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Abstract  
The RON receptor tyrosine kinase, a member of the MET proto-oncogene family, is a pathogenic factor im-

plicated in tumor malignancy. Specifically, aberrations in RON signaling result in increased cancer cell growth, 
survival, invasion, angiogenesis, and drug resistance. Biochemical events such as ligand binding, receptor over-
expression, generation of structure-defected variants, and point mutations in the kinase domain contribute to 
RON signaling activation. Recently, functional crosstalk between RON and signaling proteins such as MET and 
EFGR has emerged as an additional mechanism for RON activation, which is critical for tumorigenic develop-
ment. The RON signaling crosstalk acts either as a regulatory feedback loop that strengthens or enhances tumor-
igenic phenotype of cancer cells or serves as a signaling compensatory pathway providing a growth/survival ad-
vantage for cancer cells to escape targeted therapy. Moreover, viral oncoproteins derived from Friend leukemia 
or Epstein-Barr viruses interact with RON to drive viral oncogenesis. In cancer cells, RON signaling is integrated 
into cellular signaling network essential for cancer cell growth and survival.  These activities provide the mo-
lecular basis of targeting RON for cancer treatment. In this review, we will discuss recent data that uncover the 
mechanisms of RON activation in cancer cells, review evidence of RON signaling crosstalk relevant to cancer 
malignancy, and emphasize the significance of the RON signaling addiction by cancer cells for tumor therapy. 
Understanding aberrant RON signaling will not only provide insight into the mechanisms of tumor pathogenesis, 
but also lead to the development of novel strategies for molecularly targeted cancer treatment.
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INTRODUCTION
Discoveries of recepteur d'origine nantais (RON) 

occurred in 1993[1]. Molecular cloning of the human 
RON cDNA revealed that RON is a receptor protein 
tyrosine kinase (RTK) belonging to the C-MET proto-
oncogene family (Fig. 1A)[2,3]. Shortly thereafter in 
1994, the cDNA coding the mouse homology of RON 
was cloned and named as stem-cell derived tyrosine ki-
nase receptor[4]. Human RON gene resides in the chro-
mosome 3p21 region[1] and is highly conserved in dif-
ferent species including human, mouse, feline, chicken, 
zebrafish, and xenopus[1,4-11]. Interestingly, in avian 

erythroblastosis retrovirus S13 that causes chicken sar-
coma, erythroblastosis, and anemia, a viral oncoprotein 
namely V-SEA was identified (Fig. 1A)[12,13]. V-SEA 
is a hybrid protein containing the chicken SEA kinase 
domain fused with viral envelope sequences[9,12,13]. The 
chicken SEA is a homolog of human RON[10]. These 
findings indicate that RON is evolutionally preserved 
in different species. In addition, various RON variants 
have been identified in cancer cells (Fig. 1B). In 1994, 
macrophage-stimulating protein (MSP, also known 
as hepatocyte growth factor (HGF)-like protein) was 
identified as the ligand of RON[14-16]. This finding es-
tablishes the MSP-RON signaling axis. 

Fig. 1 Schematic representation of RON and RON variant. A: General features of MET, RON, and V-SEA. MET is the 
classical example of this family. Mature RON consists of a 35 kDa α-chain and a 145 kDa β-chain linked by a disulfide bond. The 
α-chain resides extracellularly and contains a portion of Semaphorin (Sema). The β-chain comprises a large extracellular domain, a 
short transmembrane (TM) segment, and a cytoplasmic portion harboring a tyrosine kinase (TK) domain and a C-terminal tail. The 
Sema domain harbors a ligand-binding pocket for the MSP β-chain. Regulatory tyrosine residues Tyr1238 and Tyr1239 in the TK 
domain and Tyr1353 and Tyr1360 in the C-terminal tail are marked. V-SEA is an oncogenic protein fused by the avian S13 retrovi-
ral envelope protein with the chicken SEA sequences. PSI, Plexins-Semaphorins-Integrins; IPT, immunoglobulin-plexin-transcrip-
tion. B: Different RON variants. RONΔ55 is derived from alternative initiation at Met913. RONΔ165 is formed by deletion of exon 
11 coding 49 amino acids. RONΔ160 has a deletion of exons 5 and 6 coding 109 amino acids. RONΔ155 has a combined deletion 
of exons 5, 6 and 11. RONΔ170 is derived from deletion of exon 19 in the kinase domain. RONΔ110 is formed by N-terminal trun-
cation at Arg631. RONΔ85 is a free variant with C-terminal truncation at Asp634 caused by insertion. RONΔ160e is derived by 
deletion of exon 2.
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RON signaling in tumorigenesis and therapy has 
gained steady attention over the last 20 years. Aber-
rant RON activation, featured by overexpression[17-24], 
isoform generation[25-35], and persistent activation of 
downstream signaling pathways[17-35], has been found 
in various types of cancers[17-35]. Moreover, functional 
crosstalk between RON and signaling proteins con-
tributes to tumorigenic progression and malignan-
cy[36-43]. The finding that RON signaling is abnormal 
in cancer cells provides a rationale for development 
of RON-targeted cancer therapy. Currently, small 
molecule inhibitors and therapeutic antibodies are un-
der clinical trials (www.clinicaltrials.gov). Here, we 
discuss our current knowledge about mechanisms of 
RON activation, discuss the emerging roles of RON 
signaling crosstalk in cancer malignancy, and sum-
marize the significance of RON signaling addiction by 
cancer cells for potential cancer therapy.

