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Abstract: Image steganography, which usually hides a small image (hidden image or secret image) in
a large image (carrier) so that the crackers cannot feel the existence of the hidden image in the carrier,
has become a hot topic in the community of image security. Recent deep-learning techniques have
promoted image steganography to a new stage. To improve the performance of steganography, this
paper proposes a novel scheme that uses the Transformer for feature extraction in steganography. In
addition, an image encryption algorithm using recursive permutation is proposed to further enhance
the security of secret images. We conduct extensive experiments to demonstrate the effectiveness of
the proposed scheme. We reveal that the Transformer is superior to the compared state-of-the-art
deep-learning models in feature extraction for steganography. In addition, the proposed image
encryption algorithm has good attributes for image security, which further enhances the performance
of the proposed scheme of steganography.

Keywords: image steganography; data hiding; deep learning; transformer; image encryption

1. Introduction
With the development of computer technology and communication technology, a

large number of images are stored in the cloud and transmitted and shared via the internet.
How to keep some sensitive images, such as military images, medical images or personal
privacy images from being accessed by unauthorized persons, has become an important
branch of information security [1–3]. One direct way is to encrypt the images by changing
the positions and values of the pixels in images so that there does not exist any visually
meaningful information in the images. The chaos-based image encryption models emerging
in recent years are such methods. Despite their great success in privacy protection, they
also suffer from the clear disadvantage that crackers can see at a glance that the images are
encrypted, and they will try their best to crack them. Therefore, encrypted images have a
higher risk of exposure [4].

To address this issue, a possible way is to hide secret images in a carrier image so that
the visual contents in the latter do not change significantly. In this way, one cracker can not
perceive the existence of the secret image while the authorized users can extract the informa-
tion of the secret image and restore it. This method is so-called image steganography. Image
steganography is in great demand and has a wide range of applications. Currently, it is
used in digital communication, copyright protection, information certification, e-commerce,
and many other practical fields [5]. This can not only ensure the safe transmission of data
but also provide evidence of ownership for copyright identification.

In addition, it can also identify illegal copying by adding imprints to the identities of
legitimate users. Image steganography can even be applied to encrypted communications
in many confidential departments involving the national economy and people’s lives, such
as the military, medical care, finance, and government agencies. There are a great deal of
operations for image steganography, which can be performed in both spatial and frequency
domains [6,7].
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However, image steganography based on spatial and frequency domains usually
suffers from visual artifacts and low capacity for hiding information [8]. Since they are
hand-crafted ones, it is difficult to decide which domain is used, and also difficult to find
the optimal positions and strengths of hiding information [8]. In recent years, deep learning
has shown its power in automatically learning useful and highly abstract features from
images [9]. It also performs well in image steganography [10–17], which uses an encoding
network for steganography and a decoding network for extracting secret information.

All the positions and strengths of hiding information as well as the hiding domain are
automatically achieved by training the networks. However, these works have one or more
of the following shortcomings: (1) the colors of the generated steganographic images are
distorted [18]; (2) the hiding capacity is limited in [15,18–21]. (3) the model [15–17,22] does
not fit the steganographic process well; and (4) the secret image is not encrypted and then
steganographic in [16,21,23]; thus, it is not sufficiently secure.

A recent deep-learning model, namely Transformer, which was initially proposed for
natural language processing (NLP) has also achieved promising performance in computer
vision (CV) [24]. However, the potential of the Transformer in image steganography has
not been investigated yet.

Motivated by the above analysis, this paper proposes a novel scheme of image
steganography that uses the Transformer as hiding networks and extracting networks.
Compared with previous steganography models based on Convolutional neural network
(CNN), the used Transformer focuses on global information and can model longer-distance
dependencies. Another advantage of the image steganography based on Transformer is
that it can effectively increase the image steganography capacity. When two RGB images
with the same size as the cover image are hidden, the container image can still achieve
good visual effects.

In addition, a novel chaos-based image encryption algorithm that uses recursive
permutation is proposed to further enhance the security of the proposed Transformers-
based image steganography. The proposed Transformer and Recursive Permutation-based
image Steganography is called TRPSteg. The main contributions of this paper are as
follows: (1) The Transformer is introduced into image steganography, for the first time.
(2) A novel chaos-based image encryption algorithm is proposed, which scrambles the
pixels recursively. (3) The proposed model can realize large-capacity secret information
steganography. (4) Different from common image steganography, the proposed image
steganography hides an encrypted secret image instead of hiding a secret image directly. In
this way, the secret image’s security is improved. (5) Extensive experiments demonstrate
that the proposed image steganography significantly outperforms the state-of-the-art
compared approaches.

The remainder of this paper is organized as follows: Section 2 reviews related works.
We describe the proposed image steganography in detail in Section 3. The experimental
results are reported and analyzed in Section 4. Finally, we conclude the paper in Section 5.

