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Abstract

Autosegmentation of image guidance (IG) scans is crucial for streamlining and optimising delivered
dose calculation in radiotherapy. By accounting for interfraction motion, daily delivered dose can be
accumulated and incorporated into automated systems for adaptive radiotherapy. Autosegmentation
of IG scans is challenging due to poorer image quality than typical planning kilovoltage computed
tomography (kVCT) systems, and the resulting reduction of soft tissue contrast in regions such as the
pelvis makes organ boundaries less distinguishable. Current autosegmentation solutions generally
involve propagation of planning contours to the IG scan by deformable image registration (DIR).
Here, we present a novel approach for primary autosegmentation of the rectum on megavoltage IG
scans acquired during prostate radiotherapy, based on the Chan-Vese algorithm. Pre-processing steps
such as Hounsfield unit/intensity scaling, identifying search regions, dealing with air, and handling
the prostate, are detailed. Post-processing features include identification of implausible contours
(nominally those affected by muscle or air), 3D self-checking, smoothing, and interpolation. In cases
where the algorithm struggles, the best estimate on a given slice may revert to the propagated kVCT
rectal contour. Algorithm parameters were optimised systematically for a training cohort of 26 scans,
and tested on a validation cohort of 30 scans, from 10 patients. Manual intervention was not required.
Comparing Chan-Vese autocontours with contours manually segmented by an experienced clinical
oncologist achieved a mean Dice Similarity Coefficient of0.78 (SE < 0.011). This was comparable
with DIR methods for kVCT and CBCT published in the literature. The autosegmentation system was
developed within the VoxTox Research Programme for accumulation of delivered dose to the rectum
in prostate radiotherapy, but may have applicability to further anatomical sites and imaging
modalities.

1. Introduction

Automated segmentation of the anatomy, or autoseg-
mentation, is crucial for optimising the efficacy of
adaptive radiotherapy (ART) (Jaffray et al 2010,
Godley et al 2013, Thor et al 2013, Whitfield et al
2013). Reactive adaptations to a patient’s radiation

treatment plan may be necessary if anatomical changes
occur during treatment resulting in deviations from
the intended planned dose. Image guided radiotherapy
(IGRT) facilitates visualisation of the patient’s anat-
omy throughout the course of treatment and offers a
potential platform for assessing dosimetric implica-
tions. However, the expanse of information contained
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within IGRT images is not currently being realised
to its full potential, and this is partly due to the
dependency on manual contouring.

The development of robust and automated
approaches to segmentation has been identified as a
key aspect in the pursuit of delivered dose calculation
for ART (Jaffray et al 2010), as manual contouring of
daily IG scans is unfeasible. Not only would this intro-
duce an impracticable excess to the clinical workload
(Gambacorta et al 2013, Scaife et al 2014), but addi-
tional training would be required due to the poorer
soft tissue definition of IG scans when compared with
the more familiar kilovoltage (kV) treatment planning
scans (Whitfield et al 2013). The reduction in image
quality is due to the lower contrast and signal-to-noise
ratio associated with cone-beam computed tomo-
graphy (CBCT) and megavoltage CT (MVCT) imaging
(Chao et al 2008, Jackowiak et al 2015). Automated
solutions present the opportunity to expedite and
standardise anatomical segmentation of IG scans
(Weiss et al 2010, Gambacorta et al 2012, Gambacorta
et al 2013). Approaches for autosegmentation to date
have generally focused on intensity values, atlas-based
tools, or shape-based models, each with their own lim-
itations (Whitfield et al 2013).

