-2 (±2. 
68e-2) =

5.6529e-2 (±5. 10e- 
4) =

5.2465e-2 (±3. 
55e-3) =

3.3870e-2 (±4. 27e- 
2) =

5.7076e-2 (±3. 50e- 
3) =

5.9688e-2 (±2. 55e- 
2) 

DTLZ5 2 6.2359e-3 (±5. 
22e-4) =

6.4085e-3 (±2. 59e- 
4) =

6.5371e-3 (±7. 
04e-4) =

6.5774e-3 (±1. 42e- 
5) =

7.1233e-3 (±9. 22e- 
4) =

8.3850e-3 (±9. 62e- 
4) 

3 9.4384e-3 (±8. 
64e-4) =

1.2378e-1 (±5. 05e- 
2) =

1.2432e-2 (±4. 
98e-4) =

1.3168e-2 (±6. 84e- 
4) =

1.1406e-2 (±2. 02e- 
3) =

1.9430e-2 (±2. 66e- 
3) 

DTLZ6 2 9.5041e-3 (±7. 
12e-4) =

5.9759e-3 (±3. 20e- 
4) =

6.7074e-3 (±1. 
09e-3) =

6.1974e-3 (±2. 45e- 
4) =

1.0161e-2 (±2. 69e- 
4) =

5.9554e-1 (±5. 01e- 
1) 

3 1.0318e-2 (±1. 
64e-4) =

3.5774e-1 (±4. 40e- 
1) =

1.3279e-2 (±2. 
71e-3) =

1.2204e-2 (±5. 13e- 
4) =

1.1486e-2 (±3. 81e- 
4) =

2.4481e-2 (±2. 92e- 
3) 

DTLZ7 2 7.1490e-3 (±8. 
90e-4) =

3.0553e-2 (±8. 30e- 
3) =

1.0228e-2 (±5. 
23e-4) =

1.0693e-2 (±3. 54e- 
4) =

7.6615e-3 (±4. 05e- 
4) =

3.4424e-2 (±3. 87e- 
3) 

3 7.0546e-2 (±8. 
85e-3) =

1.2855e-1 (±5. 56e- 
3) =

6.6264e-2 (±8. 
69e-3) =

9.9521e-2 (±2. 44e- 
3) =

7.2643e-2 (±1. 19e- 
2) =

9.6565e-2 (±9. 33e- 
3)  
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Where :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ζ =
1
T
;

y = |Position − Positionj
i

⃒
⃒;

z = y − S

(10)  

yMut =

{
Position ifρ1 ≥ ζ

y else and (11)  

Where :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ζ =
t
T
;

y = |Position − Positionj
i

⃒
⃒;

z = y − S

(12) 

Crossover: 
This function amalgamates two entities to generate a new progeny. Within the LCA, a blend of random values τ and τ′ is employed to 

conceive the new progeny wCross , as detailed in Eq. (13). 

wCross = τ ∗ yMut +(1 − τ′) ∗ zMut, τ ∕= τ′ (13)  

Selection: 
The LCA’s adoption of the greedy selection technique is rooted in differential evolution. Offsprings are birthed once the evaluation 

functions (mutation and crossover) are executed. The efficacy of both progenitors and offsprings is assessed concurrently, allowing 
superior-performing progenitors to persist in the population. Eq. (14) lays down the criteria for this greedy selection. 

Table 4 
Results of SD metric of different multi-objective algorithms on ZDT and DTLZ, benchmark problems.  

Problem M MOLCA NSGWO MOMVO NSGA-II MOEA/D MOMPA 

ZDT1 2 4.7802e-1 (±1. 
08e-1) +

8.0837e-1 (±4. 89e- 
2) =

6.8355e-1 (±1. 17e- 
1) +

7.8088e-1 (±1. 13e- 
1) =

7.2890e-1 (±1. 46e- 
1) =

1.0366e+0 (±1. 
84e-1) 

ZDT2 2 7.5071e-1 (±1. 
03e-1) +

1.0098e+0 (±4. 00e- 
2) =

9.4826e-1 (±8. 86e- 
2) =

1.0004e+0 (±5. 31e- 
2) =

1.0439e+0 (±3. 90e- 
2) =

1.0470e+0 (±5. 
86e-2) 

ZDT3 2 7.0111e-1 (±1. 
41e-1) +

7.4244e-1 (±1. 08e- 
1) =

4.5277e-1 (±7. 82e- 
2) +

8.2562e-1 (±1. 93e- 
2) =

8.4610e-1 (±1. 06e- 
1) =

1.0069e+0 (±1. 
46e-1) 

ZDT4 2 9.0627e-1 (±5. 
24e-2) =

4.4233e-1 (±8. 54e- 
2) +

8.4033e-1 (±7. 36e- 
2) +

8.9663e-1 (±1. 16e- 
1) =

7.8403e-1 (±1. 67e- 
1) +

1.1296e+0 (±2. 
14e-1) 

ZDT6 2 3.6335e-1 (±3. 
68e-2) +

6.8969e-1 (±8. 00e- 
2) +

7.0019e-1 (±5. 46e- 
2) +

5.0279e-1 (±1. 26e- 
1) +

4.8333e-1 (±1. 18e- 
1) +

9.9479e-1 (±1. 
26e-1) 

DTLZ1 2 6.8778e-1 (±2. 
87e-1) =

4.7003e-1 (±1. 42e- 
1) =

4.5581e-1 (±1. 30e- 
1) =

5.2548e-1 (±2. 03e- 
1) =

4.1533e-1 (±6. 64e- 
2) =

5.2889e-1 (±5. 
31e-2) 

3 6.6789e-1 (±2. 
26e-1) =

4.6368e-1 (±4. 88e- 
2) =

5.4355e-1 (±1. 20e- 
1) =

6.2983e-1 (±2. 75e- 
1) =

7.6277e-1 (±3. 57e- 
1) =

1.0334e+0 (±7. 
14e-1) 

DTLZ2 2 1.8060e-1 (±1. 
09e-2) +

3.6464e-1 (±4. 25e- 
2) +

3.3382e-1 (±5. 94e- 
2) +

2.2514e-1 (±1. 57e- 
2) +

3.4741e-1 (±2. 70e- 
2) +

6.1401e-1 (±1. 
61e-1) 

3 1.6991e-1 (±6. 
48e-4) +

5.3590e-1 (±2. 85e- 
2) =

2.2046e-1 (±3. 84e- 
2) +

3.3655e-1 (±1. 27e- 
2) =

4.4036e-1 (±3. 94e- 
2) =

4.1408e-1 (±9. 
77e-2) 

DTLZ3 2 9.1370e-1 (±4. 
41e-2) =

1.0518e+0 (±1. 45e- 
1) - 

9.8004e-1 (±8. 98e- 
2) =

1.2578e+0 (±4. 01e- 
1) =

1.1451e+0 (±1. 04e- 
1) - 

8.9381e-1 (±4. 
12e-2) 

3 6.0172e-1 (±8. 
20e-2) +

7.9390e-1 (±1. 69e- 
1) =

9.2637e-1 (±7. 08e- 
2) =

9.3720e-1 (±1. 11e- 
1) =

9.9143e-1 (±1. 88e- 
1) =

1.0122e+0 (±4. 
46e-1) 

DTLZ4 2 1.8891e-1 (±2. 
82e-2) =

5.4754e-1 (±3. 03e- 
1) =

4.6363e-1 (±3. 60e- 
1) =

2.1630e-1 (±7. 29e- 
3) =

None 9.1971e-1 (±1. 
49e-1) 

3 1.7141e-1 (±4. 
42e-3) =

4.7323e-1 (±2. 34e- 
2) =

2.0203e-1 (±3. 26e- 
2) =

6.2345e-1 (±2. 45e- 
1) =

5.1924e-1 (±2. 18e- 
1) =

6.1761e-1 (±1. 
79e-1) 

DTLZ5 2 2.0216e-1 (±2. 
87e-2) =

4.0317e-1 (±2. 81e- 
2) =

2.7386e-1 (±1. 31e- 
2) =

2.1674e-1 (±1. 66e- 
3) =

3.2529e-1 (±3. 44e- 
2) =

5.3147e-1 (±2. 
24e-2) 

3 3.5241e-1 (±1. 
26e-1) =

6.2566e-1 (±1. 56e- 
1) =

9.0745e-1 (±4. 36e- 
2) =

6.5332e-1 (±4. 66e- 
2) =

4.3317e-1 (±4. 65e- 
2) =

5.1640e-1 (±7. 
15e-2) 

DTLZ6 2 2.0363e-1 (±1. 
97e-2) =

8.2522e-1 (±8. 27e- 
2) =

2.8071e-1 (±7. 70e- 
2) =

1.9955e-1 (±1. 80e- 
2) =

6.4855e-1 (±1. 22e- 
1) =

1.5025e+0 (±5. 
19e-1) 

3 6.6391e-1 (±4. 
10e-1) =

6.6251e-1 (±3. 86e- 
2) =

1.1918e+0 (±3. 79e- 
2) =

6.3822e-1 (±8. 24e- 
2) =

5.7159e-1 (±3. 87e- 
2) =

1.0154e+0 (±9. 
81e-2) 