MECHANISMS OF RON ACTIVATION
Dimerization of RON in the cell surface is the first 

step required for RON activation[1,15,16]. Four bio-
chemical events are known to activate RON (Fig. 2): 
specific ligand binding[44,45], receptor overexpres-
sion[17-23], generation of oncogenic variants[25,27], and 
point mutations in the kinase domain[46,47]. The feature 
of RON activation is autophosphorylation at Tyr1238 
and Tyr1239 at the A-loop (Phe1227-Pro1250) in the 
kinase domain[1,48-50]. Phosphorylation of these regula-
tory residues then activates the tyrosine kinase leading 
to further phosphorylation of Tyr1353 and Tyr1360 
in the C-terminal docking site (Fig. 1 and 2)[48-50]. The 
docking site interacts with downstream signaling pro-
teins triggering classical RAS-MAPK and PI-3K-AKT 
pathways[28,34,51-57] (Fig. 2). These pathways are respon-
sible for increased proliferation/ survival[58], epithe-
lial to mesenchymal transition (EMT)[20,59,60], motile-
invasive activity[51,59,61], and chemoresistance[62,63].

Ligand-induced activation 
Ligand-induced activation: The binding of MSP to 

RON is the classical mode to induce RON dimeriza-
tion leading to signaling activation (Fig. 2)[44,45]. MSP 
is the only known physiological ligand that specifi-
cally activates RON[15,16]. As a protein belonging to 
the HGF family[64-66], MSP is a product of hepatocyte, 
which circulates in blood as a biologically inactive 
single-chain precursor[64,66]. Proteolytic conversion 
results in biologically active/mature MSP[67-70], which 
gains the receptor binding capability[44,45]. 

The MSP molecule possesses two-receptor bind-
ing sites[44,45]. The high affinity-binding site is in the 
MSP β-chain, which binds to an interface in the RON 

extracellular Sema domain[44,45,71]. The MSP α-chain 
harbors a low affinity-binding site[45]. The location 
of the corresponding interface in the RON extracel-
lular domain is unknown. Binding by both MSP α- 
and β-chains is required to activate RON[44,45]. Crystal 
structure analysis reveals that a central cleft harboring 
three residues in the putative catalytic site in the MSP 
β-chain is essential for the β-chain binding to the RON 
Sema domain[71]. The binding follows an enzyme-sub-
strate mode conserved in HGF-related growth factors 
and proteases of the blood clotting pathway[72,73]. 

Structural analysis under protein crystal packing 
reveals that individual molecules of the MSP β-chain 
do not interact with each other to form a recep-
tor binding moiety[72]. Instead, the central cleft in the 
single MSP β-chain directly binds to the RON Sema 
homodimer[72]. This suggests that dimerization of the 
MSP β-chain is not required for RON activation. In 
contrast, RON Sema molecules form a homodimer, 
which creates a ligand-binding interface by two Sema 
domains[71]. Thus, the interface created by the RON 
Sema dimer appears to be the high affinity binding 
pocket for the MSP β-chain. 