The purpose of this work is to develop an auto-
segmentation tool to identify the rectum on MVCT IG
scans for patients undergoing prostate IGRT. This
review of the literature focusses on segmentation tools
relevant to this anatomy. The motivation is that daily
segmentation could facilitate quantitative tracking of
interfraction rectal motion and deformation through-
out the course of treatment (Scaife et al 2014). Devia-
tions in rectal positioning from the planning CT scan
have been shown to induce differences between the
intended planned dose, and that actually received
(Scaife et al 2015, Shelley et al 2017). However, seg-
mentation of anatomy within the pelvic region can be
particularly challenging. Soft tissue boundaries lack
distinction and worsen in low contrast imaging (Liit-
gendorf-Caucig et al 2011, Geraghty et al 2013). Meth-
ods used for segmentation of the prostate, such as
deformable image registration (DIR), are generally not
applicable for the rectum due to the large and unpre-
dictable spatial deformations caused by rectal contents
and intestinal gas (Michalski et al 2010, Niu et al 2012,
Scaife et al 2014, Varadhan et al 2015). Common DIR
algorithms struggle due to intensity variations and the
lack of one-to-one correspondence between a full,
gassy, or empty rectum (Chao et al 2008, Niu et al
2012, Zambrano et al 2013). Previous studies investi-
gating the dosimetric effects of interfraction rectal
motion have been dependent upon manual delinea-
tion of the rectum on IG scans (Kupelian et al 2006,
Sripadam et al 2009, Chen et al 2010, Anderson et al
2011, Hatton et al 2011, Peng et al 2011, Mcparland
etal 2014, Pearson et al 2016, Collery and Forde 2017),
consequently being limited in sample size. One
approach attempting to address this limitation was to
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implement statistical simulations for quantifying
motion-inclusive delivered dose (Thor et al 2013). A
common recommendation of these studies was the
development of robust systems for autosegmentation
of the rectum, as a crucial component towards achiev-
ing automated ART for prostate radiotherapy.
Autosegmentation of rectal contours has pre-
viously been addressed for standard kVCT imaging.
Evaluations of selected commercial algorithms by
Geraghty et al 2013, and La Macchia et al 2012, found
that systems struggled to identify the rectum on the
planning kVCT without manual intervention. Despite
the superior image quality of kVCT, the prostate-rec-
tum interface was affected by poor or no contrast (par-
ticularly at the superior and inferior rectal boundaries)
which led to greater inter-observer error. It follows
that these difficulties would worsen for poorer quality
IG scans. However, Zambrano et al 2013, found no
significant differences in rectum registration errors
between kVCT-kVCT and CBCT-kVCT using an in-
house featurelet-based model, though concluded that
their DIR accuracy was not yet sufficient for clinical
contour propagation. Gao et al 2006, proposed an
intensity modification method (IMM) based on an in-
room diagnostic kVCT-on-rails system, which intro-
duced artificial gas with adaptive smoothing. The
IMM improved upon rigid transformation and DIR
alone. However, standard kVCT imaging is not often
available for IG, and in our study we sought to exploit
images already routinely acquired during treatment.
Autosegmentation techniques developed for stan-
dard kVCT may not be transferrable to lower-quality
IG scans (Whitfield et al 2013). Alternative approaches
have been proposed for CBCT, the most common IG
system since being fitted as standard to modern gan-
try-based linear accelerators. Commercial systems are
beginning to support DIR of IG scans (Brock et al
2017), including the implementation of advanced
hybrid methods rather than intensity-based approa-
ches (Takayama et al 2017). Several research groups
have investigated independent solutions for auto-
segmentation of the rectum. Chao et al 2008, describe
a narrow shell warping technique to map the rectal
contour via b-spline DIR from planning kVCT to
CBCT, achieving a mean error of 2 mm. This com-
plemented the methods of Xie et al 2008, who applied
scale invariance feature transformation and thin plate
spline transformation to a set of control points sur-
rounding the rectum, resulting in over 90% accor-
dance between manually segmented and DIR mapped
rectum. Chen ef al 2009 reported similar results using
a modified Demons algorithm based on CBCT grey-
scale. Thor et al (2011, 2013) found the modified DIR
Demons algorithm system struggled with large rectal
deformations, resulting in only 20% of propagated
rectal contours being classified as good or acceptable.
As such, translation of these tools into fully automated
ART has not yet been achieved in clinical practice.
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DIR has been successfully applied to MVCT ima-
ging in the context of phantom measurement and
patients with head & neck cancer (Nobnop et al 2017,
Yeap et al 2017), but as described for kVCT and CBCT,
is less accurate when boundaries are poorly defined.
MVCT image quality is adequate for visualising the
rectum (Yang et al 2009) and bowel (Perna et al 2016),
but successful DIR contour propagation has been
dependent upon manual contouring or intervention.
Studies reporting on DIR of MVCT (Kupelian et al
2006, Wahl et al 2017), or MV-CBCT (Akino et al
2013) for dose accumulation of the rectum have relied
upon manual segmentation, and as such have been
limited in terms of patient numbers. For identifying
the rectum on MVCT scans, alternatives to DIR such
as independent primary segmentation approaches,
may be more appropriate in the context of achieving
dose accumulation for ART.