2. Related Works
2.1. Image Encryption

Due to the bulky data and high correlation of images, traditional encryption methods
for common data are usually not suitable for image encryption. Since chaotic systems have
the attributes of ergodicity, synchronization, and extreme sensitivity to model parameters
and initial values, they have been widely applied to image encryption in recent years [25,26].
The main operations in image encryption lies in two aspects: permutation that changes the
positions of pixels as well as diffusion that changes the pixels’ values [27,28]. In chaos-based
image encryption, these two types of operations are determined by the generated chaotic
sequences from the chaotic systems. These operations can be conducted on block-levels of
pixels, pixel-level, ribonucleic acid (RNA)-level (6 bits), deoxyribonucleic acid (DNA)-level
(2 bits), and bit-level data [29,30].

2.2. Image Steganography
There are two methods to hide information in images: watermarking and steganogra-

phy; however, their goals are different. The former is usually to identify image ownership,
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while the latter focuses on secret communication. Two essential operations with image
steganography are embedding as well as extracting. Both the operations can be performed
in spatial domains and/or transform domains. LSB is such a typical spatial-domain algo-
rithm that replaces the LSB of carrier image by the binary sequence of the secret image.

This algorithm is simple, direct, and of high embedding capacity; however, its ro-
bustness is not enough. Unlike spatial-domain algorithms, transform-domain algorithms
hide secret information in the transform of images. There are many transform methods
that can be applied to transform, such as discrete cosine transform (DCT), discrete Fourier
transform (DFT), and discrete wavelet transform (DWT) [6]. Generally speaking, the
transform-domain algorithms have better abilities to resist attacks while consuming more
processing time when compared to the spatial-domain algorithms.

2.3. Deep Learning
As an extension of machine learning (ML), deep learning (DL) has demonstrated

its advantages over traditional ML algorithms in various classification and regression
tasks [31–34]. In particular, image steganography based on deep learning has begun to
emerge in recent years. CNN [35] and generative adversarial network (GAN) [36] are
among the most popular ones. CNN is a type of neural network that can process image
data well. The idea of the CNN is to filter the uninteresting information through the
convolution kernel (filter) and extract the features of the data, that is, the data we are
interested in.

In [21,37], the steganography models based on CNN use an encoding network for
steganography and a decoding network for extracting secret information. GANs are DL
architectures typically used for generating new instances of the input data that mimic the
real data. They can also be used to distinguish between real and fake data. A GAN is
composed of two components: a generator network and a discriminator network. They
compete against each other. The former attempts to generate fake data, while the latter
focuses on identifying the reality of the fake data and improving the generator network
performance. They reach the Nash equilibrium point at the end of the adversarial game [38].
Radford et al. [39] introduced deep convolutional GANs (DCGANs) in 2015.

The pioneer work of deep-learning applications in image steganography was proposed
by Baluja [40], which attempted to embed a complete color image into another grayscale
image of the same size, and CNNs were trained to create both hiding and extracting process
and were specifically designed to work in pairs. After that, Li et al. [41] designed a more
complex depth architecture for grayscale cover images and secret images to solve the
distortion problem of color images. The experiments demonstrated that the method could
achieve good results. Liu et al. [12] proposed a data hiding approach based on a newly
proposed deep-learning model, U-Net as well as wavelet transform.

Chang et al. [42] used long short-term memory (LSTM) to realize reversible steganog-
raphy model, and this neural network model significantly improved prediction accuracy
and steganography distortion performance. Volkhonskiy et al. [43] used deep convolu-
tional GAN (DCGAN) to generate image-like containers for image steganography. The
most noticeable advantage of this scheme is that it can successfully deceive the steganog-
raphy analyzer, and hence it can be used in real-world steganographic applications. To
further solve the distortion problem, Tang et al. [44] proposed a GAN-based automatic
steganographic distortion learning framework (ASDL-GAN) by using a steganographic
generative subnetwork and a steganalytic discriminative subnetwork.

With this framework, the security of steganography was improved. However, ASDL-
GAN still has some limitations. For example, the embedding simulator can not perfectly
match the actual optimal simulator and the learning ability towards pixel-level embedding
costs may not be fully used by the optimization objectives of the framework. To address
these issues, Tang et al. [45] proposed another framework by combing reinforcement
learning. The experimental results indicated the proposed framework could achieve state-
of-the-art security performance as well as cost learning stability and efficiency.
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2.4. Transformer
Transformer was initially proposed for the task of machine text translation by

Vaswani et al. [24]. Due to its parallelization and promising performance, Transformer
rapidly replaced the LSTM model and soon achieved complete dominance in NLP tasks.

The recent explosive interest in Transformer has shown that Transformer also per-
forms well in CV. Dosovitskiy et al. [46] proposed the Vision Transformer (ViT) for image
classification, which divided an image into 16× 16 blocks and then stretched them into
one-dimensional vectors that were fed into a network. Chen et al. [47] proposed TransUnet
by combining transformer and Unet based on convolutional operations to achieve segmen-
tation of medical images. Jiang et al. [48] used pure Transformers to build GAN, in which
the architectures and training techniques were carefully designed. The proposed model
achieved state-of-the-art performance on several popular datasets.

The self-attention mechanism improves the performance of many deep-learning model;
however, when it is combined with Transformer, the computation complexity grows quickly,
resulting in the transformer not being able to run on low computing power hardware.
Liu et al. [49] proposed a new transformer model, namely Swin-Transformer, to address
this issue. It uses a sliding window approach to make the network computation grow
linearly and speeded up the inference of the network. In this way, the Swin-Transformer
demonstrated state-of-the-art performance in many CV tasks.

