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Abstract

Background: A growing demand for tools to assist the building and analysis of biological networks exists in
systems biology. We argue that the use of a formal approach is relevant and applicable to address questions raised
by biologists about such networks. The behaviour of these systems being complex, it is essential to exploit
efficiently every bit of experimental information. In our approach, both the evolution rules and the partial
knowledge about the structure and the behaviour of the network are formalized using a common constraint-based
language.

Results: In this article our formal and declarative approach is applied to three biological applications. The software
environment that we developed allows to specifically address each application through a new class of biologically
relevant queries. We show that we can describe easily and in a formal manner the partial knowledge about a
genetic network. Moreover we show that this environment, based on a constraint algorithmic approach, offers a
wide variety of functionalities, going beyond simple simulations, such as proof of consistency, model revision,
prediction of properties, search for minimal models relatively to specified criteria.

Conclusions: The formal approach proposed here deeply changes the way to proceed in the exploration of
genetic and biochemical networks, first by avoiding the usual trial-and-error procedure, and second by placing the
emphasis on sets of solutions, rather than a single solution arbitrarily chosen among many others. Last, the
constraint approach promotes an integration of model and experimental data in a single framework.

Background
A central task in molecular systems biology is to build
and analyze genetic and biochemical networks in order
to decipher the properties of cellular phenomena. The
emphasis is not on investigating in detail one or a few
molecules at a time, as is done traditionally in molecular
biology, but rather on focusing on the network level.
We are specifically interested here in gene regulatory

networks (GRNs) formalized as discrete genetic net-
works as defined by R. Thomas [1,2]. The main goal of
this formalism is to obtain a qualitative understanding
of the network dynamics by reasoning on discrete enti-
ties. In GRNs the molecular players are the genes and
the proteins they produce. A genetic interaction corre-
sponds to the fact that a gene gi produces a protein pi
which influences the expression rate of another gene gj,
or gi itself. The set of all these genetic interactions

constitute the interaction graph, to be defined formally
later. In a given state of the network, each gene has a
certain expression rate (the rate of production of the
encoded protein) which depends on the presence or
absence of a subset of proteins, the activators or repres-
sors of the considered gene. The expression rate of a
gene is maximum when all its activators are present and
all its repressors are absent. In this context a basic
objective is to analyze the temporal evolution of the
protein concentrations in given external conditions. This
can be done when the values of the model parameters
have been measured. When this is not the case, the pro-
blem is then to exploit the knowledge about network
behaviour (e.g. response to perturbations, phenotype
change when one or several genes are knocked-out) to
deduce the possible values of the parameters. A fre-
quently used method consists in performing a large
number of simulations by varying some parameters
(generally one or two at a time) and selecting a poster-
iori the set of values that is consistent with the observed
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behaviour. As explained below, we propose a different
approach for this inference problem.
Beyond these basic functionalities (simulation, infer-

ence of parameter values), the construction of GRN
models consistent with experimental data requires more
sophisticated tools. It often occurs that a proposed
model displays inconsistencies with part of the data. In
such cases it is necessary to critically analyze the
hypotheses used in building the model and to revise
them. This analysis can be done “by hand” for small net-
works, e.g. up to three genes, but requires the use of
computational tools to cope with the complexity of lar-
ger networks. In still other situations the observational
constraints are weak with respect to the number of vari-
ables, and the number of solutions is very large. In such
cases, it is interesting to derive properties that are
shared by all the solutions, or subsets of them, in order
to get a better understanding of the model properties
and to design new experiments having the potential to
substantially reduce the set of solutions.
Fundamentally, we want to provide the biologist

studying GRNs with a software environment allowing to
perform such tasks. The available knowledge is partial
and bears on both the structure of the network of inter-
est (the set of interactions) and the behaviour of the
network in various conditions. The first kind of knowl-
edge is said to be structural, or local (each interaction is
a piece of information and can be studied in itself),
whereas the second kind is said to be behavioural, or
global (the network as a whole is giving rise to a given
behaviour). The network architecture and its behaviour
are closely inter-related. This relation is implemented
formally as a set of constraints in a straightforward
manner in our software environment, named GNBox
(Genetic Networks toolBox - Additional file 1). More
precisely, the philosophy of this approach is to represent
a given problem, or set of problems, as a set of formulae
linking variables. In our case this entails the specifica-
tion of (i) the rules defining the updating scheme (how
the successors of a state are computed); (ii) the network
architecture (set of interactions); (iii) the observations
about the behaviours of the network (partial information
about paths), or any working hypothese about the sys-
tem; (iv) the query itself (e.g. number of stationnary
states, possible values of initially unkown parameters).
The set of constraints thus defined is then submitted to
a solver whether there exists solutions or not. A distinc-
tive feature of the constraint approach is constraint pro-
pagation. It implements deduction rules and allows in
favorable conditions to reduce drastically the search
space, thus limiting enumeration. Of course some
amount of enumeration is usually still necessary, but the
aim of the game is to reduce it as much as possible.
This formal relation is “executable” and allows not only