Here we present a novel method that has been
developed to automatically identify the rectum on
daily MVCT scans acquired for patients undergoing
IGRT to the prostate using TomoTherapy® (Accuray,
Sunnyvale, CA). The basis of the contouring is the
Chan-Vese algorithm (Chan and Vese 2001), imple-
mented in 2D within the MATLAB coding environ-
ment (MathWorks®, Natick, MA). As such, the
difficulties previously described for using DIR to iden-
tify the rectum are avoided. Full details are provided,
including the use of prior knowledge, rigid registration
for setup correction, image windowing, and identifica-
tion of poor contours. The algorithm was developed
on training data, and validated on test scans, before
integration into the VoxTox research programme
(Burnet et al 2017). We demonstrate that IG scans
have further use than routine positional verification by
extracting quantitative information in the form of
anatomical contours from these images. No additional
exposures were required to obtain the contours, as IG
was already included in the patient pathway. Contrary
to the methods discussed above, our approach per-
forms primary segmentation rather than contour pro-
pagation, which addresses the challenges associated
with the magnitude of shape change and intensity var-
iation observed in the rectum.

2. Material and methods

2.1. Clinical imaging details

The VoxTox research programme is an observational
study investigating the link between delivered radia-
tion dose and toxicity (Burnet et al 2017). All patients
were treated with TomoTherapy® (Accuray, Sunny-
vale CA), with daily MVCT image guidance scans
acquired immediately prior to treatment for the
purposes of online positional verification. The Vox-
Tox study received approval from the National
Research Ethics Service (NRES) Committee East of
England (13/EE/0008) in February 2013 and is part of
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the UK Clinical Research Network Study Portfolio
(UKCRNID 13716).

An experienced clinician [JES] manually deli-
neated the rectum on 56 MVCT IG scans from 10
prostate cancer patients (approximately 560 slices).
These contours were taken as the gold standard when
evaluating the accuracy of the autosegmentation. On a
subset of 6 scans from the same patients, the rectum
was independently delineated by 8 oncologists, includ-
ing JES (Scaife 2015, Burnet et al 2017). The median
Jaccard Conformity Index, JCI (Jaccard 1901), of JES
relative to the other observers was 0.83, giving a mea-
sure of the inter-observer variability. Twenty-six scans
were used to train the autosegmentation algorithm,
and 30 test scans were used for validation of the gener-
ated autocontours. Test scans were distinct from train-
ing scans, and autocontours were visually reviewed
by JES.

Imaging specifications for the kVCT were:
272 x 272 pixels per slice, pixel size 1.953 mm, slice
thickness 3 mm. Scan length included the full extent of
the rectum, from rectosigmoid junction to the most
inferior slice containing both ischial tuberosities
(Scaife et al 2014). MVCT specifications were:
512 x 512 pixels per slice, pixel size 0.754 mm, slice
thickness 6 mm. The field of view for MVCT imaging
was limited to typically 8—12 slices according to local
protocols to minimise additional dose and time for
prostate IGRT (Bates et al 2013), so only a proportion
of the rectum was imaged.

2.2. Algorithm overview

Figure 1 shows a flow diagram summary of the
algorithm for rectal contour detection. The best
estimate of the rectal contour is taken from either: (i) a
region with air, (ii) the kVCT planning contour for the
muscle-associated region (either as-is or modified
where air is present in the planning scan), (iii) the
autosegmentation result (either from the initial pass or
using the smoothed shape for a revised starting
contour), or (iv) an interpolated contour. All steps are
described in the following sections. It is important to
note that identification of the best choice of contour
is intrinsic to the algorithm, and does not require
manual intervention.