In light of these discoveries, we propose a model of 
one MSP molecule interacting with two RON receptors 
for dimerization. This model depicts that as a mono-
meric form, MSP uses its high affinity-binding site in 
the β-chain to bind to the interface in the Sema domain 
formed the RON homodimer. The binding causes re-
ceptor conformational changes and exposes a currently 
unknown binding pocket in the RON extracellular do-
main for the low affinity-bind site in the MSP α-chain. 
The sequential binding of the MSP β- and α-chains 
initiates triggers autophosphoryla- tion of regulatory 
tyrosine residues in the RON kinase domain followed 
by activation of the tyrosine kinase and creation of the 
C-terminal multifunctional docking site[48-50].

Isoform-mediated activation 
Generation of constitutively active RON variants 

is another mechanism activating RON (Fig. 2). Cur-
rently, at least eight RON variants have been identified 
(Fig. 1B), which include RONΔ170[74], RONΔ165[25], 
RONΔ165.e11p[77], RONΔ160[27], RONE5/6in[30], 
RONΔ155[27],  RON110[76], RONΔ85[29,78,79],  and 
RONΔ55[1,33,34]. Alternative mRNA splicing is primarily 
responsible for generation of RON variants[25,27,29,30,32,35,74], 
although protein truncation and alternative transcription 
also play a role[34,75,76]. RON variants are either consti-
tutively active, oncogenic, or biologically inactive due 
to defects in various regions[25-35]. RON variants also 
display different cellular localizations either on the cell 
surface or in the intracellular compartments[25,27].
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The biochemical events that control RON vari-
ant activation are largely unknown.  Conformational 
changes due to deletion of amino acids or a particular 
domain in the RON protein appear to cause sponta-
neous tyrosine phosphorylation[25,30,35]. In the case of  
RONΔ160, a splicing variant with an in-frame dele-

tion of 109 amino acids coded by exons 5 and 6 for the 
first IPT motif in the RON extracellular domains[1,27], 
deletion results in unbalanced cysteine residues in 
the extracellular sequences, which leads to spontane-
ous dimerization of the RON protein[27,35]. Moreover, 
deletion converts wild-type RON into an oncogenic 

Fig. 2 RON activation mechanisms and classical signaling pathways. Activation of RON is mediated by MSP bind-
ing, overexpression, splicing/truncation, and point mutations. Upon activation, the C-terminal docking site recruits cytoplasmic 
molecules son of sevenless (SOS) and growth factor receptor-bound protein (GRB2) to initiate two classical signaling pathways, 
Ras-MAPK and PI-3K-AKT. The RAS-MAPK pathway regulates RON-mediated cell growth, survival, and invasiveness. Acti-
vated Erk1/2 also stimulates p90 ribosomal S6 kinase (RSK)-2 to regulate gene transcription and cytoskeleton reorganization to 
cause EMT. The PI-3K-AKT pathway regulates RON-mediated cell shape change, migration and matrix invasion. It also stimulates 
mTOR signaling to promote HIF-1α activation for gene transcription. AKT also stimulates 14-3-3 phosphorylation, which regulates 
α6β4 integrin for cell motility. CM, cell membrane; ELK-1, ETS domain-containing protein-1; Erk, extracellular signal-regulated 
kinase; MITF, microphthalmia-associated transcription factor; mTOR, mammalian target of rapamycin; NM nuclear membrane, 
SRF, specific response factors.
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variant that transforms cell in vitro and causes tumor 
growth in vivo[27]. Thus, generation of constitutively 
active RON variants is a mechanism of RON activa-
tion, which has pathological implications in cell trans-
formation and subsequent tumor progression.

Overexpression-induced activation
Overexpression of RON exists in various types of 

cancers and has prognostic values for patient surviv-
al[17-24,80-86]. Overexpression is characterized by abnor-
mal accumulation of RON and RON variant proteins 
at high levels and their constitutive phosphorylation 
in cancer cells (Fig. 2). The cause of overexpression 
is complex and still under investigation. Increased 
RON protein stability and resistance to endocytosis, 
intracellular proteolysis, and degradation are possible 
mechanisms leading to RON overexpression[30]. Im-
pairment in the intracellular proteasome degradation 
pathway in cancer cells is another mechanism resulting 
in RON accumulation[87]. Moreover, genetic aberra-
tions in the RON gene can lead to RON overexpres-
sion[22]. In gastroesophageal adenocarcinoma, the RON 
gene is highly amplified (22), suggesting that increased 
gene copy number could be a mechanism of RON 
overexpression. Finally, cellular conditions surround-
ing cancer cells such as hypoxia affects RON expres-
sion and accumulation[88]. The RON gene transcription 
is dramatically increased through hypoxia-inducible 
factor (HIF)-1α in acute hypoxic cancer cells[88]. Thus, 
overexpression of RON is manifested at various cel-
lular and molecular levels in cancer cells.   