to perform basic functionalities such as simulation or
reverse-engineering, but also to assert and obtain prop-
erties on both the behaviours and the interactions. More
specifically, we implemented in this constraint-based
setting four main functionalities: (i) proof of consistency
or inconsistency of a constraint pool, (ii) constraint
relaxation in case of inconsistency (model revision),
(iii) prediction of properties in case of consistency,
(iv) search for minimal models, with respect to the
number of thresholds, for example.
In this article we present our approach and we show

how it can be applied successfully to the analysis of
three different biological problems. In the section Meth-
ods we present the formalism we developped. We pre-
sent the formal definition of interaction graphs and of
the evolution rules of Thomas networks. These notions
are required to express the queries implementing the
functionalities mentionned above. Other notions related
the specification of interaction compositions facilitate
the expression of properties involving kinetic
parameters. The implementation is discussed in [3]. In
the section Results and Discussion we present three
applications which differ by both the type of knowledge
available and the type of biological questions asked.
These applications permit (i) to illustrate the different
functionalities of GNBox, (ii) to show the feasibility of
this constraint-based approach on realistic biological
problems, and (iii) to support the idea that a formal and
declarative approach is very interesting to decipher the
properties of GRNs, in order to assist in their
construction.

Methods
We present briefly in this section the constraint technol-
ogy, the constraint-based formalization of Thomas net-
works, the constraint-based formalization of biological
properties of these networks, and the features of our
software environment GNBox to elucidate GRNs.
Below we use the following mathematical notations:

an integer x taking values between min and max is
denoted x Î min..max, a Boolean b is an integer such as
b Î 0..1, b1 ⇔ b2 means that the Boolean b1 is equal
(or equivalent) to the Boolean b2, b1 implies b2 is
denoted b1 ⇒ b2, the Boolean equal to b1 and b2
is denoted b1 ∧ b2, the Boolean equal to b1 or b2 is
denoted b1 ∨ b2, the Boolean equal to the conjunction
of a list of Boolean bi is denoted ∧ i bi, the Boolean
equal to the disjunction of a list of Boolean bi is denoted
∨i bi.

Constraint technology
We propose to implement the approach (particularly the
link between network structure and behaviour) using
Constraint Logic Programming (CLP) technology, with a
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finite domain solver. CLP is a programming paradigm
based on first order logic. CLP considers specific classes
of logical terms and proposes efficient resolution meth-
ods of equations over these terms (constraints). A CLP
program is a logic formula, and its execution is the con-
struction of a proof of consistency (or inconsistency) of
this formula. The formula is consistent when it is possi-
ble to find an instantiation of the variables which satis-
fies the formula. Logicians call such an instantiation a
model. A CLP program is reversible in the sense that it
permits to impose and obtain partial knowledge over all
the variables of the formula (including in our case the
variables describing the interactions and behaviours).
For example, let say that p(x, y) is a predicate defining a
relationship between two entities x and y. If a measure-
ment allows to reduce the domain of values of x, this
information can be added as an additional constraint,
and a query can be submitted about the possible values
of y. The solver will try to propagate the additional
information on x to reduce the domain of y, taking into
account p(x, y). Conversely, if the measurement has
been performed on y, this information can be propa-
gated to x through p(x, y). This is reversibility. It must
be said that different kinds of solvers exist, characterized
by the type of variables (e.g. finite domain integers,
reals) and the type of propagation rules used, among
other things.
As all the variables describing interactions and beha-

viours have finite integer domains in the discrete frame-
work used, the use of a constraint solver over finite
domains is very well suited. In addition, the expressive
power of first order logic and constraints over integers
allows the definition of very general properties and func-
tionalities. Finally, in order to be able to take advantage
of the very efficient Boolean Satisfiability (SAT) solvers
available, the GNBox environment is able to translate
the CLP formalization into a Boolean formula in Con-
junctive Normal Form (conjunction of disjunctions of
Boolean variables or their negation, the input format
used by most SAT solvers). Details on the translation
into CNF can be found in [3]. In this way we combine
the expressive power of CLP with the efficiency of SAT
solvers.