2.3. Pre-processing

The following pre-processing steps are applied to
MVCT scans to optimise autosegmentation of the
rectum. First, a rigid registration is performed to align
the daily image with the kVCT scan. The shifts and
rotations of this registration replicate the couch
positional adjustments applied by the treatment radio-
graphers on set, and are obtained from TomoTherapy
archives (Romanchikova et al 2018). Once registered,
a median filter of width 5 pixels is applied to reduce
noise, image intensities are rescaled to improve
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Figure 1. Flow diagram describing autosegmentation algorithm.
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contrast, and any arising complexities due to air
pockets are addressed. These steps are detailed below.

2.3.1. Rescaling hounsfield units

To enhance contrast between tissue, air, and bone, the
MVCT Hounsfield Units (HU) are re-scaled to inten-
sity values between 0 and 1, as illustrated in figure 2.
Rescaling parameters were selected based on clinically
optimal windowing parameters. The contrast between
the rectum and surrounding material is improved by
assigning the rectal wall and contents an intensity
approaching 1, and surrounding tissue an intensity
approaching 0. In the ‘critical range’ found for rectal
contents between —10 HU and 100 HU (derived from
a set of examined scans), pixels are rescaled and
assigned an intensity value between 0 and 1. Pixels
between 30 HU and 60 HU are assigned an intensity of

Scaled intensity

-300 -130 -10 30 60 100 200
Hounsfield units

Figure 2. Rescaling from Hounsfield Units (HU) to scaled
intensity. Pixels less than —130 HU are identified as rectal gas
and are rescaled to an intensity value of 1 to be included as
rectal content. Pixels between —10 HU and 100 HU are in the
‘critical range’ identified as rectal contents, and are rescaled to
intensity values between 0 and 1.
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1, with linear ramps up to these values as shown in
figure 2. The linear ramp function is a simple method
for applying extra weighting to material identified as
lying within the rectum, ramping off as it becomes less
certain whether material should be included in the
rectum. Pixel values greater than 100 HU are assigned
an intensity of 0. Pixels values less than —130 HU are
assumed to be gas pockets within the rectal contour so
are assigned an intensity value similar to rectal matter
to aid the autosegmentation process. The rectal gas
threshold of —130 HU was determined empirically
and differs from the standard air value of —1000 HU
due to traces of solid/liquid matter in the air pockets,
and partial volume effects. Larger gaseous regions are
treated as a special case and are discussed below.

2.3.2. Search region

To increase the robustness and efficiency of the
algorithm, a search region is defined on the MVCT
image by expanding around the original location of
the rectum, identified using prior knowledge of the
kVCT planning scan rectal contour following rigid
registration. The area of expansion of the region of
interest (ROI) is based on the rectum’s maximum
estimated displacements, obtained from a considera-
tion of rectal contours defined manually by several
clinicians (Scaife et al 2014). Values of the expansion
on the MVCT scan are taken as 38 mm (50 pixels)
anteriorly, 15 mm (20 pixels) posteriorly, and 30 mm
(40 pixels) left and right. In addition, a posterior limit
of the ROI is defined by the location of the spine, if
present and identifiable on a given slice (using a
thresholding approach).

2.3.3. Dealing with air

The presence of air, or rectal gas, in the scan provides a
useful marker of the rectum, but is also a potential
source of confusion to an automated algorithm. For
each MVCT image slice, the largest region of con-
nected air pixels, as determined following intensity
scaling, is found using the MATLAB regionprops
function. For regions of air spanning approximately
85 to 340 mm? (an area of 150 to 600 pixels), the largest
connected region is identified, with any resulting
‘holes’ filled in. The region is enlarged by 6 mm
(8 pixels) to allow for surrounding rectal wall. Inten-
sity re-scaling serves to ensure that smaller gas regions
less than 85 mm? in area tend to be included within the
rectal contour on applying the autosegmentation
algorithm. Regions identified as rectal gas spanning
over 340 mm?® are explicitly included within the rectal
contour by simply defining the rectal contour as this
area plus a margin to account for the rectal wall. In
addition, some smoothing of the contour is applied to
give a realistic solution. Figure 3 illustrates two cases
for dealing with smaller (a and b), and larger (c and d)
air regions. Autocontours derived from the air regions
are shown in the original scans, figures 3(a) and (c),
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and are shown alongside the clinician-defined con-
tours for comparison.