2.5. Motivation
Image encryption and image steganography are two effective types of methods for

image security. Traditional image security methods usually treat them separately. A
possibly better way is to combine them to improve the security performance. Deep learning
has shown its power in various CV tasks, including image steganography. Especially, as a
new type of deep-learning model, Transformer and its extension, Swin-Transformer, are
superior to the previous deep-learning models in NLP and CV tasks. Motivated by the
super performance of Swin-Transformer, we propose an image steganography model based
on Swin-Transformer. In addition, recursive permutation is proposed to further enhance
image security. To the best of our knowledge, this is the first time that Transformer is
applied to the task of image steganography.

3. TRPSteg: Transformer and Recursive Permutation-Based Image Steganography
This paper proposes a data hiding network and extraction network structure based

on Transformer. To evaluate how the learned model fits the data, the loss from both the
hiding network and the extraction network are weighted and summed. Before hiding the
secret image into the cover image, we encrypt the secret image to prevent the leakage of
the secret image information. Thus, the generated container image is double-encrypted.
In order to encrypt the secret image, this paper proposes an image encryption method
based on recursive permutation. After the image is encrypted, we pass the encrypted
secret image and cover image to the data hiding model to generate a container image for
transmission. When a receiver receives the container image, the encrypted secret image
is first extracted by the extraction network, and then the encrypted image is recovered to
obtain the secret image.

3.1. Recursive Permutation
Traditional encryption algorithms usually encrypt an entire image by treating equally

some-level data, such as bit-level, two-bit-level (DNA-level), pixel-level and/or block-level
data. The encryption procedure is repeated until all data have been encrypted at least once.

It is known that many repeated tasks can be solved by introducing the idea of recursion.
However, few existing encryption algorithms consider using such a strategy to conduct
encryption. Here, we propose a type of recursive permutation for image encryption.
The operations of the recursive permutation are determined by the generated sequence
X = {x0, x1, x2, · · · } of the widely used logistic chaotic system [50], defined as below:

xn+1 = λxn(1− xn), n = 0, 1, 2, · · · (1)
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where x0 is an initial value in the range of [0, 1] and λ is a positive parameter in the range
of (0, 4).

To our knowledge, it is the first time to apply recursive ideas to image encryption. The
proposed encryption algorithm mainly consists of four steps, shown as follows.

Step 1. Generate a chaotic sequence the same size as the image.
Step 2. Divide the image to be encrypted into four parts: upper left, upper right, lower

left, and lower right.
Step 3. Perform logistic transform encryption with the chaotic sequence on the overall

image composed of four parts.
Step 4. Recursively conduct the above steps for each of the four parts until the width

or height is 1.
By these four steps, a cipher image is obtained. Algorithm 1 shows the pseudocode

for recursive encryption. Note that the called logistic_scramble_encryption function in
Algorithm 1 refers to Algorithm 2. The decryption algorithm of recursive permutation is
the inverse of the encryption algorithm.

Algorithm 1 Recursion_encryption(img, width, height, S)

Input: The secret image to encrypt, img; The width of image, width; The height of image,
height; The generated chaotic sequence, S;

Output: The encrypted image, img;
nw← bwidth/2c, nh← bheight/2c
if nw < 1 or nh < 1 then

return img
else

//Divide the image into four parts, and encrypt the four parts, respectively. Encrypt
the upper left part.
Recursion_encryption(img[0:nw, 0:nh, :], nw, nh, S)
//Use the logistic_scramble_encryption function (Algorithm 2) to scramble the image
with the chaotic sequence generated by the logistic algorithm.
img[0:nw, 0:nh]← logistic_scramble_encryption(img[0:nw, 0:nh], S)
//Encrypt the lower left part.
Recursion_encryption(img[0:nw, nh:height], nw, nh, S)
img[0:nw, nh: height]← logistic_scramble_encryption(img[0:nw,
nh: height], S)
//Encrypt the upper right part.
Recursion_encryption(img[nw:width, 0:nh], nw, nh, S)
img[nw:width, 0:nh]← logistic_scramble_encryption(img[nw:width,
0:nh], S)
//Encrypt the lower right part.
Recursion_encryption(img[nw:width, nh:height], nw, nh, S)
img[nw:width, nh:height]← logistic_scramble_encryption(img[nw:width,
nh:height], S)
//Encrypt the entire image.
img[0:width, 0:height]← logistic_scramble_encryption(img[0:width, 0:height], S)

end if
return img
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Algorithm 2 logistic _scramble_encryption(img, S)

Input: The image to encrypt, img; The generated chaotic sequence, S;
Output: The encrypted image, img;

w, h← img.shape //Get the width (w) and height (h) of img.
img← img.flatten() //Convert img to 1D array.
idx← sort(S) //Sort S to obtain the corresponding indices (idx) of S.
img← img[idx,:]
img← img.reshape(w,h,3)
return img

3.2. Hiding Network
The hiding network uses a neural network structure based on the Swin-Transformer

to hide the secret image into the cover image. The specific structure is shown in Figure 1.
An RGB cover image and an RGB secret image are used as network input and an RGB
container image is used as the network output. All these three images have the same size of
144× 144× 3. The hiding network consists of three modules: shallow information hiding,
deep information hiding, and construction container image modules. Shallow information
hiding module uses a 3× 3 convolution layer. The convolution layer is good at early visual
processing, leading to more stable optimization and better results [51].