Formalization of Thomas networks
In this subsection we present a constraint-based formal-
ism to impose, check and infer properties about discrete
genetic networks as defined by R. Thomas. We first
introduce the notions needed to define and formalize
the interaction graph and the evolution rules of Thomas
networks. We define in the next subsection the notions
of composition of interactions, additivity and observabil-
ity properties which are useful to express hypotheses
about kinetic parameters. All the presented notions of

this subsection and the next one are illustrated with the
example of Figure 1 and Figure 2, and will be put into
use in the biological applications of the section Results.
The structure of a GRN is represented in an abstract

way by an interaction graph  . The nodes of  are
genes. Each node is associated to a concentration vari-
able representing the concentration of the protein pro-
duced by the corresponding gene. The oriented edges of
 represent interactions between these genes, denoted
by ic

r for the interaction on the gene (component) c of
index r, r Î 1..rc, where rc is the number of interactions
on c. An integer variable representing a discrete thresh-
old labels each edge. In papers using the formalism of
R. Thomas edges in interaction graphs are also labeled
by a sign [1]. We choose more primitive interaction
graphs without these labels in order to generalize the
formalization and to facilitate the expression of hypoth-
eses about the way interactions compose on target
nodes. The presence of an interaction from gene a to
gene b (with a threshold t) indicates that protein a can
potentially modify the expression rate of gene b.
Furthermore, this change in expression rate, when it
actually exists, takes place when concentration of a
crosses threshold t. In other words, this interaction indi-
cates that the rate of production of protein b can be
influenced by the position of protein a with respect to
threshold t. It has to be noted that such an interaction
does not actually impose a difference in production rate.
Rather, the absence of such an interaction forbids the
existence of such a difference in production rate. Such
an interaction is represented by the triplet (a, t, b)
(labelled edge). In the example in Figure 1, the rows
“ “ and “interactions” give respectively the definition of
the interaction graph  and the sets of interactions for
the target genes x and y.
The network structure being defined, the next step is

to define the network state and dynamics. A state S of
the network is a list of gene product concentrations
(protein or RNA). The concentrations are discretized
according to the thresholds appearing in  . The con-
centration of the product of gene c in state S is the inte-
ger Sc Î 0..maxc, where maxc is the maximal value of
the discrete concentration of protein c. The threshold of
component c of index p is t c

p Î 1..maxc, where the
index p takes its values in 1..maxc (obviously if a
concentration is cut by maxc thresholds the associated
discretized variable will take maxc + 1 values). For a
given system with n genes, ci, i Î 1..n, is the variable
associated to the ith gene, and state S is the ordered list
〈 … 〉S Sc cn1

, , . So, the discrete concentration space
contains ∏ +( )c ci i

max 1 states.
We are now in a position to explain how the succes-

sor states of a given state are computed. Each state S is
associated to a so-called focal state, denoted by
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F F F FS S c S c Sn
, , ,, ,= 〈 … 〉

1
, and belonging to the same

state space. The focal state gives the direction of evolu-
tion (tendency) for each concentration. Consider for
instance S = 〈0, 0〉 and Fs = 〈1, 1〉 in a 2-dimensional
system. The successor of S is not 〈1, 1〉 as is the case in
synchronous updating schemes. Rather FS = 〈1, 1〉 indi-
cates the direction of evolution of each component
taken separately. Here both are increasing and S = 〈0, 0〉
has 2 successors, 〈1, 0〉 and 〈0, 1〉. In other words two
transitions are possible from S, and this type of updating
scheme is often called asynchronous, but nondeterminis-
tic is a better term. What is the basis of this non-deter-
minism? If the numerical values (real numbers) of the
initial concentrations, together with those of the model

parameters were known, it would be possible to deter-
mine the exact successor. In the discrete abstraction
considered here this information is not available and
consequently both possibilities must be taken into
account. Non-determinism is a fundamental property of
this abstraction due to the information loss induced by
the partition of concentration space into rectangular
domains. We chose this formalism in this study because
it is well founded and it is a good match to the qualita-
tive knowledge generally available in Systems Biology at
present. Nevertheless, it should be kept in mind that
our constraint approach is not tied to Thomas networks.
Other types of discrete dynamical rules could be imple-
mented, e.g. Kauffman-like Boolean networks with