DTLZ7 2 5.3147e-1 (±5. 
05e-2) =

4.2281e-1 (±2. 59e- 
2) =

5.1877e-1 (±2. 52e- 
2) =

4.8007e-1 (±7. 25e- 
3) =

3.7800e-1 (±3. 53e- 
2) =

1.1532e+0 (±8. 
83e-2) 

3 4.0826e-1 (±2. 
59e-2) =

5.0904e-1 (±6. 81e- 
2) =

5.5059e-1 (±9. 57e- 
2) =

6.1254e-1 (±4. 19e- 
2) =

5.0074e-1 (±4. 45e- 
2) =

7.8352e-1 (±1. 
57e-1)  
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Position i
t+1 =

⎧
⎨

⎩

yMut if fit (yMut) < fit
(

Position i)

zMut if fit (zMut) < fit
(

Position i)

wCross if fit (wCross ) < fit
(

Position i
(14)  

2.3.4. In developing the LCA, we focused on several key aspects of liver tumor behavior 

2.3.4.1. Adaptive growth. The LCA algorithm mimics the liver tumor’s adaptive nature, where it seeks the most favorable environment 
for growth. This feature is translated into the algorithm through an evolutionary search approach, simulating tumor behavior in 
overtaking liver tissue. It contributes to the LCA’s ability to explore and exploit the search space effectively, improving convergence 
rates. 

2.3.4.2. Genetic operators and random opposition-based learning (ROBL). The integration of genetic operators ensures diversity among 
candidate solutions and prevents premature convergence. ROBL, meanwhile, helps in initializing the population with diverse solu-
tions, avoiding traps in local optima and improving the probability of discovering optimal solutions. These features are inspired by the 
tumor’s genetic variability and its ability to adapt to different environments. 

2.3.4.3. Mutation rate adjustment. The LCA employs a mutation rate that adjusts based on the number of iterations. This aspect is 
inspired by the tumor’s ability to mutate and adapt over time. It allows the LCA to explore new and potentially promising locations in 
the search space, enhancing its overall effectiveness in problem-solving. The pseudocode of the LCA algorithm is discussed in Algo-
rithm 1, while Fig. 1 illustrates the corresponding flowchart. 

Table 5 
Results of HV metric of different multi-objective algorithms on ZDT and DTLZ, benchmark problems.  

Problem M MOLCA NSGWO MOMVO NSGA-II MOEA/D MOMPA 

ZDT1 2 8.2615e-1 (±5. 46e- 
2) =

5.0369e-1 (±3. 76e- 
2) - 

7.9054e-1 (±3. 82e- 
2) =

7.7861e-1 (±6. 38e- 
2) =

7.4434e-1 (±7. 90e- 
2) =

6.9218e-1 (±1. 
04e-1) 

ZDT2 2 3.6904e-1 (±8. 03e- 
2) +

5.4981e-2 (±4. 57e- 
2) =

2.2476e-1 (±1. 03e- 
1) =

1.8576e-1 (±8. 07e- 
2) =

1.5409e-1 (±3. 01e- 
2) =

8.2371e-2 (±6. 
01e-2) 

ZDT3 2 8.6887e-1 (±1. 31e- 
1) =

6.1035e-1 (±6. 15e- 
2) =

9.9527e-1 (±1. 83e- 
2) +

9.0531e-1 (±4. 84e- 
2) +

7.9616e-1 (±1. 20e- 
1) =

6.2783e-1 (±1. 
77e-1) 

ZDT4 2 8.0908e-1 (±8. 12e- 
2) +

3.5971e-1 (±2. 44e- 
1) =

6.2793e-1 (±1. 43e- 
1) =

7.6493e-1 (±5. 76e- 
2) +

7.0826e-1 (±1. 11e- 
1) =

5.2961e-1 (±1. 
15e-1) 

ZDT6 2 4.1922e-1 (±7. 72e- 
3) =

1.9897e-1 (±5. 16e- 
2) - 

3.3600e-1 (±1. 93e- 
2) - 

4.0816e-1 (±1. 24e- 
2) =

4.0481e-1 (±8. 17e- 
3) =

3.8686e-1 (±3. 
93e-2) 

DTLZ1 2 1.7258e-1 (±2. 29e- 
3) =

1.2158e-1 (±8. 12e- 
2) - 

1.6734e-1 (±9. 51e- 
3) =

1.2795e-1 (±8. 25e- 
2) =

1.7054e-1 (±2. 77e- 
3) =

1.7264e-1 (±1. 
90e-3) 

3 1.0195e-1 (±6. 57e- 
2) =

1.1646e-1 (±8. 95e- 
3) =

8.4064e-2 (±5. 61e- 
2) =

1.3502e-1 (±1. 15e- 
3) =

7.2666e-2 (±6. 15e- 
2) =

1.0949e-1 (±5. 
40e-2) 

DTLZ2 2 4.2003e-1 (±3. 45e- 
5) +

4.1750e-1 (±8. 96e- 
4) =

4.1882e-1 (±7. 42e- 
4) =

4.1903e-1 (±2. 92e- 
4) =

4.1817e-1 (±3. 19e- 
4) =

4.1778e-1 (±7. 
69e-4) 

3 7.4323e-1 (±2. 95e- 
4) +

7.4172e-1 (±4. 46e- 
4) +

7.3444e-1 (±6. 17e- 
3) =

7.0699e-1 (±8. 25e- 
4) - 

6.9555e-1 (±2. 22e- 
3) - 

7.1844e-1 (±7. 
10e-3) 

DTLZ3 2 0.0000e+0 (±0. 
00e+0) =

0.0000e+0 (±0. 
00e+0) =

0.0000e+0 (±0. 
00e+0) =

3.9047e-3 (±7. 81e- 
3) =

0.0000e+0 (±0. 
00e+0) =

0.0000e+0 (±0. 
00e+0) 

3 0.0000e+0 (±0. 
00e+0) =

0.0000e+0 (±0. 
00e+0) =

0.0000e+0 (±0. 
00e+0) =

0.0000e+0 (±0. 
00e+0) =

0.0000e+0 (±0. 
00e+0) =

0.0000e+0 (±0. 
00e+0) 

DTLZ4 2 4.2003e-1 (±4. 12e- 
5) =

4.1750e-1 (±1. 17e- 
3) =

3.4202e-1 (±1. 55e- 
1) =

3.4197e-1 (±1. 55e- 
1) =

3.1507e-1 (±1. 78e- 
1) =

3.1517e-1 (±1. 
78e-1) 

3 5.5529e-1 (±1. 63e- 
1) =

7.4159e-1 (±2. 42e- 
4) =

7.3871e-1 (±2. 67e- 
3) =

7.0851e-1 (±4. 39e- 
3) =

6.2451e-1 (±1. 44e- 
1) =

6.3350e-1 (±1. 
50e-1) 

DTLZ5 2 4.1999e-1 (±5. 07e- 
5) =

4.1617e-1 (±1. 70e- 
3) =

4.1925e-1 (±5. 10e- 
4) =

4.1923e-1 (±2. 58e- 
4) =

4.1792e-1 (±3. 01e- 
4) =

4.1823e-1 (±2. 
38e-4) 

3 1.3233e-1 (±8. 99e- 
5) =

9.9530e-2 (±6. 31e- 
3) =

1.2944e-1 (±1. 38e- 
4) =

1.3223e-1 (±1. 63e- 
4) =

1.3135e-1 (±2. 82e- 
4) =

1.2981e-1 (±3. 
01e-4) 

DTLZ6 2 4.2012e-1 (±4. 10e- 
6) =

4.1995e-1 (±1. 28e- 
4) =

4.1964e-1 (±1. 64e- 
4) =

4.1925e-1 (±2. 94e- 
4) =

4.1939e-1 (±2. 88e- 
4) =

4.0910e-1 (±3. 
59e-3) 

3 1.3266e-1 (±2. 63e- 
4) =

8.4606e-2 (±9. 59e- 
3) =

1.2902e-1 (±8. 67e- 
4) =

1.3281e-1 (±8. 36e- 
5) =

1.3291e-1 (±6. 21e- 
5) =

1.2826e-1 (±2. 
25e-4) 

DTLZ7 2 1.0066e+0 (±1. 
67e-3) =

8.9567e-1 (±1. 18e- 
2) =

1.0055e+0 (±1. 
54e-3) =

1.0081e+0 (±8. 
21e-4) =

1.0019e+0 (±3. 
79e-4) =

8.9930e-1 (±1. 
56e-1) 

3 1.5947e+0 (±4. 
52e-3) =

1.4326e+0 (±1. 
39e-2) =

1.5456e+0 (±1. 
00e-2) =

1.5525e+0 (±1. 
09e-2) =

1.4447e+0 (±4. 
58e-3) =

1.4712e+0 (±3. 
36e-2)  
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Table 6 
Results of RT metric of different multi-objective algorithms on ZDT and DTLZ, benchmark problems.  