This also provides a simple way to map the input image space to a high-dimensional
feature space. Then, the deep information hiding module composed of one Patch Em-
bedding, four residual Swin-Transformer blocks (RSTB), one LayerNormal, one Patch
Unembedding, and a 3× 3 convolution layer, which is used to hide deep information of
the images. Finally, the construction container image module uses a 3× 3 convolutional
layer to construct the container image with the size of 144× 144× 3.

Figure 1. The architecture of the hiding network.

As shown in Figure 1, RSTB is a residual block with Patch unembedding, Patch
embedding, Swin-Transformer layer (STL) and convolutional layer. STL is based on the
standard multi-head self-attention of the original Transformer layer [24,49]. The main
differences lie in local attention and the shifted window mechanism. As shown in Figure 2,
given an input image of size H ×W × C, Swin-Transformer first reshapes the input to a
HW
M2 ×M2×C feature by partitioning the input into non-overlapping M×M local windows,

where HW
M2 is the total number of windows. Then, calculate the standard self-attention for

each window, i.e., local attention. For a local window feature X ∈ RM2×C, the query, key
and value matrices Q, K and V are computed as:

Q = XPQ, K = XPK, V = XPV , (2)
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where PQ, PK and PV are projection matrices that are shared across different windows.
Generally, we have Q, K, V ∈ RM2×d. As shown in Figure 3, the attention matrix is thus
computed by the self-attention in a local window as

Attention(Q, K, V) = So f tMax(
QKT
√

d
+ E)V, (3)

where E is the learnable relative positional encoding. In practice, following [24], we perform
the attention function six times in parallel and concatenate the results for multi-head self-
attention (MSA).

Figure 2. Two successive Swin-Transformer Layers (STL).

Figure 3. Self-attention calculation process.

Next, a multi-layer perceptron (MLP ) that has two fully connected layers with GELU
non-linearity between them is used for further feature transformations. The LayerNorm
(LN) layer is added before both MSA and MLP, and the residual connection is employed
for both modules. The whole process is formulated as:

X = MSA(LN(X)) + X, (4)
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X = MLP(LN(X)) + X. (5)

However, when the partition is fixed for different layers, there is no connection across
local windows. Therefore, regular and shifted window partitioning are used alternately to
enable cross-window connections [49], where shifted window partitioning means shifting
the feature by pixels before partitioning. In order to enable cross-window, the number of
STL modules must be even. Figure 2 shows the two successive Swin-Transformer blocks.
From Figure 4, in W-MSA window partitioning, a regular window partitioning scheme
is adopted, and self-attention is computed within each window. In SW-MSA window
partitioning, the window partitioning is shifted, resulting in new windows.

The self-attention computation in the new windows crosses the boundaries of the
previous windows in W-MSA window partitioning, providing connections among them. In
two successive Swin-Transformer layer, the first module uses a regular window partitioning
strategy which starts from the top-left pixel, and the 8× 8 feature map is evenly partitioned
into 2× 2 windows of size 4× 4 (M = 4). Then, the next module adopts a windowing
configuration that is shifted from that of the preceding layer by displacing the windows by
(bM

2 , M
2 c) pixels from the regularly partitioned windows. W-MSA and SW-MSA denote

window based multi-head self-attention using regular and shifted window partitioning
configurations, respectively.

Figure 4. Approach for computing self-attention in the proposed Swin-Transformer architecture.

3.3. Extraction Network
The extracting network is similar to the hiding network, which also uses a neural

network based on Swin-Transformer structure to extract the secret image. The similar
network structure can promote the image decryption performance. The specific structure is
shown in Figure 5. An RGB container image with a size of 144× 144× 3 is used as network
input and an RGB extracted secret image with a size of 144× 144× 3 is used as the output.
The difference between the extraction network and the hiding network is that the latter
uses three residual Swin-Transformer blocks in order to speed up image decryption while
maintaining good image decryption performance.

Figure 5. The architecture of the extracting network.

3.4. Loss Function
The evaluation criteria of traditional image data hiding schemes include peak signal-

to-noise ratio (PSNR), mean squared error (MSE), etc., which are used to quantify the
difference between the original cover image and the container image, and the difference
between the secret data and the extracted data. Therefore, the MSE is used as the model
loss function in this paper. In the hiding network, MSE is used to measure the difference
between the cover image C and the container image C

′
, while in the extracting network,
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the MSE is used to measure the difference between the secret image S and the extracted
secret image S′. The MSE function equation can be formulated below:

MSE(I, I′) =
1

M× N

M

∑
i=1

N

∑
j=1

(Ii,j − I′i,j)
2, (6)

where I and I
′

denote two matrices for MSE operation, and M and N denote the length and
width of the matrix, respectively. The loss function of the data hiding network is defined as:

Loss = MSE(C, C′) + β×MSE(S, S′), (7)

where MSE(C, C
′
) and MSE(S, S

′
) are the cost of the hiding network and the extraction

network, respectively, β is a tradeoff factor to balance these two types of loss. Here, the
weight of the error term MSE(C, C

′
) of the hiding network is not shared with the weight of

the extraction network, and the weight of the error term MSE(S, S
′
) is shared between the

two networks. This ensures that the two networks adjust the network training by receiving
this error term to minimize the error loss of the hiding network reconstructed secret image
and the cover image, and to ensure that the information of the secret image is completely
encoded on the cover image.