Figure 1 Illustration of main notions defining a model M from an example of interaction graph  .
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parallel (synchronous) [4] or block-sequential updating
scheme [5,6].
To implement the Thomas evolution rules we need

first to specify the equations which link a state S to its
focal state FS. These equations are named focal equa-
tions. A set of rules then links state S, the focal state FS
associated to S, and the successor states of S. We stress
here that these rules must be viewed as relationships
linking different kinds of unknowns. As explained above
(reversibility), the use of these relationships depends on
the available information in a given state of knowledge.
If the concentration values making state S are all
known, together with the position of its focal state, then
the successors of S can be computed. But the relation-
ships can be exploited in other ways, too.

The system of focal equations contains different kinds
of parameters: constant concentrations associated to
input genes (that is genes that are influenced by no
genes in the network and whose state is fixed by exter-
nal conditions), parameters related to reaction kinetics
(similar to those that would appear in a differential
description), and thresholds t c

p . The set of all these
parameters is denoted by P. The parameters are amongs
the unknowns of the system of constraints because their
values are in general not known, or only partially
known. The evolution rules, once formalized (see
below), lend to a first set of logical constraints. To this
first set are added structural constraints over the para-
meters derived from experimental data, and working
hypotheses. The set of solutions of such a system of

Figure 2 Examples of interaction compositions and resulting compositions of cellular contexts over example in Figure 1.
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constraints defines a set of instantiated models (i.e.
models in which all parameters are instantiated). The
couple composed of a focal equation system and a set of
structural constraints is called a parameterized con-
strained model M, or just model. A typical query
includes one or several structurally-related models
(when data are available on several mutants), and some
additional behavioural constraints. If the resulting
system (set of all constraints of the query) is under-
constrained this set contains a large number of
solutions. If it is over-constrained it is empty. In our
context, this last case is interpreted as a contradiction
between, on one hand, the experimental evidence and,
on the other hand, the network structure or the hypoth-
eses. More sophisticated queries are presented in the
application part below, to illustrate the high-level
functionalities mentioned in the introduction.
The parameterized focal equation system of a model

M is completely defined by an interaction graph  . In
fact these two entities contain exactly the same informa-
tion (as long as kinetic parameters are not instantiated
nor constrained). The set of interactions of  having
the gene c as target induces a partition of the concentra-
tion space according to the thresholds t c

p
’ of these inter-

actions. This partition defines a set of regions called the
cellular contexts of c. As long as the concentration of
the proteins c’ regulating c do not cross one of the t c

p
’

thresholds, the system stays in the same cellular context,
because from the viewpoint of gene c the regulatory
conditions have not changed. This means that all the
states S belonging to the same cellular context of c have
the same focal component Fc,S of the focal state FS. The
value of Fc,S being generally unknown, a formal para-
meter K c

l called discrete kinetic parameter is introduced
for each cellular context of c with index l. These para-
meters are the discrete version of the ratio of protein
production rate over degradation rate. When the value
of K c

l is high in some cellular context, this is inter-
preted by saying that in the states belonging to that con-
text the production rate of the protein associated to
gene c is high, and/or its degradation rate low. But in
the qualitative setting of Thomas formalism it should be
kept in mind that we have only access to a discretized
version of the production rate to degradation rate ratio.
The number of cellular contexts for a given gene c is
lc

rc= 2 , and so is the number of K c
l parameters.

We have introduced the main notions unformally
(interaction, threshold, state, focal state, focal equation,
cellular context, discrete kinetic parameter), and will
now present formal definitions which are directly usable
in constraint form.
Definition 1 Let c be a component, and let S be a

state. The focal component of c in S, denoted by Fc,S, is
defined by the following focal equation of c:.

F K Cellcc S c
l

l

l

c S
l

c

, ,= ⋅
=
∑

1

where K maxc
l

c∈ 0.. is the discrete kinetic parameter
of c with index l, l Î 1..lc, and Cellcc S

l
, is a condition

true if S belongs to the cellular context of c with index
l. The indexing convention is the following: l is equal
to V + 1 where V is the decimal value of the binary
number composed of the Booleans S tc c

p
′ ′≥ with

i c t cc
r

c
p= ′ ′( , , ) , these Booleans being arranged in increas-

ing order of r (this is just meant at providing a unique
numbering of the cellular context and is not
fundamental).
The above formula means that if state S’ belongs to the

cellular context of index l’ for gene c (that is Cellcc S
l
, ′
′ is

true) then the focal component Fc,S’ is equal to K c
l′ .