Problem M MOLCA NSGWO MOMVO NSGA-II MOEA/D MOMPA 

ZDT1 2 9.2197e-1 (±7. 15e- 
2) +

1.1157e+0 (±1. 
73e-2) +

1.8911e+0 (±2. 
01e-1) +

2.5630e+0 (±2. 98e- 
1) +

1.6069e+1 (±4. 
13e-1) +

1.9214e+1 (±3. 
47e-1) 

ZDT2 2 1.1827e+0 (±2. 
00e-1) +

1.0898e+0 (±3. 
77e-2) +

2.0934e+0 (±1. 
38e-1) +

1.7793e+0 (±1. 47e- 
1) +

1.6392e+1 (±4. 
43e-1) +

1.9639e+1 (±3. 
24e-1) 

ZDT3 2 8.4897e-1 (±9. 03e- 
3) +

1.1154e+0 (±1. 
37e-2) +

1.8293e+0 (±4. 
60e-2) +

2.7735e+0 (±1. 67e- 
1) +

1.6296e+1 (±9. 
39e-1) +

1.9085e+1 (±3. 
98e-1) 

ZDT4 2 8.1078e-1 (±3. 22e- 
2) +

1.0117e+0 (±4. 
38e-3) +

1.6608e+0 (±4. 
11e-2) +

2.2318e+0 (±2. 46e- 
1) +

1.6302e+1 (±3. 
78e-1) +

1.8696e+1 (±3. 
01e-1) 

ZDT6 2 7.8030e-1 (±1. 98e- 
2) +

1.0292e+0 (±6. 
92e-3) +

1.8161e+0 (±3. 
17e-2) +

2.7229e+0 (±4. 27e- 
1) +

1.6178e+1 (±4. 
11e-1) +

1.8836e+1 (±5. 
68e-1) 

DTLZ1 2 7.2309e-1 (±2. 40e- 
2) +

1.0334e+0 (±3. 
94e-2) +

1.8301e+0 (±7. 
03e-2) +

3.1618e+0 (±6. 70e- 
1) +

1.5964e+1 (±7. 
80e-1) +

1.8677e+1 (±7. 
75e-1) 

3 7.5678e-1 (±6. 63e- 
3) +

1.0691e+0 (±1. 
37e-2) +

2.0250e+0 (±6. 
48e-2) +

6.3860e+0 (±7. 50e- 
1) +

1.5929e+1 (±3. 
43e-1) +

2.0086e+1 (±6. 
88e-1) 

DTLZ2 2 7.5435e-1 (±6. 96e- 
2) +

1.1287e+0 (±9. 
15e-2) +

1.7434e+0 (±1. 
35e-1) +

1.1150e+1 (±4. 59e- 
1) +

1.5828e+1 (±4. 
69e-1) +

1.9180e+1 (±2. 
32e-1) 

3 1.1568e+0 (±1. 
03e-1) +

8.1521e-1 (±4. 03e- 
2) +

1.8336e+0 (±1. 
76e-1) +

1.6731e+1 (±4. 15e- 
1) +

1.6281e+1 (±5. 
50e-1) +

2.1337e+1 (±1. 
28e+0) 

DTLZ3 2 1.0834e+0 (±8. 
15e-3) +

8.5100e-1 (±2. 16e- 
2) +

1.9440e+0 (±1. 
61e-1) +

1.4647e+0 (±4. 83e- 
2) +

1.6207e+1 (±6. 
56e-1) +

1.9356e+1 (±2. 
58e-1) 

3 1.1510e+0 (±5. 
94e-2) +

8.1790e-1 (±1. 62e- 
2) +

1.9250e+0 (±4. 
59e-2) +

2.3774e+0 (±4. 61e- 
1) +

1.6354e+1 (±2. 
75e-1) +

1.9893e+1 (±1. 
90e-1) 

DTLZ4 2 8.9720e-1 (±3. 49e- 
1) =

1.0808e+0 (±9. 
86e-3) =

1.9382e+0 (±6. 
47e-1) =

1.0718e+1 (±1. 99e- 
1) =

1.6816e+1 (±2. 
57e-1) =

2.1993e+1 (±4. 
39e+0) 

3 7.9120e-1 (±2. 68e- 
3) =

1.1275e+0 (±1. 
11e-2) =

1.8688e+0 (±2. 
94e-1) =

1.2576e+1 (±2. 
81e+0) =

1.6355e+1 (±6. 
60e-1) =

1.9965e+1 (±2. 
38e-1) 

DTLZ5 2 7.2161e-1 (±1. 61e- 
2) =

1.0940e+0 (±1. 
55e-2) =

1.6360e+0 (±6. 
52e-2) =

1.0840e+1 (±8. 38e- 
2) =

1.6278e+1 (±1. 
21e-1) =

1.9040e+1 (±7. 
16e-2) 

3 7.7659e-1 (±1. 09e- 
2) =

9.7995e-1 (±8. 19e- 
2) =

2.7205e+0 (±1. 
51e-1) =

1.2705e+1 (±4. 44e- 
2) =

1.6156e+1 (±5. 
84e-1) =

1.9674e+1 (±1. 
65e-1) 

DTLZ6 2 7.5398e-1 (±4. 02e- 
3) =

1.0955e+0 (±1. 
05e-2) =

1.7218e+0 (±2. 
76e-2) =

1.2838e+1 (±1. 
40e+0) =

1.6244e+1 (±6. 
06e-1) =

2.1363e+1 (±9. 
04e-1) 

3 7.8930e-1 (±4. 09e- 
3) =

1.1175e+0 (±1. 
10e-1) =

2.7258e+0 (±3. 
11e-1) =

1.3780e+1 (±6. 92e- 
1) =

1.6853e+1 (±1. 
40e-1) =

2.2286e+1 (±1. 
82e-1) 

DTLZ7 2 7.8340e-1 (±1. 71e- 
2) =

1.1218e+0 (±2. 
98e-3) =

1.9262e+0 (±3. 
46e-2) =

7.5225e+0 (±4. 23e- 
1) =

1.5878e+1 (±5. 
93e-1) =

1.8842e+1 (±2. 
54e-1) 

3 8.3308e-1 (±8. 08e- 
3) =

1.0326e+0 (±5. 
26e-3) =

2.1798e+0 (±1. 
02e-1) =

1.3302e+1 (±2. 45e- 
1) =

1.6456e+1 (±4. 
57e-1) =

1.9821e+1 (±1. 
86e-1)  

Table 7 
SP metric of different multi-objective algorithms on constraint and engineering design problems.  

Problem M MOLCA NSGWO MOMVO NSGA-II MOEA/D MOMPA 

CONSTR 2 4.5352e-2 (±3. 21e- 
3) +

2.2914e-1 (±1. 12e- 
1) =

6.5565e-2 (±1. 94e- 
2) +

5.0697e-2 (±3. 53e- 
3) +

4.6065e-2 (±5. 73e- 
3) +

1.8810e-1 (±1. 
30e-1) 

TNK 2 7.1201e-3 (±1. 77e- 
4) +

3.9958e-2 (±1. 52e- 
2) +

8.5420e-3 (±3. 61e- 
4) +

8.0098e-3 (±7. 10e- 
4) +

6.6398e-3 (±6. 62e- 
4) +

3.2620e-1 (±1. 
38e-1) 

SRN 2 8.7215e-1 (±1. 29e- 
1) +

1.0229e+1 (±3. 
97e+0) - 

1.6313e+0 (±1. 
35e-1) +

1.0154e+0 (±1. 
67e-1) +

1.3888e+0 (±6. 
72e-2) +

3.1931e+0 (±4. 
13e-1) 

OSY 2 2.8411e-1 (±1. 05e- 
1) +

1.0715e+1 (±1. 
42e+1) =

4.2273e-1 (±2. 99e- 
1) +

3.9182e-1 (±1. 24e- 
1) +

7.9117e-1 (±4. 47e- 
1) +

2.7181e+1 (±1. 
29e+1) 

BNH 2 1.7531e+0 (±7. 
37e-1) =

2.5278e+0 (±1. 
07e-1) =

8.1832e-1 (±7. 02e- 
2) +

2.5280e+0 (±7. 
36e-3) =

7.2497e-1 (±2. 92e- 
2) +

2.4408e+0 (±1. 
04e+0) 

KITA 2 1.4642e-1 (±6. 40e- 
4) =

3.1138e-1 (±4. 68e- 
2) =

1.7520e-1 (±1. 61e- 
2) =

1.4798e-1 (±2. 69e- 
4) =

1.6259e-1 (±1. 65e- 
2) =

4.3087e-1 (±3. 
92e-1) 

RWMOP1 2 1.9165e-2 (±5. 10e- 
4) 

9.7063e-2 (±4. 83e- 
2) 

1.9790e-2 (±2. 76e- 
3) 

1.6289e-2 (±1. 91e- 
3) 

1.8753e-2 (±1. 57e- 
3) 

None 

RWMOP2 2 6.7119e-2 (±1. 71e- 
3) 

3.3116e-1 (±5. 91e- 
2) 

9.1180e-2 (±2. 82e- 
2) 

1.5006e-1 (±6. 06e- 
2) 

6.9509e-2 (±9. 39e- 
3) 