Some spuriously detected ‘air regions’ are dis-
regarded if the centre of the air region does not lie
within the location of the original rectal planning scan
contour.

In some cases, the kVCT planning contours are
propagated to determine the best estimate of a part-
icular MVCT slice, as detailed below. To account for
potential changes in the MVCT rectal contour due to
air, the area of air in the kVCT scan is evaluated using
the above approach. The kVCT rectal contour is then
reduced (using the MATLAB erosion function) by the
difference between the kVCT- and MVCT-deter-
mined air areas, to produce the best estimate for the
MVCT rectal contour for that slice.

2.3.4. Dealing with the prostate

Because the MVCT IG scans are used for target
localisation during treatment, the assumption is made
that the location of the prostate is consistently
positioned between scans. Since the prostate and
rectum do not overlap, pixels on the MVCT scan
included within the original kVCT prostate contour
are avoided by the rectal autosegmentation system.
These pixels are assigned an intensity value of 0, so that
they do not fall within the expected intensity range of
the rectum, effectively biasing the autosegmentation
algorithm to exclude these pixels from the rectal
contour. Figure 3(d) illustrates this approach.

In addition, for the purposes of describing rectal
position as a function of slice number, a common
landmark is identified from the kVCT prostate con-
tour. The reference MVCT slice, at which the rectal
origin is defined for plotting, is the slice containing the
most anterior coordinate of the prostate contour.

2.4. Contouring algorithm
The basic contouring algorithm used is a 2D version of
the Chan-Vese algorithm (Chan and Vese 2001). A key
determinant in the effectiveness of the algorithm is the
use of a good starting point.

2.4.1. Identification of contour starting point

In an early iteration, the starting point of the rectal
contour was identified by scanning for appropriate
features, using no a priori knowledge, but this was
found to be unreliable. The more robust approach
adopted here uses the rectal contour manually out-
lined on the kVCT planning scan as the starting point.
Shrinking the original kVCT contour slightly (using
erosion with a 3 x 3 structure) allows a ‘bias’ para-
meter in the autosegmentation algorithm to control
the subsequent expansion of the contour.

An improvement to this starting pseudo-contour
was implemented by considering shifts of up to 15 mm
(20 pixels) in the location of the starting contour, and
choosing the starting location with the highest
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SO
Clinician contour
Auto-contour

Clinician contout
Auto-contour

Figure 3. Image HU/intensity rescaling applied to regions containing air regions: (a) original and (b) rescaled scans with a small air
region; (c) original and (d) rescaled scans with a larger air region. Portions of the scan outside the region of interest are black in the

rescaled scans. In both cases, the spine at the bottom of the scan has been detected and used to identify the most posterior margin of
the region of interest. Note that, in (d), the prostate lying anterior to the rectum has been rescaled to dark pixels. Axes are labelled in

pixels.

correlation between the shifted contour mask and the
MVCT slice being considered. This identified bright
regions of the same shape as the kVCT rectal contour
within 15 mm (20 pixels) of the starting contour, and
accounted for any slice misalignment.

2.4.2. Autosegmentation algorithm

The 2D Chan-Vese algorithm used (Chan and
Vese 2001) was implemented as a standard MATLAB
function, activecontour. Two parameters were critical
to the contouring operation: (i) a smoothing para-
meter, governing the smoothness of the final contour,
and (i) a contraction bias parameter giving the
weighting assigned to the area of the contour. Increas-
ingly negative values of contraction parameter encou-
rage expansion of the fitted contour. The values of
these parameters were investigated systematically.

2.5. Post-processing

Cases were detected where the autosegmentation
algorithm did not produce reasonable contours. Post-
processing algorithms were therefore developed to
identify slices where autosegmentation was poor, and
to replace these with an improved estimate of the rectal
contour. Autosegmentation contours abutting the
edge of the ROI (i.e. the expanded area around the
supposed position of the rectum selected for analysis)
are rejected as poor contours. Other criteria used to
identify erroneous contours are discussed below.