Example 1 The row “cellular contexts” in Figure 1
describes formally and graphically, for a given order of
thresholds, the cellular contexts for each component x
and y of the considered example. Component x is the
target of only one interaction and is thus associated to
two cellular contexts, y is the target of two interactions
and has 4 cellular contexts. The row “discrete kinetic
parameters” gives the list of these parameters. The sub-
scripts and superscripts make the correspondence with
the associated cellular contexts ( K x

l with Cellc x S
l

, , etc.).
Finally the row “focal component” gives the equations
describing the focal components Fx, S and Fy, S of a state
S. The row “focal state” in Figure 1 describes the focal
state FS = 〈Fx,S, Fy,S〉 of S.
The focal state defines the direction of the dynamic

transitions starting in S. In the Thomas networks, the
authorized transitions are such that:.

1. S’ and S are the same state or are neighbors,
2. S’ and S differ on at most one component.
3. S’ is in the “direction” of the focal state FS.

The first property (formally ∀ − ≤ ′ ≤ +c S S Sc c c1 1) )
is due to the fact that the concentrations evolve con-
tinuously, thus jumps over states are not allowed. The
second is commonly called asynchronicity. The third
one is specific to the discretization of evolution equa-
tions due to Thomas. We explained above that when
two concentrations are increasing in a given state, it is
not known in this kind of abstraction which will reach
first its next threshold, and consequently which transi-
tion will occur first. In this situation both transitions are
taken into account leading to two successors for
the state considered (of course this generalizes to more
than two). This is intimately connected to the non-
determinism inherent to abstractions based on phase
space partition.
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The rules have the following consequences: S = S’ ⇔
FS = S (stationarity of S), ′Sc = Sc + 1 ⇒ Fc,S >Sc (rising
transition according to c) and ′Sc = Sc - 1 ⇒ Fc,S <Sc
(downward transition according to c).
It is possible to specify a knock-out or ectopic expres-

sion mutation. For each non-input mutated gene c set
to a constant value v, the constraint ∧l K c

l = v must be
introduced. For a mutated input gene to the value v the
input parameter of the model is set to this value v. In
some cases it is necessary to use several models in the
same query, one model corresponding to the wild type
and the others to mutants. In such cases we introduce
constraints specifying that for all couples of models
(Ma, Mb) the thresholds of Ma are equal to those of
Mb, and the parameters K c

l of Ma associated to genes c
which are not mutated in Ma and Mb are equal to those
of Mb. The constraints between the input parameters of
Ma and Mb depends of the considered biological appli-
cation (see Constraint 4, in the section Results and
Discussion).
A user of GNBox must describe the structure of the

studied GRN (possible interactions between genes), and
can use the language LG1 to specify the existence of a
behaviour. The language LG1 is composed of the predi-
cate path(M, Path, L) which is true if Path is a succes-
sion of L states authorized by the model M (achieving a
formal link between a model and its behaviours), and a
language to impose arithmetic constraints between vari-
ables of Path. Language LG1 is used to formalize obser-
vations on the behaviour of the system. Our approach
allows to specify (declare) partial information. For exam-
ple only a few concentrations may have been measured.
Absence of information is absence of constraints.

Interaction compositions
The interaction graph  lists the interactions individu-
ally but does not contain information on the manner in
which different interactions are composed when they
have the same target gene. The information about the
way to compose interactions is embodied in relation-
ships linking the parameters contained in P K tc

l
c
p( , ,...) .

However, the manual interpretation of instantiations or
properties over parameters of P is not convenient, espe-
cially for users not acquainted with the formalism of
Thomas networks. For this reason we designed a higher
level language LG2 to impose, check and infer proper-
ties about the way to compose the interactions in  in
the manner of the traditional notion of the logic of reg-
ulation (NEG, AND, OR gates). It should be understood
that this is not fundamental to the approach but merely
a facility to handle relationships between parameters
induced by the composition of interactions. The user
always has the choice to work directly on these
relationships.