None 

RWMOP3 2 5.8671e+2 (±2. 
11e+2) =

3.5331e+3 (±2. 
67e+3) =

1.2076e+3 (±1. 
84e+2) =

1.2156e+3 (±2. 
29e+2) =

8.3048e+2 (±3. 
09e+2) =

3.7413e+4 (±2. 
25e+4) 

RWMOP4 2 5.8062e+2 (±3. 
05e+1) +

3.8455e+3 (±1. 
38e+3) =

2.6018e+3 (±5. 
68e+2) =

1.4854e+3 (±1. 
03e+3) =

5.8084e+2 (±2. 
62e+1) +

2.3841e+3 (±1. 
54e+3) 

RWMOP5 2 2.0704e-1 (±1. 49e- 
2) +

None 3.8973e-1 (±7. 35e- 
2) =

4.9349e-1 (±5. 04e- 
2) =

2.2116e-1 (±1. 19e- 
2) +

1.8724e+0 (±1. 
43e+0)  
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3. Proposed multi-objective liver cancer algorithm (MOLCA) 

3.1. Basic definitions of multi-objective optimization 

Multi-objective optimization, as the name suggests, focuses on optimizing across multiple objectives. Within academic discussions, 
the term multi-objective typically pertains to problems encompassing up to three objectives. Given the intricate nature of problems 
with more than three objectives, a distinct domain known as many-objective optimization has emerged to address challenges with a 
multitude of objectives. A primary challenge in the multi-objective domain is the potential conflict between objectives, necessitating 
specialized strategies. In this context, straightforward relational comparisons between solutions become untenable due to the presence 
of multiple comparison criteria. As a result, alternative operators are required to gauge the relative superiority of one solution over 
another. The Pareto dominance operator has gained widespread acceptance for this purpose. It is worth noting that even if circles were 
to dominate squares in certain visual representations, they would be considered non-dominated relative to each other. This implies 

Fig. 6. Best Pareto optimal front obtained by the MOLCA algorithm on (a) ZDT1, (b) ZDT2, (c) ZDT3, (d) ZDT4, (e) ZDT5, (f) ZDT6 problems.  
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that while one might excel in a particular objective, it might lag in another. Mathematically, Pareto optimality can be defined in 
specific terms: For any given problem, a collection of optimal non-dominated solutions exists. This collection serves as the solution set 
for MOO. Consequently, the representation of these Pareto optimal solutions within the objective domain is consolidated into a set 
termed the Pareto optimal front. An elaboration on the idea of domination and associated terminologies are illustrated in Fig. 2. 

3.2. Multi-objective liver cancer algorithm (MOLCA) 

MOLCA algorithm starts with a random population of size. the current generation is t, xt
i and xt+1

i the i th individual at t and (t+1)
generation. ut+1

i the i th individual at the (t+1) generation generated through the LCA algorithm and parent population Pt. the fitness 

Fig. 7. Best Pareto optimal front obtained by the MOLCA algorithm on (a) DTLZ1, (b) DTLZ2, (c) DTLZ3, (d) DTLZ4, (e) DTLZ5, (f) DTLZ6, (g) 
DTLZ7 problems with 2-objectives. 
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value of ut+1
i is f t+1

i and Ut+1 is the set of ut+1
i . Then, we can calculate xt+1

i according to ut+1
i generated through the LCA algorithm and 

Information Feedback Mechanism (IFM) Eq. (15) 

xt+1
i = ∂1ut+1

i + ∂2xt
k; ∂1 =

f t
k

f t+1
i + f t

k
, ∂2 =

f t+1
i

f t+1
i + f t

k
, ∂1 + ∂2 = 1 (15) 

where xt
k is the k th individual we chose from the t th generation, the fitness value of xt

k is f t
k, ∂1 and ∂2 are weight coefficients. 

Generate offspring population Qt. Qt is the set of xt+1
i . The combined population Rt = Pt ∪ Qt is sorted into different w-non-dominant 

levels (F1,F2,…,Fl…,Fw). Begin from F1, all individuals in level 1 to l are added to St =
⋃l

i=1 Fi and remaining members of Rt are rejected 
illustrated in Fig. 3. If |St | = N no other actions are required and the next generation is begun with Pt+1 = St directly. Otherwise, 
solutions in St/Fl are included in Pt+1 and the remaining solutions N −

∑l− 1
i=0 |Fi| are selected from Fl according to the Crowding Distance 

Fig. 8. Best Pareto optimal front obtained by the MOLCA algorithm on (a) DTLZ1, (b) DTLZ2, (c) DTLZ3, (d) DTLZ4, (e) DTLZ5, (f) DTLZ6, (g) 
DTLZ7 problems with 3-objectives. 
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(CD) mechanism, the way to select solutions is according to the CD of solutions in Fl. The larger the crowding distance, the higher the 
probability of selection and check termination condition is met. If the termination condition is not satisfied, t = t + 1 than repeat and if 
it is satisfied, Pt+1 is generated represent in Algorithm-2, it is then applied to generate a new population Qt+1 by LCA algorithm. Such a 
careful selection strategy is found to computational complexity of M-Objectives O(N2M). MOLCA that incorporates proposed infor-
mation feedback mechanism to effectively guide the search process, ensuring a balance between exploration and exploitation. This 
leads to improved convergence, coverage and diversity preservation, which are crucial aspects of multi-objective optimization. 
MOLCA algorithm does not require to set any new parameter other than the usual LCA parameters such as the population size, 
termination parameter and their associated parameters. The flow chart of MOLCA algorithm can be shown in Fig. 4. 

4. Experimental results 

When evaluating MO algorithms experimental setup on Windows 10 Ultimate on a 64-bit system, powered by an Intel® Core™ i5- 
2330 M CPU @ 2.20 GHz, with 8 GB of RAM, it is crucial to utilize a range of test functions that each algorithm, we conducted 30 
independent runs, with a population size of 40 and a maximum of 500 iterations per run. the parameter settings used in MOLCA 
(parameter less), NSGWO (a = [0,2]), MOMVO (existence probability ∈ [0.2,1], travelling distance rate ∈ [0.6,1]), NSGA-II (crossover 
rate = 0.9, mutation rate = 0.1), MOEA/D (Number of neighbors = 15, Crossover parameter-0.5) and MOMPA (FADs = 0.2, P = 0.5). 

Fig. 9. Box plot of different algorithms on unconstrained problems based on various metrics i.e., (a) GD, (b) IGD, (c) SP, (d) SD, (e) HV and (f) 
RT metric. 
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This approach ensures that the algorithm is tested from multiple angles. Several standard test functions are recognized in scholarly 
literature, including ZDT1-ZDT6 (2-objectives), DTLZ1-DTLZ7 (2 and 3 objectives), Constraint (CONSTR, TNK, SRN, BNH, OSY and 
KITA) and Real-world engineering design (Brushless DC wheel motor (RWMOP1), Safety isolating transformer (RWMOP2), Helical 
spring (RWMOP3), Two-bar truss (RWMOP4) and Welded beam (RWMOP5)) problems. The specifics of the test functions used in this 
study are detailed in Appendix. A closer look reveals that these test functions exhibit diverse Pareto optimal fronts, such as concave, 
convex, linear and separated. The majority of them operate within a multimodal search space, where multiple local fronts can 
potentially obstruct solutions from gravitating towards the genuine Pareto optimal front. 

To validate the outcomes of the proposed MOLCA algorithm, we juxtaposed its results with esteemed and widely-adopted multi- 
objective algorithms from the literature, including NSGWO, MOMVO, NSGA-II, MOEA/D and MOMPA algorithms. These results were 
assessed both qualitatively and quantitatively. On the qualitative front, the optimal Pareto fronts from 30 runs were selected and 
visualized in the subsequent subsection. Such visual representations offer insights into the relative performance of each algorithm. 
However, they do not provide a precise measure of superiority. Hence, we incorporated a suite of performance indicators to quantify 

Fig. 10. Bar plot for average different metric values on unconstrained problems on various metrics i.e., (a) GD, (b) IGD, (c) SP, (d) SD, (e) HV and (f) 
RT metric. 
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both convergence and coverage of the algorithms. The GD, IGD, RT and HV metric gauges algorithm convergence, enabling us to 
ascertain the proximity of derived Pareto optimal solutions to the true ones. Yet, ensuring a broad solution distribution across all 
objectives remains pivotal. To quantify this coverage and facilitate algorithmic comparisons, we employed the spacing (SP) and spread 
(SD) metrics. It is worth noting that lower values for GD, IGD, RT and SP indicate superior outcomes, while a higher SD and HV value 
signifies enhanced coverage. To provide a qualitative comparison and visualize solution distribution, the optimal Pareto front for each 
algorithm will also be showcased in the subsequent subsection. Graphical performance indicators shown in Fig. 5., a statistical 
evaluation. “+/− /~” Wilcoxon signed-rank test (WSRT) was conducted at a significance level of 0.05 between the total amount of test 
problems on which the corresponding optimizers has a better performance, a worse performance and an equal performance for solving 
MO problems. 

Table 8 
HV metric of different multi-objective algorithms on constraint and engineering design problems.  