3.5. Flowchart
Figure 6 shows the overall architecture diagram of the proposed TRPSteg. TRPSteg con-

sists of four modules: Hiding network and Extarcting network based on Swim-Transformer,
Encryption and Decryption based on recursive permutation. When an image needs to be
encrypted and transmitted, in order to prevent the leakage of the image information, the
image is steganographically stored in a natural image. The secret image can be directly
hidden in the cover image, or it can be encrypted using the proposed recursive encryption
algorithm and then passed into the Hiding network model. The Hiding network uses the
Swim-Transformer and CNN to fuse the cover image and secret image into the container
image, the visual effect of the container image and cover image is almost the same, and the
container image contains the information of the secret image.

We use the container image generated by the Hiding network to transmit the secret
image information to achieve the effect of steganographic encryption. When the receiver
receives the container image, it can decrypt the container image through the Extracting
network to obtain the secret image. To extract the original image better, the Extracting
network adopts a model architecture based on Swim-Transformer and CNN similar to the
Hiding network. Before passing the secret image into the Hiding network, the secret image
can be encrypted by recursive permutation algorithm to prevent the leakage of the secret
image information when the model is attacked and to prevent the loss of key information
caused by the loss of local information during transmission.

Figure 6. The overall architecture diagram of the proposed TRPSteg scheme.
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3.6. Differences between TRPSteg and Other Image Steganography Schemes
The proposed TRPSteg uses a type of deep-learning model, Transformer, for image

steganography, and thus it is different from traditional methods with spatial and frequency
domains. The used Swim-Transformer focuses on global information and can model longer-
distance dependencies, while CNN focuses on local information and has a weak ability to
capture global information. At the same time, in previous scheme [15–17], the extracting
network is generally the most basic CNN, and the encryption process and the decryption
process are difficult to match. The proposed scheme replaces the extraction network with a
structure similar to the hiding network, which improves the performance of the decryption
network. Therefore, the proposed TRPSteg is also clearly different from the previous CNN-
based image steganography schemes [15–17]. In addition, a novel strategy of recursive
permutation is proposed to encrypt the secret image and further improve the security of
the steganography model.

4. Experiments
4.1. Experimental Setting

In this work, 45,000, 5000, and 5000 images from the ImageNet [52] are used for model
training, validating and testing, respectively. The results of all the following indicators are
performed on the testing set.

The Adam optimization method is used to automatically adjust the learning rate so
that the network parameters can be learned smoothly. The experimental environment is
python3.6+pytorch, and the hardware uses GPU: NVIDIA GeForce 2080 Ti. In the training
process, the following optimal parameters are obtained: the initial network learning rate
lr = 0.0001, the task weight β = 1, and the number of iterations epoch 200. The initial value
of x0 and µ of the logistic map are set to 0.51 and 3.7, respectively. These parameters can
also be optimized by various evolutionary algorithms [53]. The source code of the proposed
TRPSteg is available at https://github.com/Zmingcheng/Swim-image-steganography
(accessed on 23 June 2022).

4.2. Visual Effect
Figure 7 shows the experimental images and the corresponding pixel histograms,

including the cover image, container image, secret image, and extracted image. All images
are color images with a size of 144× 144. According to Figure 7, it can be seen that the
visual difference between the cover image and the container image is not obvious, and
almost no visual difference between the secret image and the extracted image can be seen.
In addition, we report the entropy of each channel of each image in the figure. It can be
seen that there is little difference between cover image and container image, secret image
and extracted secret image in the information entropy value of the three channels. The
small difference in information entropy indicates that the amount of information contained
in the two images is almost the same.

In order to show the distribution of pixel values and the degree of modification of
all images, we analyze the pixel histograms. According to the histograms in Figure 7,
there is no clear difference between the cover image and the container image in pixel
histogram. At the same time, we cannot see a clear difference between the secret image and
the extracted image by the proposed scheme. Therefore, the proposed scheme can achieve
good performance in visual effect.

4.3. Security Analysis
Generally speaking, the residual image can directly show the visual difference between

the cover image and container image, and it can be used to analyze whether the container
image contains semantic information about the secret image. The scheme will be said to be
insecure once the residual image contains semantic information about the secret image.

Figure 8 shows the cover image, container image, residual image between the cover
image, and the container image, the residual image enlarged by 50 times, and the secret
image. We can easily find that the residual image does not have any visual information,
even when the residual image is magnified by a factor of 50. Thus, it is difficult to obtain the

https://github.com/Zmingcheng/Swim-image-steganography
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useful semantic information from the residual image with this scheme, and the leakage of
secret data due to residual images could be avoided. Compared with the method proposed
in [40], the proposed steganography method improves the security greatly.