We explained above that the specification of a set of
interactions for a gene c partitions (in cellular contexts)
the concentration space by hyperplanes (corresponding
to thresholds of interactions acting on c). LG2 permits,
for every c, to partition the concentration space in union
of cellular contexts of c, named compositions of cellular
contexts, via the definition of interaction compositions.
Any union of cellular contexts can be specified, and in
particular an union of disconnected regions. Similarly to
the semantic of a set of interactions, the semantic of a set
of interaction compositions is the following: all the states
belonging to a given composition of cellular contexts of c
have the same evolution tendency of the concentration of
protein c. The borders between these regions are consti-
tuted of parts of threshold hyperplanes of interactions
taking part in the composition. We name these borders
interaction compositions. An interaction composition for
c, denoted by icc

rc , rc Î 1..rcc, rcc being the number of
interaction composition on c, permits to indicate where
it is possible to have a change in the evolution trend of
component c. Informally, one can see an interaction
composition as a new artificial species which interacts on
c and which induces a new partition of state space into
two regions. First, let us remark again that an interaction
i c t cc
r

c
p= ′ ′( , , ) induces a partition of state space into two

regions by the hyperplane associated to the threshold t c
p
′ .

By convention, the part where the states S are such that
S tc c

p
′ ′≥ is true is said to satisfy ic

r . An interaction com-
position also partition the state space into two regions,
but the border is not necessarily a hyper-plane defined by
a single threshold. An interaction composition can have
the following forms:

• an interaction ic
r .

• ¬ic
r . The region where the state S are such that

S tc c
p

′ ′< is said to satisfy ¬ic
r .

• ic ic∧ ′ , where ic and ic’ are interaction composi-
tions. The region where the states S satisfies both ic
and ic’ is said to satisfy ic ic∧ ′ .
• ic ic∨ ′ , where ic and ic’ are interaction composi-
tions. The region where the states S satisfies ic, or
ic’, or both, is said to satisfy ic ic∨ ′ .

Example 2 The sixth row in Figure 2 gives three possi-
ble sets of interactions compositions for y, related to the
example in Figure 1. The four first rows recall the con-
text of example in Figure 1. The fifth row gives the set of
interaction compositions over x. The seventh row shows
for each of these couple of sets a graphical representation
of the detailed structure of the network, with signs + and
- over interactions and bridges, denoted by AND, to
express a conjunction between two interaction composi-
tions. Finally, the last row shows the resulting composi-
tions of cellular contexts for y.
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The first case (second column of last row) leads to the
same partition of the discrete concentration space of y (the
areas described by the cellular contexts are the same that
those described by the compositions of cellular contexts).
The second case expresses with the sole interaction

composition on y, i iy y
1 2∧ , that either the concentration

of x and y are above t x
1 and t y

2 , respectively (the ten-
dency of y is unique in this region), or the concentration
of x or y are below t x

1 and t y
2 , respectively (the tendency

of y is unique in this region).
The third case expresses quite the same of the second

case but permits that x interacts on y whatever the con-
centration of y. So, we obtain three compositions of cellu-
lar contexts because the fact that x can interact on y all
along the border of the threshold t x

1 .
Example 3 The Figure 3 gives an example of a set of

interaction compositions and resulting composition of cel-
lular contexts. In the first column, we can see an interac-
tion graph  with two components a and b, a set of four
interactions over b, and a partition of the concentration
space into nine non empty cellular contexts. The indexes l
of the conditions Cell cb S

l
, appear in circles. The other cel-

lular contexts are empty according to the order of the
values of the thresholds ( )t t t t t ta a a b b b

1 2 3 1 2 3< < < <, . Note
that usually this order is not known and the values of
thresholds for a same species can be equal. In the second
column (to make a parallel with the interactions and
cellular contexts) we assumed to have two interaction
compositions. We obtain a partition of the concentration
space into four non empty compositions of cellular
contexts (the pink region being the union of the two dis-
connected cellular contexts 1 and 12).

Additivity and observability properties
The language LG2 allows to define specific effects of an
interaction composition on a component c. Here by effect
we mean a shift in the position of the focal component Fc
when the border associated to the interaction composition
is crossed. Biologically, an increase of the tendency of c
can be due to an increase of the expression rate of gene c,
or a decrease of the degradation rate of the corresponding
protein. In other formalisms these effects are specified by
labelling the arcs of the interaction graph with signs (we
have used this in the 7th row in Figure 2). A + sign
(respectively a - sign) for an interaction of a gene a on b in
the signed interaction graph means informally that the
interaction of a on b is an activation (respectively an inhi-
bition). However, the exact meaning of the terms activa-
tion and inhibition is not clear, especially when several
interactions combine on a gene: Does an activation of b by
a forbid an inhibition of b by a or not? Is an activation of
b by a necessarily observed all along the border associated
to the interaction or not? Two properties are used to clar-
ify formally these questions.
The first one, called additivity, is the systematic non-

strict increase of tendency of c when a border is crossed
in some predefined direction. In other words the effect
on c of the interaction composition adds to the effect of
all other interaction compositions on c. The direction in
which the border is crossed for this property is the one
given by the passage from a state where the interaction
composition is not satisfied to a state where it is satisfied.
The second property, called observability, is the exis-

tence of a strict increase of the tendency on c. This
means that the effect on the tendency of c exists at least