Overexpression-induced RON activation appears 
to be mediated by homodimer of two RON molecules 
under the condensed conditions[71]. Analysis of RON-
RON interaction under crystal packing confirms that 
the RON Sema domains form homodimer[71]. In cancer 
cells, abnormal accumulation of RON in the cell sur-
face or in the cytoplasm creates an environment with 
high density of RON. Such increased density is suffi-
cient to cause formation of the RON homodimer.

Point mutation-mediated activation
Experimental mutation of certain critical resi-

dues such as Asp1232 and Met1254 in the RON ki-
nase domain results in RON activation (Fig. 2)[46,47]. 
This constitutes the fourth types of RON activation. 
Asp1232 and Met1254 are two critical residues highly 
conserved in the kinase domain of RTKs[89,90]. The 
same mutations in KIT and RET cause two human 
malignancies, mastocytosis and multiple endocrine 
neoplasia type 2B, respectively[91,92]. In cell lines, As-
p1232Val or Met1254Thr substitution in the RON ki-
nase domain is sufficient to convert RON into an on-

cogenic agent[46,47]. Moreover, substitution overcomes 
the requirement for the multifunctional docking site 
in induction of tumor formation[46,47].Substitution of 
Met1254 with Thr in the RON kinase domain causes 
a conformational rearrangement, which stabilizes a 
specific open region in the a-loop in the kinase do-
main[93]. The rearrangement also facilitates the regula-
tory residue Tyr1238 moving into a position usually 
reserved for the substrate tyrosine. The localization in 
the substrate-like position allows the intramolecular or 
cis phosphorylation of Tyr1238, which eventually ac-
tivates RON[93]. This mode of intramolecular/cis auto-
phosphorylation provides an insight into the molecular 
mechanism of RON activation.

CLASSICAL RON SIGNALING PATH-
WAYS

RON signaling is conventionally transduced by the 
RAS-MAPK cascade and the PI-3K-AKT pathway 
(Fig. 2)[16,18,94,51,54,95]. This pattern is similar to that ac-
tivated by MET[96]. Interaction of RON with adaptor 
proteins including Grb2 and β-arrestin-1 is the first 
step bridging RON activation with downstream sig-
naling cascades[95,97,98]. Various cytoplasmic effector 
molecules such as PLC-γ[48], PI-3 kinase[53], Src[98], 14-
3-3[57], c-Cbl[87,99], Hsc70[99], protein phosphatase 1[100], 
plectin[95], and integrin-β4[57,98] interact with RON 
through the C-terminal docking site. The differential 
and selective interactions under different conditions 
may determine the specificity of RON-mediated sign-
aling in a cell context-dependent manner.

Among tumorigenic activities mediated by RON 
signaling, the coordinated activation of the RAS-
MAPK and PI-3K-AKT pathways is critical for EMT 
with increased cellular motility[20,34,50,51,59,95]. In the 
MDCK cell model, RON-mediated EMT, featured 
by spindle morphologies, diminished expression of 
E-cadherin, and increased appearance of vimentin, is 
mediated by the RAS-MAPK pathway[59,101]. Ribosomal 
protein S6 kinase (RSK)-2, a downstream signaling 
protein of the MAPK pathway[102,103], is the principal 
molecule linking RON signaling to EMT (Fig. 2)[101]. 
Genetic studies confirm that RSK-2 functions as a 
molecular switch to confer promotile/invasive phe-
notypes in epithelial cells[102,103]. The invasive growth 
is further regulated by RON-mediated PI-3K-AKT 
signaling, which increases in vitro epithelial cell ad-
hesion, migration, matrix invasion, and in vivo tumor 
cell invasion, and distant metastasis[50,51]. 

CROSSTALK BETWEEN RON AND 
SIGNALING PROTEINS

At the cell surface, RON is engaged in active cross-
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talk with other RTKs such as EGFR, MET, and IGF-1R 
(Fig. 3)[36-43]. RON also crosstalks with viral oncopro-
teins derived from Friend leukemia virus (FLV)[104-106], 
Jaagsiekte sheep retrovirus (JSRV)[107,108], and Epstein-
Barr virus (EBV) (Fig. 3)[109]. Such crosstalk has 
emerged as a mechanism for regulating tumorigenic 
phenotype and chemoresistance[36-43,104-112]. 