According to the histogram comparison in Figure 7, the histogram of the hidden image
have no correlations with the histogram of the secret image. It is difficult to judge whether
the secret data is hidden in the image, and the secret image can not be extracted according
to the histogram. The container image clearly indicates good visual quality and offers no
clues to the presence of any hidden information even with statistical analysis. Therefore,
the security of the proposed steganography scheme is relatively high.

Red-entropy:7.578479
Green-entropy:7.501242
Blue-entropy:7.582950

Red-entropy:7.593273
Green-entropy:7.515173
Blue-entropy:7.587955

Red-entropy:7.651600
Green-entropy:7.566521
Blue-entropy:7.646529

Red-entropy:7.666877
Green-entropy:7.589478
Blue-entropy:7.665623

Red-entropy:7.521361
Green-entropy:7.355216
Blue-entropy:7.453541

Red-entropy:7.539989
Green-entropy:7.369377
Blue-entropy:7.462634

Red-entropy:7.440034
Green-entropy:7.586528
Blue-entropy:7.622805

Red-entropy:7.461563
Green-entropy:7.606529
Blue-entropy:7.644802

Figure 7. Comparison of experimental images in three aspects: visual effect, three-channel informa-
tion entropy, and histogram.
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Figure 8. The residual image between the cover image and the container image, and the secret image.

4.4. Image Quality
There exist many image quality assessment metrics, such as PSNR, structural similarity

(SSIM) [54,55], feature similarity (FSIM) [56], and gradient magnitude similarity deviation
(GMSD) [57]. However, PSNR and SSIM are two most widely used evaluation metrics for
image steganography. Following the previous image steganography, this paper also uses
these two metrics to evaluate the quality of the generated images.

PSNR is an objective evaluation index of image quality, which is widely used in
data hiding. A higher PSNR value indicates that the image distortion is small, and the
image quality after hiding is better. It is one of the most essential parameters to judge the
effectiveness of any steganography scheme. PSNR is mainly used to measure the distortion
rate of an image and display it as a score. Its definition is based on the MSE and can be
formulated as below:

PSNR = 10× log10(
(2n − 1)2

MSE(I, Ia)
), (8)

where I is the cover image or the original secret image and Ia is the container image
or the extracted secret image, accordingly. The calculation process of MSE is shown in
Equation (6).

SSIM index is a metric based on the human visual system (HVS) to quantify the
degradation of structural information between two images. It evaluates the processed
image quality by comparing the brightness, contrast, and structural similarity of the original
image. SSIM can be formulated as below:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (9)

where x represents a cover image or secret image, y represents the container image or
the extracted secret image, µx and µy represent the pixel average, σ2

x and σ2
y represent the

variance of pixel values, σxy is determined by the correlation between the image blocks x
and y, c1 = (k1L)2 , c2 = (k2L)2 is a constant used to maintain stability, and L is the range
of pixel values. k1 and k2 are usually set to 0.01 and 0.03 by default, respectively.

To better evaluate the image quality, we divide the proposed image steganography
into three types: TRPSteg_H1, TRPSteg_H2 and TRPSteg_Enc denote hiding one secret
image, two secret images, and an encrypted secret image with recursive permutation,
respectively.

Table 1 shows the average PSNR and SSIM of the proposed models on the testing
set, and they are also compared with some latest neural network data hiding schemes.
The lower PSNR value, the more serious image distortion. For PSNR values lower than
30 dB, it is generally considered that the visual effect of the image is poor. The value of
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SSIM is between −1 and 1. As the SSIM value decreases, the involved two images become
increasingly irrelevant.

From Table 1, it can be found that the PSNR values of the proposed schemes are all
greater than 30 dB; thus, the container image and the extracted image have good visual
effects. Compared with other schemes, TRPSteg_H1 can achieve the highest PSNR and
SSIM values when hiding an image. The PSNR value is more than 45 dB, and the value
SSIM is more than 0.99. Even if two images are hidden, TRPSteg_H2 also can achieve high
PSNR and SSIM values, even higher than some schemes that hide one image.

Both [41] and TRPSteg_Enc encrypt the secret image and then pass it into the model.
The secret image proposed in [41] is a grayscale image, while that of TRPSteg_Enc is a
color image. In TRPSteg_Enc, the PSNR of the cover image can be higher than 40 dB, and
the PSNR and SSIM values of the secret image are even higher than the scheme proposed
in [41].

Table 1. Average values of SSIM and PSNR of different steganography schemes.