Figure 3 Example of interaction compositions and resulting compositions of cellular contexts for a given order of thresholds.
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at one crossing point (where the border associated to
the interaction composition is crossed in the same
direction as the additivity property). In contrast to the
additivity property, observability property requires only
the existence of an effect somewhere along the border.
To define these effects more formally we introduce for

each interaction composition icc
rc on c a set, denoted by

Adjc
rc , containing all couples of states (S0, S1) such that

(i) S0 is adjacent to S1, (ii) S0 is a state in the region
where icc

rc is not satisfied, and (iii) S1 is a state in the
region where icc

rc is satisfied.
Example 4 For the interaction composition icb

2 of the
example given in Figure 3 we get Adjb

2 = {(〈0, 1〉, 〈0, 0〉),
(〈1, 1〉, 〈1, 0〉), (〈2, 0〉, 〈1, 0〉), (〈1, 3〉, 〈2, 3〉), (〈2, 2〉, 〈2,
3〉), (〈3, 2〉, 〈3, 3〉)}. Each of the couples (S0, S1) of this
set is represented in Figure 4 by a kind of arrow symbol,
where the ‘o’ end is associated to state S0, and the ’|’
end to state S1.
LG2 allows to specify that an interaction composition

icc
rc has an additive effect, denoted by a icc

rc( ) , i.e. that
the difference of trend of c is positive or zero all along
the border defined by icc

rc . The exact semantics of
a icc

rc( ) is: for every couple (S0, S1) of Adjc
rc the trend

of c in S0 is less than or equal to the trend of c in S1.
Since the trend of a state is equal to the trend of all the
states in the same cellular context, the additivity con-
straints are expressed as relations between discrete
kinetic parameters K c

l .
Example 5 For the example in Figure 2 (with the given

order of thresholds) we have Adjx
1 = {(〈0,0〉, 〈1,0〉),

(〈0,1〉), 〈1,1〉), (〈0,2〉, 〈1,2〉)}, and a ic K Kx x x( ) ( )1 2 1⇔ ≤
due to the negative sign associated to the interaction of y
on x.
For the first case of interaction compositions on Adjy

1

= {(〈0,0〉, 〈1,0〉), (〈1,1〉, 〈1,1〉, (〈0,2〉, 〈1,2〉)},
a ic K K K Ky y y y y( ) ( )1 1 3 2 4⇔ ≤ ∧ ≤ , and Adjy

2 = {(〈0,1〉,
〈0,2〉), (〈1,1〉, 〈1,2〉)}, a ic K K K Ky y y y y( ) ( )2 1 2 3 4⇔ ≤ ∧ ≤ .

For the second case of interaction compositions
on y, Adjy

1 = {(〈0,2〉, 〈1,2〉), (〈1,1〉, 〈1,2〉)} and
a ic K K K Ky y y y y( ) ( )1 2 4 3 4⇔ ≤ ∧ ≤ . If this additivity prop-
erty is true, the only case of activation of y is when x
and y are above t x

1 and t y
2 respectively.

For the third case a ic K K K Ky y y y y( ) ( )1 1 3 2 4⇔ ≤ ∧ ≤ (the
same as the first one in the first case because ic y

1 is the
same) and a ic K K K Ky y y y y( ) ( )2 2 4 3 4⇔ ≤ ∧ ≤ (the same
as the first one in the second case). If these aditivity are
true, there are two cases of activation of y, one above t x

1

and one above t x
1 and t y

2 . Moreover, the second case of
activation is greater than the first one, due to the addi-
tivity property a ic y( )2 .
If multi-arcs are present in the interaction graph (sev-

eral arcs with the same origin and the same target node)
the cellular contexts on each side of the border defined
by the interaction composition icc

rc are not the same
depending on the values of the thresholds associated to
the multi-arc. In that case the additivity constraints are
relations involving also thresholds. Briefly, the additivity
constraint of the interaction composition icc

rc is: ∧(adj
(l0, ll, rc) ⇒ K c

l0 ≥ K c
l1 ) with adj(l0, l1, rc) true if it exists

a couple (S0, S1) of a ic K K K Ky y y y y( ) ( )2 1 2 3 4⇔ ≤ ∧ ≤
such that ¬ ∧Cellc Cellcc S

l
c S
l

, ,0
0

1
1 (the cellular contexts l0

and l1 are non empty, adjacent, and on each side of the
border defined by icc

rc ).
Example 6 For the example in Figure 3, the additivity

constraint of the composition ic ib b
1 2= ¬ is:.