The crosstalk between RON and MET is evident by 
the presences of RON-MET heterodimer on the cell 
surface[36,37]. RON also directly associates with EGFR, 
irrespective of ligand stimulation[38,42]. HGF-induced 
MET activation results in transphosphorylation of 
RON at Tyr1238 and Tyr1239 residues. Similarly, 

MSP stimulation causes MET transphosphorylation at 
Tyr1234 and Tyr1235[36,37]. Such transphosphorylation 
up-regulates the kinase activity of RON and MET, 
respectively. Similarly, transphosphorylation also oc-
curs between RON and EGFR or PDGFR[38,39,42,43]. 

As a signaling regulatory feedback loop, the cross-
talk between RON and MET enhances or attenuates 
MET and RON-mediated tumorigenic activity. In 
cancer cells, kinase-inactive RON impairs MET-me-
diated cellular-transforming activity[36,37]. Moreover, 
RON kinase transphosphorylation is able to sustain 
MET oncogene addiction with increased tumorigenic 
activities[37]. The similar effect also is observed be-

Fig. 3 Functional crosstalk between RON and signaling protein. The crosstalk of RON with MET, EGFR, and IGF-1R 
occurs in various cancer cells and cause increased tumorigenic activity. RON also crosstalks with viral envelope oncoproteins de-
rived from JSRV and FLV to cell transformation and proliferation. At least four signaling pathways are activated upon crosstalking. 
The β-catenin pathway is stimulated through RON-mediated PI-3K-AKT pathway that activates protein dishevel (DVL) and inac-
tivates glycogen synthase kinase (GSK)-3β leading to cytoplasmic β-catenin accumulation and nuclear translocation. The crosstalk 
between RON and the NF-κB pathway causes cancer cell growth, angiogenesis, and survival. NF-κB also directly binds the RON 
promoter, increases RON transcription, and enhances RON-mediated cancer cell migration. In epithelial cells, RON crosstalks with 
TGF-β signaling to induce EMT for cancer cell invasiveness. Moreover, RONΔ55 binds the FLV envelope protein and interacts 
with the JAK-Stat3 pathway to induce erythropoietin-independent proliferation of erythroid cells. CM, cell membrane; CXCL, 
Chemokine (C-X-C motif) ligand; Gab, GRB2-associated-binding protein; IKK, IκB Kinase; IRS-1, insulin receptor substrate-1; 
JAK, Janus kinase; MMP, matrix metallopeptidase; NM nuclear membrane. SMA, smooth muscle actin; Smad, mothers against de-
capentaplegic homolog; Stat, signal transducer and activator of transcription; and VEGF, vascular endothelial growth factor.
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tween RON and EGFR[38,428,43]. Considering the fact 
that various RON variants are expressed in various 
types of cancer cells, the crosstalk between RON/
RON variants and other types of RTKs should have a 
significant regulatory effect on tumorigenic signaling 
and their associated biological activities. 

Crosstalk between RON and signaling proteins also 
serves as a signaling-compensatory mechanism (Fig. 
3). In sarcoma cells with acquired resistance to IGF-
1R targeted therapeutics antibodies, RON expression/
activation has emerged as a survival mechanism[40]. 
In these sarcoma cells, RON is unusually expressed 
at high levels. Inhibition of RON expression impairs 
activation of ribosomal protein S6, a critical IGF-1R 
signaling component for acquired resistance. Fur-
thermore, knockdown of RON expression by specific 
siRNA restores sensitivities of drug-resistant cells in 
response to IGF-1R kinase inhibitor BMS-536924. 
Thus, the crosstalk between RON and IGF-1R repre-
sents an escaping strategy for tumor cells in response 
to IGF-1R targeted cancer therapy.   