Problem M MOLCA NSGWO MOMVO NSGA-II MOEA/D MOMPA 

CONSTR 2 5.2251e+0 (±7. 
03e-4) +

4.8593e+0 (±9. 
81e-2) =

5.1768e+0 (±5. 
55e-2) +

5.2244e+0 (±5. 
56e-3) +

5.2216e+0 (±4. 
03e-3) +

4.8179e+0 (±6. 
22e-2) 

TNK 2 5.2186e-1 (±1. 03e- 
3) +

4.7175e-1 (±1. 01e- 
2) +

5.2121e-1 (±7. 30e- 
4) +

5.2113e-1 (±8. 29e- 
4) +

5.2101e-1 (±1. 30e- 
3) +

3.6549e-1 (±3. 
52e-2) 

SRN 2 2.9875e+4 (±1. 
95e+1) +

2.6897e+4 (±4. 
43e+2) - 

2.9986e+4 (±7. 
26e+0) +

2.9974e+4 (±4. 
31e+0) +

2.9892e+4 (±9. 
90e+0) +

2.9788e+4 (±4. 
27e+1) 

OSY 2 7.8498e+3 (±3. 
56e+3) =

5.5653e+3 (±2. 
22e+3) =

3.0966e+3 (±1. 
35e+2) - 

3.2365e+3 (±3. 
31e+2) - 

4.7096e+3 (±3. 
23e+3) =

7.5598e+3 (±3. 
44e+3) 

BNH 2 6.4421e+3 (±9. 
45e-1) +

6.4257e+3 (±1. 
68e+0) =

6.4158e+3 (±8. 
28e+0) =

6.4410e+3 (±2. 
98e-1) +

6.4396e+3 (±3. 
32e+0) +

6.4087e+3 (±1. 
59e+1) 

KITA 2 4.9690e+1 (±1. 
88e-2) +

4.8397e+1 (±3. 
62e-1) +

4.9805e+1 (±3. 
49e-3) +

4.9806e+1 (±4. 
93e-3) +

4.9700e+1 (±3. 
15e-2) +

3.5627e+1 (±7. 
77e+0) 

RWMOP1 2 0.0000e+0 (±0. 
00e+0) 

0.0000e+0 (±0. 
00e+0) 

0.0000e+0 (±0. 
00e+0) 

0.0000e+0 (±0. 
00e+0) 

0.0000e+0 (±0. 
00e+0) 

None 

RWMOP2 2 0.0000e+0 (±0. 
00e+0) 

0.0000e+0 (±0. 
00e+0) 

0.0000e+0 (±0. 
00e+0) 

0.0000e+0 (±0. 
00e+0) 

0.0000e+0 (±0. 
00e+0) 

None 

RWMOP3 2 3.4344e+6 (±1. 
90e+4) +

3.2540e+6 (±1. 
01e+5) +

3.4312e+6 (±2. 
10e+4) +

3.4144e+6 (±3. 
30e+4) +

3.4480e+6 (±6. 
91e+3) +

1.6053e+6 (±5. 
82e+5) 

RWMOP4 2 4.6799e+3 (±9. 
18e-1) +

4.5442e+3 (±1. 
92e+1) =

4.6387e+3 (±5. 
57e+0) +

4.6428e+3 (±9. 
78e+0) +

4.6818e+3 (±1. 
95e+0) +

4.1936e+3 (±3. 
78e+2) 

RWMOP5 2 8.9696e-1 (±2. 12e- 
3) +

2.7432e-1 (±3. 76e- 
1) - 

8.9117e-1 (±4. 05e- 
3) +

8.9522e-1 (±2. 96e- 
3) +

8.9408e-1 (±3. 41e- 
3) +

7.3188e-1 (±2. 
02e-1)  

Table 9 
RT metric of different multi-objective algorithms on constraint and engineering design problems.  

Problem M MOLCA NSGWO MOMVO NSGA-II MOEA/D MOMPA 

CONSTR 2 6.8979e-1 (±3. 32e- 
2) +

9.7621e-1 (±1. 83e- 
2) +

2.1268e+0 (±9. 
80e-2) +

9.4547e+0 (±4. 
11e-1) +

1.5308e+1 (±5. 
06e-1) +

2.2290e+1 (±6. 
10e-1) 

TNK 2 7.1622e-1 (±4. 49e- 
2) +

1.0418e+0 (±3. 
97e-2) +

2.0659e+0 (±4. 
50e-2) +

3.2000e+0 (±6. 
35e-2) +

1.5272e+1 (±4. 
68e-1) - 

8.5506e+0 (±5. 
21e-1) 

SRN 2 7.0109e-1 (±5. 28e- 
2) +

9.3227e-1 (±3. 49e- 
2) +

1.6041e+0 (±7. 
10e-2) +

1.5757e+1 (±6. 
41e-1) =

1.5384e+1 (±6. 
69e-1) =

1.5545e+1 (±1. 
31e-1) 

OSY 2 1.6641e+0 (±5. 
12e-2) +

1.0014e+0 (±3. 
02e-2) +

7.8572e-1 (±2. 05e- 
2) +

3.4290e+0 (±2. 
60e-1) +

1.5841e+1 (±2. 
78e-1) - 

6.6616e+0 (±5. 
53e-1) 

BNH 2 1.9059e+0 (±2. 
26e-1) +

1.4562e+0 (±1. 
05e+0) +

7.9631e-1 (±3. 59e- 
1) +

1.6710e+1 (±2. 
29e+0) =

1.6286e+1 (±1. 
99e+0) =

1.5751e+1 (±4. 
97e-1) 

KITA 2 7.4207e-1 (±9. 96e- 
2) +

9.9775e-1 (±1. 36e- 
2) +

1.6468e+0 (±1. 
46e-2) +

1.8094e+1 (±2. 
05e-1) +

1.6104e+1 (±7. 
98e-1) +

2.2623e+1 (±2. 
63e-1) 

RWMOP1 2 1.9002e+0 (±2. 
29e-1) +

1.8710e+0 (±1. 
98e-1) +

2.7807e+0 (±1. 
98e-1) =

7.1500e+0 (±4. 
90e-1) - 

1.7648e+1 (±7. 
07e-1) - 

2.5801e+0 (±2. 
18e-1) 

RWMOP2 2 5.2129e+0 (±2. 
91e-1) +

4.9956e+0 (±2. 
18e-1) +

5.8608e+0 (±1. 
20e-1) +

7.7272e+0 (±6. 
92e-1) =

2.4080e+1 (±5. 
97e-1) - 

8.1176e+0 (±3. 
67e-1) 

RWMOP3 2 7.9719e-1 (±3. 39e- 
2) +

9.2981e-1 (±4. 48e- 
2) +

1.7136e+0 (±1. 
96e-1) +

2.0572e+0 (±1. 
68e-1) +

1.5393e+1 (±6. 
38e-1) - 

3.3884e+0 (±3. 
54e-1) 

RWMOP4 2 6.2314e-1 (±2. 13e- 
2) +

8.7154e-1 (±4. 04e- 
2) +

1.4844e+0 (±5. 
37e-2) +

7.9026e+0 (±2. 
33e-1) +

1.4741e+1 (±6. 
70e-1) =

1.4962e+1 (±8. 
30e-1) 

RWMOP5 2 8.7699e-1 (±9. 74e- 
3) +

9.3375e-1 (±1. 29e- 
2) +

1.6530e+0 (±3. 
12e-2) +

7.9414e+0 (±4. 
38e-1) - 

1.5958e+1 (±3. 
14e-1) - 

6.6208e+0 (±1. 
00e+0)  
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4.1. Performance evaluation on ZDT and DTLZ benchmarks 

Table 1 showcases the average GD-metric outcomes from the MOLCA, NSGWO, MOMVO, NSGA-II, MOEA/D and MOMPA algo-
rithms across the 19 test functions. The MOLCA algorithm outperforms in the GD-metric for all functions, with the exceptions being 
ZDT4 and DTLZ6. the summarized “+/ = /− ” outcome of “5/15/0”. Furthermore, in many instances, the average GD-metric scores 
achieved by MOLCA are just 100%. This suggests that the Pareto set derived from MOLCA is more optimally distributed than those 
from other algorithms. Table 2 presents the IGD-metric values. For this metric, we A reduced IGD-metric signifies a better solution in 
search space. This data implies that MOLCA excels in four test functions in terms of the IGD-metric. Simultaneously, MOLCA’s per-
formance is “3/16/0” summarized “+/ = /− ” outcomes. However, it surpasses NSGWO, MOMVO, NSGA-II, MOEA/D and MOMPA 
algorithms. Broadly speaking, the IGD-metric evaluates an algorithm’s diversity, leading to the inference that MOLCA exhibits strong 
divergence capabilities. Table 3, highlighting the SP-metric results, reveals that MOLCA clinches the top spot in eight of the 19 test 
functions, while the other algorithms capture the remaining seven. MOLCA’s dominance is evident, as shown by the “3/13/3” 

Fig. 11. Best Pareto optimal front obtained by the MOLCA algorithm on various constrained problems i.e., (a) CONSTR, (b) TANK, (c) OSY, (d) 
KITA, (e) BNH and (f) SRN. 
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summarized “+/ = /− ” outcome. These scores underscore the superior distribution of the solution set achieved by MOLCA. Table 4 
displays the comparative SD-metric outcomes. Here, we assign as the solution set from these algorithms and as the genuine Pareto set. 
Based on Table 4’s data, MOLCA stands out, securing top scores, suggesting its superior stability and spread. Table 5 presents the HV- 
metric values. For this metric, we A higher HV-metric signifies a better solution in search space. This data implies that MOLCA excels in 
four test functions in terms of the HV-metric. Simultaneously, MOLCA’s performance is “4/15/0” summarized “+/ = /− ” outcomes. 
This suggests that the Pareto set derived from MOLCA is more optimally distributed and diversified than those from other algorithms. 
Table 7 displays the comparative RT-metric outcomes. Based on Table 7’s data, MOLCA stands out, securing top scores, suggesting its 
superior speed, stability and less computational burden (see Table 6). 