Schemes EC (bpp) Cover Image Secret Image

Rehman et al. [18] 24 PSNR 32.5 34.7571
SSIM 0.9371 0.93

Li et al. [41] 8 PSNR 42.3 38.45
SSIM 0.987 0.953

Duan et al. [23] 24 PSNR 40.4716 40.6665
SSIM 0.9794 0.9842

Liu et al. [12] 8 PSNR 39.7708 43.3571
SSIM 0.9828 0.9862

Baluja et al. [40] 24 PSNR 41.2 37.6
SSIM 0.98 0.97

Lu et al. [58] 24 PSNR 38.05 35.38
SSIM 0.954 0.955

Nao et al. [16] 24 PSNR 39.556 37.092
SSIM 0.985 0.975

Duan et al. [22] 24 PSNR 40.211 37.04
SSIM 0.993 0.983

Gan et al. [17] 8 PSNR 38.74 37.9
SSIM 0.968 0.9713

Zeng et al. [15] 24 PSNR 43.57 38.14
SSIM 0.987 0.967

TRPSteg_H1 24 PSNR 45.1918 44.568
SSIM 0.9918 0.9936

TRPSteg_H2 48 PSNR 40.7474 36.6029
SSIM 0.9809 0.9694

TRPSteg_Enc 24 PSNR 40.2816 38.5234
SSIM 0.9795 0.9718

4.5. Hidden Capacity Analysis
The data embedding capacity, termed as EC, basically measures the strength or capa-

bility of how many bits can be concealed within a single pixel of a cover image. EC is the
most important parameter that ensures the quality of a steganography technique, which
can be defined as below:

EC =
NS
NC

, (10)

where NS represents the number of concealed bits, while NC represents the number of
pixels in the cover image.
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Table 2 shows the EC comparison between the proposed scheme and some other
schemes, including traditional schemes and neural network schemes. According to this
table, we find that neural network steganography methods have a larger effective capacity
than traditional data hiding schemes [19,20,59]. The maximum capacities of the traditional
data hiding schemes [19,20,59] and the neural network steganography methods [15,18,21]
are 2 and 24 bpp.

The proposed scheme not only achieves the maximum ability of the schemes [15,18,21]
but also makes the EC value reach 48 bpp. When hiding two images, the container still
maintained a good visual performance. We calculate the average PSNR and SSIM values
for the container and extracted secret images. As shown in Table 1, the average PSNR and
SSIM values of the cover and secret images decreases as the number of hidden images
increases. Clearly, with the increase of hidden images, it will be more difficult to hide
hidden images into a cover image.

Nevertheless, when hiding two images into an cover image, the proposed TRPSteg can
also achieve high PSNR and SSIM values and the container images are with good visual
imperceptibility.

Table 2. Steganographic capacity comparison.

Schemes NC NS EC

Traditional Gao et al. [59] 256× 256 132× 126 2
Meng et al. [19] 512× 512 256× 256× 8 2

Pakdaman et al. [20] 512× 512 128× 128× 8 0.5

Neural network Rehman et al. [18] 300× 300 (RGB) 300× 300× 8 8
Zhang et al. [21] 256× 256 (RGB) 256× 256× 8 8
Zeng et al. [15] 256× 256 (RGB) 256× 256× 3× 8 24

TRPSteg_H1 144× 144 (RGB) 144× 144× 3× 8 24
TRPSteg_H2 144× 144 (RGB) 2× 144× 144× 3× 8 48
TRPSteg_Enc 144× 144 (RGB) 144× 144× 3× 8 24

4.6. Parameter Influence and Ablation Study
In this subsection, we mainly discuss various factors that affect the training results,

including the setting of the parameter β of the loss function in (7), the selection of the
extracting network model, the number of RSTB modules and the number of STL in RSTB.

Table 3 shows the experimental results of the proposed scheme with different param-
eter β of the loss function. By simply adjusting the parameter β of the loss function, our
model can obtain a more ideal container image and an extracted secret image. When the
parameter β is adjusted from 0.75 to 1, the PSNR and SSIM values of the container image
and extracted secret image were improved, and the PSNR value of extracted image was
improved by 1.5 dB. When the value of β continues to increase, the performance of the
model is not improved any more. Hence, the proposed scheme sets the parameter β of the
loss function to 1.

Table 3. The SSIM and PSNR values of difference parameter β of the loss function.

β Container Image Extracted Image

0.75 44.88/0.991 43.05/0.991
1.00 45.19/0.992 44.57/0.994
1.25 45.18/0.991 44.57/0.994

Table 4 shows the experimental results of different extracting network models, different
numbers of RSTB modules and different numbers of STL modules in RSTB. From this
table, it can be seen that as the network depth and complexity decrease, the effect of the
image steganography scheme also decreases. Compared with the previously ordinary
convolutional neural extraction network, the proposed scheme uses Swim-Transformer for
the extracting network. The extraction effects are significantly improved, and the hiding
network has similar effects.
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Table 4. The SSIM and PSNR values of different modules.

Hiding Network Extraction Network Container Image Extracted Secret Image

4,4,4,4 (RSTB) 4,4,4,4 (RSTB) 42.25/0.985 41.78/0.989
6,6 (RSTB) 6,6 (RSTB) 39.50/0.974 38.73/0.981

6,6,6,6 (RSTB) CNN 43.10/0.988 39.95/0.986
TRPSteg_H1 TRPSteg_H1 45.19/0.992 44.57/0.994

4.7. Statistical Test
StegExpose combines multiple statistical indicators, such as Chi-Square and regular

singular (RS) analysis, which plays a crucial role in image steganalysis [60]. We use
StegExpose with a standard threshold of 0.2 to analyze the proposed scheme, and the
results are shown in Figure 9. The horizontal axis indicates that an image that is not contain
secret information is judged as a steganographic image, and the vertical axis indicates that
an image that contain secret information is judged as a steganographic image. The red
dashed line represents random guessing.