2.5.1. Implausibly large contours and finding the muscle-
associated region

In the lower third of the rectum, the reduced image
contrast between the surrounding soft-tissue muscu-
lature makes it difficult to distinguish the rectal
contour, particularly on lower quality IG scans. In this
situation, the Chan-Vese algorithm tends to over-
contour. This is illustrated in figure 4, where the
autosegmented contour is displayed alongside the
clinician-delineated rectal contour. Areas of poor
contrast between the rectum and adjacent organs can
lead to similarly large and erroneous contours.

150 250 350

Figure 4. Large autosegmented areas correspond to slices
where the rectum is poorly defined, particularly in the lower
third of the rectum as illustrated here with an autosegmented
area of 1680 mm? (2950 pixels). Note that the shape of the
upper edge of the autosegmented contour has been affected
by the prostate having been blanked out in the rescaled image
(not shown). Axis labels are pixel numbers.

A threshold value for the contoured area was
therefore implemented to identify erroneously large
contours. The value of the threshold was identified by
considering the relationship between contour area and
accuracy of the corresponding autosegmented con-
tour. Accuracy was characterised using the JCI,
defined for two contours (in this case comparing auto-
segmented against clinician contoured) as the inter-
section area divided by the union area of the two
contours. A value of one corresponds to identical con-
tours, and values below 0.5 are relatively poor. Figure 5
shows the relationship between JCI, comparing auto
and manual contouring, and the area of the auto-
segmented region, after subtraction of air. Many
of the large contours correspond to the lower third of
the rectum where the autosegmentation is system-
atically over-estimated. A threshold contour area of
1420 mm?* (2500 pixels) effectively separates poor
quality over-contoured slices from more accurate con-
tours with a higher JCL
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Figure 5. The relationship between the autosegmented rectal contour area (after subtracting the area of air pockets) and the Jaccard
Conformity Index, JCI, comparing autosegmented and clinician-outlined rectal contours. Implausibly large areas correlate with scans
where the JCI is low. This occurs mainly in the muscle-associated region in the lower third of the rectum, where the algorithm
systematically over-estimates the rectal contour (prior to post-processing). The horizontal line shows the cut-off area 0of 2500 pixels
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The observation that large errors systematically
occur in the muscle region is used to identify the
extent of the muscle-associated region in the lower
third of the rectum. The top of this muscle-associated
region is chosen as the most superior slice with an
over-large contour area, but not beyond the 6th slice
from the bottom of the MV CT scan. In some cases, sli-
ces inferior to this critical slice do not have an over-
large contour, but are nevertheless identified as being
in the muscle-associated region. In the event of no
such slice being found, a default of the second-most
inferior slice is chosen as the end of the muscle-asso-
ciated region.

As a default, contours in this muscle-associated
region are taken from the kVCT planning scan, which
were manually delineated by the clinician. Two excep-
tions to this occur when air is present. Where a sig-
nificant region of air is detected in the MVCT slice, the
corresponding air region is used directly as the rectal
contour, as previously discussed. Where a significant
region of air is detected in a kKVCT slice, but there is no
air in the corresponding MVCT slice, the original
kVCT rectal contour is reduced by an amount
corresponding to the air region to produce a best esti-
mate MVCT rectal contour in the absence of air.

2.5.2. Smoothing and interpolation in 3D

Having identified the ‘best estimate’ contours on each
slice of the MVCT scan, the three dimensional (3D)
structure is assessed to determine whether errors have
occurred in the initial autosegmentation. A smoothing
interpolation scheme is used to produce a smooth 3D
rectal surface from the MVCT contours. This is used
to identify, and improve on, erroneous slices. Slices
already identified as having a poor contour due to
abutting the edge of the search region or with an
excessively large contour (whilst outside the muscle-
associated lower rectal region) are omitted when

calculating this smoothed shape. Contours for each
slice are represented in a polar coordinate system
where r is the distance from the centre and 6 gives the
angular position. Contours are interpolated onto 100
values of 6, evenly spaced around the circumference
and the origin of each slice is taken as the centroid.
Therefore, the full scan can be represented in a r-6-z
coordinate system, where z locates the slice position in
the cranio-caudal direction. The z-origin is taken as
the reference MVCT slice, identified from the kVCT
prostate contour as described previously. In this way,
the radius r is expressed as a function of regularly
gridded values of # and z, facilitating further analysis.
A smooth function is fitted to the radius profile (r) in
both the circumferential () and cranio-caudal (2)
directions to obtain a new set of values of r corresp-
onding to a smoothed shape. These are then converted
back to Cartesian coordinates in each slice.