To get a clearer visual representation of each algorithm’s efficacy on every test function, Fig. 6, Figs. 7 and 8 visually contrasts the 
typical non-dominated solution set with the true PF. These results are based on the outcomes of 30 runs across the 19 test functions. 
From an analysis of Figs. 6, Figs. 7 and 8 It is evident that for the ZDT and DTLZ test functions, MOLCA’s performance closely in terms 
of uniformity. However, it surpasses other algorithms due to its superior distribution concerning universality, uniformity and 
convergence. Drawing from the box plot shown in Fig. 9 and bar plot shown in Fig. 10, It is clear that the MOLCA algorithm offers a 
robust and efficient approach to tackle MOPs. 

Fig. 12. Best Pareto optimal front and compromise solution obtained by the MOLCA algorithm on real-world engineering problems (a) RWMOP1, 
(b) RWMOP2, (c) RWMOP3, (d) RWMOP4 and (e) RWMOP5. 
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4.2. Performance evaluation on constraint and real-world engineering design problems 

To further assess MOLCA’s capabilities, we have incorporated six constraint (CONSTR, TNK, SRN, BNH, OSY and KITA) and five 
Real-world engineering design (Brushless DC wheel motor (RWMOP1), Safety isolating transformer (RWMOP2), Helical spring 
(RWMOP3), Two-bar truss (RWMOP4) and Welded beam (RWMOP5)) problems into our experiments. The parameters for NSGWO, 
MOMVO, NSGA-II, MOEA/D and MOMPA remain consistent with the original papers, with a set population size of 100. In our research, 
we juxtaposed the outcomes from the suggested MOLCA with those from NSGWO, MOMVO, NSGA-II, MOEA/D and MOMPA. Given 
the unknown characteristics of the aforementioned engineering challenges and constraint problems, it was imperative to construct a 
reference PF to gauge the performance metric. Our empirical analysis involved a two-step process for each engineering issue to 
construct the reference PF: 1) We recorded the non-dominated solutions from all algorithms across 30 separate runs; 2) Using these 
solutions, a clustering technique was utilized to pick 6000 non-dominated solutions, forming the reference set for performance 
evaluation. For spacing (SP) and hypervolume (HV) considerations. 

Table 7, Table 8 and Table 9 showcases the outcomes from the introduced MOLCA and NSGWO, MOMVO, NSGA-II, MOEA/D and 
MOMPA based on the performance metrics for the five real-world challenges. Evidently, MOLCA surpassed in SP, HV and RT values 
compared to NSGWO, MOMVO, NSGA-II, MOEA/D and MOMPA for constraint and engineering tasks. This indicates that the non- 
dominated solutions by MOLCA demonstrated superior convergence and distribution towards the actual PF. Furthermore, MOLCA 
notably excelled over other multi-objective strategies, especially for the CONSTR, TNK, KITA, RWMOP2, RWMOP5 test issue, as per 
the Mann–Whitney–Wilcoxon statistical evaluation with a significance level of 0.05. As previously mentioned, the performance metric 
offers insights into a multi-objective algorithm’s comparative efficacy. To gain a clearer understanding of the distance between a 
solution set and a reference PF, it is beneficial to use performance metrics rooted in reference sets. Accordingly, the MOEAs were 
assessed using the performance metric, with the reference being the approximation crafted as previously detailed. 

The latter section of Table 7, Table 8, Table 9 presents outcomes related to the SP, HV and RT performance metric. A review of this 
table reveals that MOLCA, our proposed model, achieved superior performance values across constraint and real-world engineering 
challenges. This aligns with the earlier assessment made using the performance indicator, where MOLCA surpassed other algorithms. 
Now, this superiority is evident in the context of the run time (RT) computational burden performance metric. Given the extensive 
reference set, comprising 6000 solutions for each issue, the SP and HV performance metric offers a more nuanced evaluation of the 
closeness and spread of the non-dominated solutions along the PF. Hence, it is evident that MOLCA provides a more refined 
approximation and distribution of solutions on the estimated PF. Turning to Figs. 11 and 12 it visually presents the PF approximations 
derived from MOLCA. we have employed a fuzzy approach to identify and incorporate a compromise solution for real world engi-
neering problems shown in Fig. 12. The coverage and spacing in obtained PFs show superiority of MOLCA for handling the real-world 
problems. Based on box plot shown in Fig. 13 and bar plot shown in Fig. 14, we deduce that MOLCA stands out as a promising solution 

Fig. 13. Box plot by different algorithms on constrained (real-world) problems on various metrics i.e., (a) SP, (b) HV and (c) RT metric.  
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for real-world challenges. 

5. Conclusion 

In this study, we introduced a multi-objective algorithm from the growth and proliferation patterns of liver tumors. Initially, a 
mathematical framework was utilized to replicate the dynamics of a liver cancer, leading to the development of LCA algorithm. 
Subsequently, elitist non-dominated sorting (NDS), information feedback mechanism (IFM) and Crowding Distance (CD) selection 
process was incorporated to adapt this algorithm for multi-objective challenges. The efficacy of the newly devised MOLCA algorithm 
was assessed using a variety of test functions. Its performance was benchmarked against established algorithms like NSGWO, MOMVO, 
NSGA-II, MOEA/D and MOMPA, using performance metrics such as GD, IGD, SP, SD, HV and RT. Analytical findings and statistical 
insights reveal that MOLCA often outperforms its counterparts in multiple testing scenarios. The evaluations revealed that MOLCA 
stands out as a robust contender, adept at deriving precise approximations of the Pareto optimal front while ensuring a broad dis-
tribution across objectives. The algorithm’s precision can be attributed to its impressive convergence rate, while its expansive 
exploration capabilities contribute to its broad distribution. The integration of the Information Feedback Mechanism (IFM) further 
enhances the algorithm’s exploration and solution distribution capabilities. Looking ahead, it would be valuable to explore the po-
tential of various constraint management techniques in conjunction with MOLCA, especially when addressing multi-objective chal-
lenges with equality constraints. The MOLCA source code is available at: https://github.com/kanak02/MOLCA. 
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Appendix A. Unconstrained multi-objective ZDT [43] test problems utilized in this work 

A.1 ZDT1 with Convex POF 

F =(f1(x), f2(x)),wheref1(x)= x1, f2(x, g)= g(x).

(

1 −

̅̅̅̅̅̅̅̅̅
f1

g(x)

√ )

,

and, g(x) = 1 + 9
n− 1.

∑n
i=2xi, Constraints: 0 ≤ xi ≤ 1,n = 30, i = 1,2,…,30 

A.2 ZDT 2 with non-convex POF 

F =(f1(x), f2(x)),wheref1(x)= x1, f2(x, g)= g(x).

⎛

⎝1 −

( ̅̅̅̅̅̅̅̅̅
f1

g(x)

√ )2⎞

⎠,

and, g(x) = 1 + 9
n− 1.

∑n
i=2xi, Constraints 0 ≤ xi ≤ 1,n = 30, i = 1,2,…,30 

A.3 ZDT 3 with convex and discrete POF 

F =(f1(x), f2(x)),wheref1(x)= x1, f2(x, g)= g(x).

(

1 −

̅̅̅̅̅̅̅̅̅
f1

g(x)

√

−
f1

g(x)
.sin (10πf1)

)

,

and, g(x) = 1 + 9
n− 1.

∑n
i=2xi, Constraints: 0 ≤ xi ≤ 1,n = 30, i = 1,2,…,30 

A.4 ZDT 4 with non-convex POF 

F =(f1(x), f2(x)),wheref1(x)= x1, f2(x, g)= g(x).

(

1 −

̅̅̅̅̅̅̅̅̅
f1

g(x)

√ )

,

and, g(x)= 1+ 10.(n − 1) +
∑n

i=2

(
x2

i − 10 cos (4πxi)
)
,

Constraints: 0 ≤ x1 ≤ 1, − 5 ≤ xi ≤ 5,n = 10, i = 1,2,…,10 
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A.5 ZDT 6 with non-uniformly and non-convex POF 

F =(f1(x), f2(x)),wheref1(x)= 1 − exp(4x1).sin6(6πx1), f2(x, g)= g(x).
(

1 −

(
f1

g(x)

)2)

,

and, g(x) = 1 + 9
n− 1.