The blue and green solid line represent the receiver operating characteristic (ROC)
curves drawn by FC-DenseNet [16] and the proposed scheme, respectively. By observing
Figure 9, it can be found that the ROC curve of the proposed scheme are similar to FC-
DenseNet [16], and even our green solid line is closer to the red dotted line; therefore, the
analysis of the proposed scheme using the StegExpose is only slightly better than random
guessing, which shows that the proposed scheme can effectively prevent the analysis of
this steganographic tool.

Figure 9. Comparison of the ROC curves drawn by the proposed scheme and FC-DenseNet [16]
using the StegExpose analysis tool.

4.8. Threats to Validity
Image steganography is to hide secret images in a cover image, however, maintaining

the containing image that carries the secret image information as visually identical to the
cover image. Since the maximum amount of information that an image can hold is limited,
the amount of secret information that a containing image can contain is also limited. The
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possible threats to the proposed TRPSteg can be generally classified as internal validity and
construct validity [61].

Internal validity reflects how changes in one factor can lead to changes in another
related factor. In our experiments, the two main evaluation metrics for steganographic
quality are hidden capacity and image quality. These two factors restrict each other, and
changes in any one factor will lead to changes in the other. When we increase the capacity
of the information, there is no drastic changes in the quality of the image. However,
when comparing PSNR and SSIM values, Table 1 shows that the changes in image quality
are small.

Construct validity is to validate the measurements. In our experiments, histogram
graphs, PSNR and SSIM values are used to accurately measure the changes in the quality
of the image. These values are rechecked for correctness. Comparing the PSNR and SSIM
values achieved by the proposed TRPSteg with some state-of-the-art steganography models,
Table 1 shows that the proposed image steganography significantly outperforms the others.

4.9. Discussion
In order to solve the problem of secret information leakage, the secret image to be

hidden is first, encrypted by the proposed recursive permutation, and then the cover
image and encrypted secret image are integrated as a container image. Since the semantic
content of the secret image is scrambled before they are embedded into cover images, the
confidentiality of secret information is well protected.

Figure 10 shows the architecture diagram of the model. We use the ImageNet dataset
to train and test the model. The PSNR and SSIM are used to evaluate image quality. Table 1
lists the PSNR values and SSIM values of this scheme. From this table, we can find that
even if the secret image is recursively encrypted and then passed into the steganography
model, good results can still be obtained. The value of PSNR values are higher than 40 dB,
and the values of SSIM are higher than 39 dB. Some examples are shown in Figure 11.
Note that the third and fifth columns are the encrypted secret image and extracted image,
respectively. Applying the decrypted operations of the proposed recursive permutation,
we can finally obtain the decrypted extracted image, as shown in the sixth column.

Figure 10. The recursive permutation encryption steganography model architecture.
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Figure 11. The experimental results obtained from randomly selected images from the ImageNet
dataset by the recursive permutation encryption steganography scheme.

To demonstrate the robustness of the proposed image steganography scheme, we crop
the 1

4 data of the container images at the upper left corner. The corresponding images are
shown in Figure 12, and the decrypted extracted images are shown in the fifth column of
Figure 12. From this figure, we can see that, even for a large percentage of data loss, the
proposed scheme can still recover the secret images with visually meaningful information.
It indicates that the proposed scheme can resist attacks of data loss.

Figure 12. Effect picture of the information loss comparison experiment.

5. Conclusions
Image steganography has shown its advantages over secure communication. As a

recent deep-learning model, the Transformer demonstrated its superiority to computer
vision tasks. This paper proposes a novel image steganography scheme based on the Swim-
Transformer, with which novel embedding networks and extraction networks are designed.
In addition, a recursive permutation is proposed to scramble the secret image to further
enhance the security. The experiments indicate that the Transformer outperformed the
compared models in terms of the evaluation indicators. The secret image can be encrypted
before embedding, and there was no significant difference in the visual effects of the carrier
image and the extracted image, showing that the proposed image steganography with
encrypted images embedded is feasible.
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This work is a new attempt to simultaneously use Transformers and encryption
techniques for image steganography. The extensive experiments have demonstrated the
effectiveness of the Transformer network model in the field of image steganography. It also
significantly outperforms the state-of-the-art compared approaches. The performance of
the steganography model can be effectively improved by building an extraction network
with a similar structure to the hiding network. In addition, the proposed scheme combines
chaotic image encryption with the Transformer-based image steganography, which further
improves the security of the scheme. At the same time, the proposed recursive permutation
strategy can be widely used in image encryption. All these attributes make the proposed
image steganography have good applicability.

In the future, we will study how to improve the quality of the container images and
compress hiding and extracting model sizes. In addition, we will add the SSIM value to
error metrics for training the networks to make the error metrics more closely associated
with human vision. We will also study merging several image quality assessment metrics
into one to evaluate image steganography schemes.
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