Erroneous slices are identified when the JCI
between the smoothed and evaluated autosegmented
rectal contours falls below a threshold of 0.5. A second
segmentation iteration is then performed on these sli-
ces, using the smoothed contour as a starting point. If
the second-iteration Chan-Vese contour produces a
JCI of greater than 0.5 with the smoothed contour, it is
used. If the Chan-Vese contour produces a JCI of less
than or equal to 0.5, the interpolated contour taken
from the smoothed shape is used instead. If the most
superior or most inferior slices are affected, auto-
contours are replaced by the original kVCT contour,
rather than using extrapolation.

Figure 6 shows the geometry for a typical case
where the interpolation scheme is required. The 3D
shape, figure 6(a), illustrates three autosegmented
slices that were identified as erroneous. The inter-
polated contours replace these poor-quality auto-
contours to give a more anatomically-reasonable
overall profile. Figure 6(b) shows these contours and
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the corresponding clinician contour on an image for
one of these slices.

3. Results

3.1. Training data

A set of 26 training scans was used to develop the
algorithm and identify optimal parameter settings.
The effect of the contraction bias parameter on the
accuracy of the autosegmentation algorithm is shown
in figure 7. Mean values for JCI were 0.680, 0.688 and
0.684 for bias values of —0.9, —1.0 and —1.1,
respectively. Based on these results, the optimal
parameter was taken as —1.0. Similar analyses were
used to determine other key values including the
smoothing parameter (optimal value found to be 6).
Improvements to the algorithm were also implemen-
ted based on observations of poor performance in
challenging scans. Figure 7 demonstrates the distribu-
tion in the accuracy of the contours, with relatively few
‘poor’ contours with JCI below 0.5.

3.2. Testresults

The algorithm optimised on training data was run on
30 test scans (as discussed in section 2.1). Performance
of the algorithm was evaluated by calculating JCI
scores for autosegmented contours compared to
the gold standard. Dice Similarity Coefficient (DSC)
(Dice 1945) scores were also calculated to allow
comparison with studies in the literature. JCI and DSC
scores for propagated planning contours were also
calculated. Figure 8 shows JCI results as a function of
slice position relative to the prostate (including train-
ing data JCIs for reference, with standard error bars).
Slices further from the prostate with fewer than five IG
scans were excluded due to being subject to large
errors when calculating the mean. The mean JCI
scores across all slices from the autosegmentation
algorithm were 0.69 and 0.67 for the training and test
data, respectively. This is an improvement upon the
mean JCI scores from the corresponding propagated
planning contours of 0.58 and 0.54 for training and
test scans, respectively. The mean DSC for the test data
across all slices were 0.78 and 0.69 for the autosegmen-
tation and propagated planning contours, respectively
(figure 9). Standard errors are indicated on respective
plots. Conformity improves with increasing slice
distance from the inferior muscle-associated regions.
Training and test data have comparable accuracy.
Figure 10 summarises these conformity index results
(both JCI and DSC) for autosegmentation of the test
data as compared with simple propagation of planning
scan contours.

Figures 11 and 12 give a further breakdown of the
underlying processes informing the contours from the
test set. Figure 11 shows the probability associated
with each method used to estimate the final contour.
The large majority of the slices use the Chan-Vese
algorithm to estimate the contour. The kV planning
scan is chosen as the best estimate for a significant
number of cases in muscle-associated regions, where
poor contrast dominates. Air-correction also plays a
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role in determining the final contour in a significant
number of cases. The smoothing/interpolation aspect
of the algorithm is used less frequently. Although this
has a relatively small impact on the accuracy of the
results, this process ensures that the resulting 3D shape
is smooth and hence anatomically reasonable.