⎡

⎢
⎣

∑n
i=2

xi

9

⎤

⎥
⎦

0.25

, Constraints: 0 ≤ xi ≤ 1,n = 10, i = 1,2,…,10 

Appendix B. Unconstrained multi-objective DTLZ with 2-Dim [45] test problems utilized in this work 

B.1 DTLZ 1 with linear POF 

F =(f1(x), f2(x)),wheref1(x)=
1
2

x1(1+ g(x)), f2(x)=
1
2
(1 − x1)(1+ g(x))

and, g(x)= 100

[

1+
∑n

i=3
(xi − 0.5)2

− cos (20π(xi − 0.5))

]

,

Constraints: 0 ≤ xi ≤ 1,n = 12, i = 1,2,…,12 

B.2 DTLZ 2 with concave POF 

F =(f1(x), f2(x)),wheref1(x)= cos
(π

2
x1

)
(1+ g(x)), f2(x)= sin

(π
2

x1

)
(1+ g(x))

and, g(x) =
∑n

i=3(xi − 0.5)2
, Constraints: 0 ≤ xi ≤ 1,n = 12, i = 1,2,…,12 

B.3 DTLZ 3 with concave POF 

F =(f1(x), f2(x)),wheref1(x)= cos
(π

2
x1

)
(1+ g(x)), f2(x)= sin

(π
2

x1

)
(1+ g(x))

and, g(x)= 100

[

1+
∑n

i=3
(xi − 0.5)2

− cos (20π(xi − 0.5))

]

,

Constraints: 0 ≤ xi ≤ 1,n = 12, i = 1,2,…,12 

B.4 DTLZ 4 with concave POF 

F =(f1(x), f2(x)),wheref1(x)= cos
(π

2
xα

1

)
(1+ g(x)), f2(x)= sin

(π
2

xα
1

)
(1+ g(x))

and, g(x) =
∑n

i=3(xi − 0.5)2
, Constraints: 0 ≤ xi ≤ 1,n = 12,α = 100, i = 1,2,…,1 

B.5 DTLZ 5with curve POF 

F =(f1(x), f2(x)),wheref1(x)= cos
(π

2
θ1

)
(1+ g(x)), f2(x)= sin

(π
2

θ1

)
(1+ g(x))

and, θ1 = x1.
(π

2

)
, g(x)=

∑n

i=3
(xi − 0.5)2

,

Constraints: 0 ≤ xi ≤ 1,n = 12, i = 1,2,…,12 

B.6 DTLZ 6with curve POF 

F =(f1(x), f2(x)),wheref1(x)= cos
(π

2
θ1

)
(1+ g(x)), f2(x)= sin

(π
2

θ1

)
(1+ g(x))
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and, θ1 = x1.
( π

2

)
, g(x) =

∑n
i=3(xi)

0.1
, Constraints: 0 ≤ xi ≤ 1,n = 12, i = 1,2,…,12 

B.7 DTLZ 7 with disconnected POF 

F =(f1(x), f2(x)),wheref1(x)= x1, f2(x)= (1+ g(x)).h(f1, f2, g(x))

and, g(x)= 1+
9
22
∑n

i=3
(xi), h(f1, f2, g(x))= 2 −

∑2

i=1

(
fi

1 + g
(1+ sin (3πfi))

)

Constraints: 0 ≤ xi ≤ 1,n = 22, i = 1,2,…,12 

Appendix C. Unconstrained multi-objective DTLZ with 3-Dim [45] test problems utilized in this work 

C.1 DTLZ 1 with linear POF 

F =(f1(x), f2(x), f3(x)),wheref1(x)=
1
2
x1x2(1+ g(x)), f2(x)=

1
2

x1(1 − x2)(1+ g(x))

f3(x)=
1
2
(1 − x1)(1+ g(x))and, g(x)= 100

[

10+
∑n

i=3
(xi − 0.5)2

− cos (20π(xi − 0.5))

]

,

Constraints: 0 ≤ xi ≤ 1,n = 12, i = 1,2,…,12 

C.2 DTLZ 2 with concave POF 

F =(f1(x), f2(x), f3(x)),wheref1(x)= cos
(π

2
x1

)
cos
(π

2
x2

)
(1+ g(x)),

f2(x)= cos
(π

2
x1

)
sin
(π

2
x2

)
(1+ g(x)), f3(x)= sin

(π
2

x1

)
(1+ g(x))

and, g(x) =
∑n

i=3(xi − 0.5)2
, Constraints: 0 ≤ xi ≤ 1,n = 12, i = 1,2,…,12 

C.3 DTLZ 3 with concave POF 

F =(f1(x), f2(x), f3(x)),wheref1(x)= cos
(π

2
x1

)
cos
(π

2
x2

)
(1+ g(x)),

f2(x)= cos
(π

2
x1

)
sin
(π

2
x2

)
(1+ g(x)), f3(x)= sin

(π
2

x1

)
(1+ g(x))

and, g(x)= 100

[

10+
∑n

i=3
(xi − 0.5)2

− cos (20π(xi − 0.5))

]

,

Constraints: 0 ≤ xi ≤ 1,n = 12, i = 1,2,…,12 

C.4 DTLZ 4 with concave POF 

F =(f1(x), f2(x), f3(x)),wheref1(x)= cos
(π

2
xα

1

)
cos
(π

2
xα

2

)
(1+ g(x)),

f2(x)= cos
(π

2
xα

1

)
sin
(π

2
xα

2

)
(1+ g(x)), f3(x)= sin

(π
2

xα
1

)
(1+ g(x))

and, g(x) =
∑n

i=3(xi − 0.5)2
, Constraints: 0 ≤ xi ≤ 1,n = 12,α = 100, i = 1,2,…,12 

C.5 DTLZ 5 with curve POF 

F =(f1(x), f2(x), f3(x)),wheref1(x)= cos
(π

2
θ1

)
cos
(π

2
θ2

)
(1+ g(x)),
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f2(x)= cos
(π

2
θ1

)
sin
(π

2
θ2

)
(1+ g(x)), f3(x)= sin

(π
2

θ1

)
(1+ g(x))

and, θ1 = x1.
(π

2

)
, θ2 =

π
4.(1 + g(x))

.(1+ 2x2.g(x)), g(x)=
∑n

i=3
(xi − 0.5)2

,

Constraints: 0 ≤ xi ≤ 1,n = 12, i = 1,2,…,12 

C.6 DTLZ 6 with curve POF 

F =(f1(x), f2(x), f3(x)),wheref1(x)= cos
(π

2
θ1

)
cos
(π

2
θ2

)
(1+ g(x)),

f2(x)= cos
(π

2
θ1

)
sin
(π

2
θ2

)
(1+ g(x)), f3(x)= sin

(π
2

θ1

)
(1+ g(x))

and, θ1 = x1.
(π

2

)
, θ2 =

π
4.(1 + g(x))

.(1+ 2xi.g(x)), g(x)=
∑n

i=3
(xi)

0.1
,

Constraints: 0 ≤ xi ≤ 1,n = 12, i = 1,2,…,12 

C.7 DTLZ 7 with disconnected POF 

F =(f1(x), f2(x), f3(x)),wheref1(x)= x1, f2(x)= x2, f3(x)= (1+ g(x)).h(f1, f2, g(x))

and, g(x)= 1+
9
22
∑n

i=3
(xi), h(f1, f2, g(x))= 3 −

∑2

i=1

(
fi

1 + g
(1+ sin (3πfi))

)

Constraints: 0 ≤ xi ≤ 1,n = 22, i = 1,2,…,12 

Appendix D. Constrained multi-objective test problems [57,58] utilized in this work 

D.1 CONSTR with convex POF 

F =(f1(x, y), f2(x, y)),wheref1(x, y)= x, f2(x, y)= (1+ y) / x,

Constraints: 0.1 ≤ x ≤ 1,0 ≤ y ≤ 5,0 ≥ 6 − y − 9x,0 ≥ 1+ y − 9x 

D.2 TNK with dis-connected and convoluted POF 

Minimize F =(f1(x, y), f2(x, y)),wheref1(x, y, z)= x, f2(x, y, z)= y,

Constraints: 0 ≤ x,y ≤ π,0 ≥ − x2 − y2 + 1+ 0.1 ∗ cos
(

16 arctan x
y

)
, 1

2 ≥
(
x − 1

2

)2
+
(
y − 1

2

)2
,

D.3 SRN with connected POF 

F =(f1(x, y), f2(x, y)),wheref1(x, y)= (x − 2)2
+(y − 1)2

+ 2, f2(x, y)= 9x − (y − 1)2
,

Constraints: − 20 ≤ x,y ≤ 20,0 ≥ x2 + y2 − 225,0 ≥ x − 3y+ 10 

D.4 OSY with discrete POF 

F =(f1(x), f2(x)),wheref1(x)= −
(
25(x1 − 2)2

+(x2 − 2)2)
+(x3 − 1)2

+(x4 − 4)2
+ (x5 − 1)2

,

f2(x)= x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6,

Constraints: 0 ≤ x1,x2,x6 ≤ 10,1 ≤ x3,x5 ≤ 5,0 ≤ x4 ≤ 6,0 ≤ x1 + x2 − 2,0 ≤ 6 − x1 − x2,
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0≤ 2 − x2 + x1, 0≤ 2 − x1 + 3x1, 0≤ 4 − (x3 − 3)2
− x4, 0≤(x5 − 3)2