RON signaling crosstalk also is manifested for viral 
oncogenesis (Fig. 3)[104-110]. In B cell transformation 
induced by the latent membrane protein (LMP)-1 of 
EBV, the crosstalk between LMP-1-induced NF-κB 
and RON expression promotes the growth of trans-
formed lymphoblastoid cells[108]. In JSRV envelope 
protein-induced sheep lung adenocarcinoma, which is 
morphologically similar to human bronchioloalveolar 
carcinoma[111], RON is found to be directly associ-
ated with the JSRV envelope protein[107,108]. The in-
teraction appears to be RON specific because EGFR 
or CD4 does not form complex with JSRV envelope 
protein[1073,108]. In addition, association of RON with 
hyaluronidase (HYAL)-2, a cell surface protein serv-
ing as the entry receptor for JSRV[111,112], also is re-
ported[107]. In FLV-infected cells, RONΔ55 covalently 
interacts with the FLV viral protein to activate down-
stream signaling pathways[110]. These findings strongly 
suggest that RON signaling crosstalk is vital for virus-
mediated cell transformation and tumorigenic activity.

RON SIGNALING ADDICTION BY 
CANCER CELLS

Involvement of RON signaling in cancer patho-
genesis raises a critical question: are cancer cells fully 
addicted to RON signaling for growth/survival or is 
RON only been utilized for tumorigenic activities? 
The answer to this question is important to establish 
RON signaling in cancer biology and to provide a ra-
tionale for RON-targeted cancer therapy.  

The accepted notion from various in vitro studies is 
that certain cancer cells are addicted to RON signaling 

for growth and survival[20,51,54,113]. First, knockdown of 
RON expression by specific siRNA causes phenotypic 
changes in cancer cells with decreased cell prolifera-
tion, significant cell cycle arrest, reduced cell motility, 
and increased apoptosis[20,51,63,54,113]. One report even 
finds it impossible to establish a RON-deficient pan-
creatic cancer BxPC-3 cell line after stable expres-
sion of RON specific shRNA[63]. However, in most 
cases, RON-specific siRNA-mediated activity only 
exerts the partial inhibitory effect or affects a small 
fraction of cancer cells[20,51,54,63,113,114]. Studies from in 
vivo tumor xenograft models also confirms that tu-
mor growth induced by colon HT-29 and pancreatic 
FG cells with stable RON-specific siRNA was only 
partially reduced based on measuring tumor vol-
umes[63,114]. Second, small molecule inhibitors such as 
PHA665752, compound-I, and BMS-777607 targeting 
RON/MET are able to block RON-mediated activities 
leading to increased growth inhibition and cell apop-
tosis[114-119]. Third, specific RON targeting antibodies 
is able to inhibit or reduce tumor growth caused by 
cancer cells that overexpress RON[120,121]. Again, only 
partial growth inhibition or reduction of tumor volume 
is observed from these animal work[120,121]. Thus, RON 
signaling appears to be integrated at certain levels into 
the cellular signaling network for cell growth, sur-
vival, and motility.

Cancer cells addicted to RON signaling display 
interesting patterns of gene expression relevant to 
advanced tumorigenic phenotypes[20,,51,54,55,62,63,122,113]. 
Global gene expression patterns indicate that RON 
signaling mediates a unique transcriptional program 
with increased expression of genes for growth, sur-
vival, and malignancy[63]. Consistent with these ob-
servations, stress-induced RON nuclear localization 
directly binds and regulates various gene transcrip-
tion known to participate in tress-response network 
including p53, c-JUK, and PI-3K-AKT[43]. Activation 
of these stress-related signaling pathways facilitates 
tumor cell growth and survival under hostile environ-
ments[43]. Moreover, cancer cells addicted to RON 
signaling often show strong crosstalk with other sign-
aling pathways to strengthen their malignant progres-
sion[123-125]. One example is RON signaling in crosstalk 
with the β-catenin pathway in colon and breast cancer 
cells[54,123-125]. Thus, RON-mediated gene transcription 
in addicted cancer cells could be a unique molecule 
marker determining tumorigenic and drug-resistant 
phenotypes.

PERSPECTIVES
Studies accumulated from the last decade have al-

lowed us to assess the pathogenic roles of RON sig-
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naling in epithelial carcinogenesis. Although lacking 
evidence as a cancer-causative agent, aberrant RON 
expression/activation is a pathogenic factor associ-
ated with tumorigenic behavior and chemoresistance. 
At present, our studies of RON pathogenesis in cancer 
have advanced into translational and clinical phases. 
The knowledge of RON signaling activation, crosstalk, 
and addiction by cancer cells provides the mechanistic 
insight for validating RON as a prognostic biomarker 
and drug target. With continued advanced in this field, 
the value of aberrant RON expression/activation will 
be established by successful application of targeted 
RON therapy for cancer treatment.
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