Figure 12 shows the mean accuracy associated with
the different autosegmentation methods. Where the
Chan-Vese algorithm is used (either on the first or sec-
ond iteration), the JCI values exceed 0.7. Contours for
slices with large air regions perform similarly. By
detecting values where slice contours do not fit the
smoothed 3D shape, and replacing them with an inter-
polated contour, an improved estimate of the best
contour is achieved. Without this step many of the 3D
structures would be much poorer; this step acts as
effective ‘disaster mitigation’. The worst cases are
those in the poor-contrast muscle-associated region of
the rectum, where the autocontouring is not effective
and the kV contours are used. In the relatively few
cases where there is air in the kV planning scan but not
in the daily IG scan, the simplified approach of redu-
cing the area of KV contours by the amount of air does
not produce accurate results. A more sophisticated
approach, for example using an anatomically-based
deformation model, may improve these cases.

4. Discussion

An autosegmentation algorithm was developed to
identify rectal contours on daily MVCT scans for
patients undergoing prostate IGRT. This novel
approach involves primary segmentation rather than
DIR, as DIR can struggle when dealing with large
magnitudes of rectal deformation and varying inten-
sities of rectal contents from day to day. The method
uses a modified 2D Chan-Vese algorithm (Chan and
Vese 2001), with HU/intensity scaling and additional
self-checks. Slices affected by poor contrast, particu-
larly the lower rectal third and surrounding muscula-
ture, are detected automatically and replaced by

propagating the corresponding kV planning contour
as a best estimate. Post-processing identifies erroneous
contours and regenerates reasonable estimates via 3D
interpolation. The algorithm is a crucial component,
integrated within a wider automated processing
system, in the calculation of delivered dose to the
rectum within the VoxTox research programme
(Scaife eral 2015, Burnet et al 2017, Shelley et al 2017).

The autosegmentation algorithm was optimised
for identifying the rectal contour on MVCT imaging
using a training set of 26 scans from 10 patients. Spe-
cific parameters such as HU scaling, identification of
air, and selection of image analysis parameters were
optimised by trial and error, or based on observation,
so may not represent a ‘global minimum’. However,
we expect that the algorithm could be adapted
for other imaging modalities, and even further anato-
mical sites.

Validation was performed on 30 test scans. Perfor-
mance of the autosegmentation test set with respect to
the gold standard produced a mean DSC of 0.78
(SE < 0.01). This compared favourably with studies
in the literature that used higher quality imaging (dis-
cussed previously); kKVCT registration (DSC 0.74)
(Geraghty et al 2013), CT-on-rails DIR/IMM (DSC
0.51/0.71) (Gao et al 2006), CBCT modified Demons
algorithm (DSC 0.77, Thor et al 2011, and DSC range
0.72 to 0.85, Thor et al 2013). When comparing these
results, it should be noted that Geraghty et al used con-
tours from multiple observers, which may result in a
pessimistic value of DSC compared with results based
on asingle observer.

Our experience suggests that in regions of poor
image contrast, such as the lower rectal third, the auto-
segmentation algorithm could be complemented
through the use of DIR. Use of a fully 3D algorithm, or
amachine learning approach, may improve the accur-
acy of rectal autosegmentation.

By implementing a 3D interpolation, not only has
it been possible to automatically detect erroneous
contours, but also the resulting estimated shape
is relatively smooth and hence more anatomically
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representative. Future work will explore using the
autosegmented 2D rectal contours as input to a 3D
finite element model, allowing biomechanical expan-
sion and voxel-by-voxel tracking, for improved accur-
acy of delivered dose calculation.

The autosegmentation algorithm has been suc-
cessfully implemented to accumulate delivered dose,
accounting for interfraction motion, based on daily
MVCT imaging (Scaife et al 2015). It has been a vital
tool in testing the hypothesis that delivered dose can
be a better predictor of rectal toxicity than planned
dose within the VoxTox research programme (Shelley
et al 2017). This novel approach for autosegmentation
of IG scans may contribute to future advances in ART.
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