+ x6 − 4,

D.5 BNH with convex POF 

F =(f1(x, y), f2(x, y)),wheref1(x, y)= 4x2 + 4y2, f2(x, y)= (x − 5)2
+ (y − 5)2

,

Constraints: 0 ≤ x ≤ 5,0 ≤ y ≤ 3,0 ≥ (x − 5)2
+ (y)2

− 25,0 ≥ − (x − 8)2
+ (y + 3)2

+ 7.7 

D.6 KITA with discrete concave POF 

Maximize F =(f1(x, y), f2(x, y)),wheref1(x, y)= − x2 + y, f2(x, y)=
(

1
2

)

x+ y + 1,

Constraints: x,y ≥ 0,0 ≥ (1 /6)x+ y − (13 /2),0 ≥ (1 /2)x+ y − (15 /2),0 ≥ 5x+ y − 30,

Appendix E. Constrained multi-objective engineering problems used in this work 

E.1 Brushless DC Wheel Motor design problem (RWMOP1) 

Brushless DC wheel motor design problem is a constrained multi-objective problem in the area of electrical machine design [43]. 
The objectives are in conflict, minimize the total weight (f1) and efficiency (f2) should be maximized and there are five design var-
iables: stator diameter (Ds), magnetic induction in the air gap (Be), current density in the conductors (δ), magnetic induction in the 
teeth (Bd) and magnetic induction in the stator back iron (Bcs) as well as five constraints. The pareto optimal front have non-convex 
and connected in nature. 

f1(x)=Max η, f2(x) = Min Mtot  

Where: G(x) =

Dext ≤ 340mm
Dint ≥ 76mm, Imax ≥ 125A
Ta ≤ 120◦, discr ≥ 0 

150mm ≤ Ds ≤ 330mm, 0.5T ≤ Be ≤ 0.76T, 2A
/

mm2 ≤ ς ≤ 5A
/

mm2, 0.9T ≤ Bd ≤ 1.8T
0.6T ≤ Bcs ≤ 1.6T  

E.2 Isolated Safety Transformer design problem (RWMOP2) 

The Isolated Safety Transformer design problem is a well-known problem in the electrical optimization field [43], in which 
minimize the total mass (f1)and maximize the efficiency (f2). As can be seen in the following equations, there are seven discrete design 
variables (x1-x7), three variables (x1, x2, x3) for the shape of the lamination, one for the frame (x4), two for the section of enameled 
wires(x5, x6), one for the number of primary turn(x7).The pareto optimal front have convex and connected in nature. 

f 1=Max η, f 2 = Min Mtot  

,G(x)=

Tcond ≤ 120◦C,Tiron ≤ 100◦C
ΔV2

V20
≤ 0.1,

I10

I1
≤ 0.1

f2 ≤ 1, f1 ≤ 1

residue < 10− 6  

3mm ≤ a ≤ 30mm, 14mm ≤ b ≤ 95mm, 6mm ≤ c ≤ 40mm, 10mm ≤ d ≤ 80mm
200 ≤ n1 ≤ 1200, 0.15mm2 ≤ S1 ≤ 19mm2, 0.15mm2 ≤ S2 ≤ 19mm2  

E.3 Helical Spring design problem (RWMOP3) 

The Helical Spring design mixed variables optimization problem first proposed by Kannan and Kramer a well-known problem in the 
mechanical engineering field [43], in which stress (f1) and volume (f2) of a Helical Spring problem should be minimized. As can be 
seen in the following equations, there are three design variables (x1-x3), spring coils (x1: an integer variable), wire diameter (x2: a 
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discrete variable), and spring diameter (x3) as well as eight constraints. The pareto optimal front have convex and multi-connected in 
nature. 

Pmax= 1000;C=
x3
x2
;K =

(
4 ∗ C − 1
4 ∗ C − 4

)

+

(

0.615 ∗
x2
x3

)

; G= 11500000;Vmax= 30; dmin= 0.2; S= 189000; dpm= 6; lmax= 14; dw

= 1.25;Pmax= 1000;Dmax= 3;P= 300;C=
x3
x2
; k=

G ∗ x24

8 ∗ x1 ∗
(
x33
) ;  

dp=
P
k
;K =

(
4 ∗ C − 1
4 ∗ C − 4

)

+

(

0.615 ∗
x2
x3

)

;  

f 1=
(
0.25 ∗ pi2 ∗

(
x22) ∗ x3 ∗ (x1+ 2)

)
; f 2=

(

8 ∗ K ∗ Pmax ∗
x3

pi ∗
(
x23
)

)

;  

g(1)= −

(

lmax −
(

Pmax
k

)

− (1.05 ∗ x2 ∗ (x1+ 2))
)

; g(2)= − (x2 − dmin);  

g(3)= − (Dmax − (x2+ x3)); g(4)= − (C − 3); g(5)= − (dpm − dp); g(6)= −

((
Pmax − P

k

)

− dw
)

; g(7)= −

(

S −

(

8 ∗ K

∗ Pmax ∗
x3

pi ∗
(
x23
)

))

; g(8)= −
(
Vmax −

(
0.25 ∗ pi2 ∗

(
x22) ∗ x3 ∗ (x1+ 2)

))
;  

x2= [0.009 0.0095 0.0104 0.0118 0.0128 0.0132 0.014 0.015 0.0162 …  

0.0173 0.018 0.020 0.023 0.025 0.028 0.032 0.035 0.041 0.047 0.054…  

0.063 0.072 0.080 0.092 0.105 0.120 0.135 0.148 0.162 0.177 0.192 0.207…  

0.225 0.244 0.263 0.283 0.307 0.331 0.362 0.394 0.4375 0.500];  

x1= [1 2 3…30 31 32]; 0 < x3 ≤ 3; dim = 3;  

E.4 Two bar truss design problem (RWMOP4) 

The 2-bar truss design problem is a well-known problem in the structural optimization field, in which structural volume (f1) and 
maximum stresses (f2) exerted on bars are minimized without elastic failure due to 100 kN load. Single-objective optimization problem 
of 2-bar truss is founded in Kirsch (1981). Later reformulated by Deb as a multi-objective optimization problem [43].As can be seen in 
the following equations, there are two design variables (x1-x2) related to cross section area of truss bar members as well as single 
constraint. The pareto optimal front have convex and connected in nature. 

sigmaAC =
20 ∗ sqrt

(
16 + x32

)

x1 ∗ x3
; sigmaBC =

80 ∗ sqrt
(
1 + x32

)

x2 ∗ x3
;  

f 1=
(
x1 ∗ sqrt

(
16+ x32))+

(
x2 ∗ sqrt

(
1+ x32)); f 2=max(sigmaAC, sigmaBC);  

g(1)=max(sigmaAC, sigmaBC) − 100000; dim= 3; 0< x1, x2≤ 0.01; 1< x3 ≤ 3  

E.5 Welded beam design problem (RWMOP5) 

The welded beam design problem first proposed by Deb [43]. The fabrication cost (f1) and deflection of the beam (f2) of a welded 
beam should be minimized in this problem. There are four design variables: the thickness of the weld (x1), the length of the clamped 
bar (x2), the height of the bar (x3) and the thickness of the bar (x4) as well as four constraints. The pareto optimal front have convex 
and connected in nature. 

f1(x)= 1.10471 ∗ x(1)̂ 2 ∗ x(2)+ 0.04811 ∗ x(3) ∗ x(4) ∗ (14.0+ x(2))

f2(x)= 65856000 / (30 ∗ 1̂06 ∗ x(4) ∗ x(3)̂ 3)

g1(x)= tau − 13600, g2(x) = sigma − 30000, g3(x) = x(1) − x(4), g4(x) = 6000 − P 
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0.125 ≤ x1 ≤ 5, 0.1 ≤ x2 ≤ 10,0.1 ≤ x3 ≤ 10,0.125 ≤ x4 ≤ 5 Where Q = 6000 ∗
(
14 +

x(2)
2

)
; 

D= sqrt
(

x(2)2

4
+
(x(1) + x(3))2

4

)

, J = 2 ∗

(

x(1) ∗ x(2) ∗ sqrt(2) ∗
(

x(2)2

12
+
(x(1) + x(3))2

4

))

alpha=
6000

sqrt(2) ∗ x(1) ∗ x(2)
, beta=Q ∗

D
J
,P= tmpf ∗ sqrt

(

x(3)2
∗

x(4)6

36

)

∗

⎛

⎜
⎝1 − x(3) ∗

sqrt
(

30
48

)

28

⎞

⎟
⎠

tau= sqrt
(

alpha2 + 2 ∗ alpha ∗ beta ∗
x(2)
2 ∗ D

+ beta2
)

, sigma=
504000

x(4) ∗ x(3)2, tmpf = 4.013 ∗
30 ∗ 106

196  
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