( ( ))

( ( ))

( (

K K t t

K K t t

K K t

b b a a

b b a a

b b a

13 9 2 3

16 2 3

15 2

12

11

≤ ⇐ < ∧

≤ ⇐ < ∧

≤ ⇐ << ∧ < ∧

≤ ⇐ < ∧ ∧

≤ ⇐

>

t t t

K K t t t t

K K t

a

b b a a

b b

b b

b b

3 3

14 2 3 3

13

1

10 1

1

))

))( (

( ( aa a

b b a a

b b a a b b

t

K K t t

K K t t t t

2 3

16 2 3

15 2 3 3

4

3 1

=

=

=

∧

≤ ⇐ ∧

≤ ⇐ ∧ <

))

( ( ))

( ( )))

))( (

( ( ))

(

∧

≤ ⇐ ∧ ∧

≤ ⇐ ∧

≤

= >

>

K K t t t t

K K t t

K K

b b a a

b b a a

b

b b
14 2 3 3

2 3

2 1

5 1

8
bb a a

b b a a

b b a

b b

t t

K K t t t t

K K t t

4

7 3 1

6 2

2 3

2 3 3

2

⇐ ∧

≤ ⇐ ∧ < ∧

≤ ⇐

>

>

>

( ))

( (

( (

))

aa b bt t3 31∧ ∧> ))

according to the identifiers l of cellular contexts for
b (and so the identifiers of discrete kinetic
parameters K b

l ). It can be checked with the graphic
representation of cellular contexts of b in
Figure 3 that for t t t ta a b b

2 3 1 3< ∧ < we obtain
a ic K K K K K Kb b b b b b b( ) ( )1 13 9 15 11 16 12⇔ ≤ ∧ ≤ ∧ ≤ . This
example shows that specifying additivity properties can
be much more compact than working at the level of
parameters. Without language LG2 we would have to
write the above formula.
In addition to the additivity property, LG2 allows to

specify that an interaction composition icc
rc has an

Figure 4 Graphical representation of Adjb
2 relative to

example in Figure 3.

Corblin et al. BMC Bioinformatics 2010, 11:385
http://www.biomedcentral.com/1471-2105/11/385

Page 9 of 21



observable effect, denoted by o icc
rc( ) , i.e. that the differ-

ence of trend of c is strictly positive at least at one posi-
tion along the border defined by icc

rc . The exact
semantics of o icc

rc( ) is: for at least one couple (S0, S1)
of Adjc

rc the trend of c in S0 is strictly less than the
trend of c in S1. To be more explicit, an interaction ic

r

can be removed from the interaction graph if neither
the interaction composition ic

r (reduced to a single
interaction), nor its negation ¬ic

r is observable. Briefly
the observability constraint of the interaction composi-
tion icc

rc is: V( ( , , ) )adj l l rc K Kc
l

c
l0 1 0 1∧ < with adj(l0, l1,

rc) true if it exists a couple (S0, S1) of Adjc
rc such that

¬ ∧Cellc Cellcc S
l

c S
l

, ,0
0

1
1 .

Example 7 For the example in Figure 3 with
t t t ta a b b

2 3 1 3< ∧ < the constraint o icb( )2 is
( ) ( ) ( ) ( ) ( )K K K K K K K K K Kb b b b b b b b b

3 1 9 1 4 12 11 12
6
15 16< ∨ < ∨ < ∨ < ∨ < .

GNBox Features
The core functionality of the GNBox environment is to
test, for a given structure of a GRN, the consistency of a
set of hypotheses about the behaviours of this GRN (lan-
guage LG1) for several mutant types, about the interaction
compositions (language LG2), and even directly about the
parameters in P. GN-Box is able to identify consistent
solutions in terms of state variables that define the beha-
viour (LG1) and in terms of parameters of P. In cases
where the set of hypotheses is inconsistent, it is desirable
to determine the possible relaxations of hypotheses to
remove the inconsistency. GNBox can identify automati-
cally, among a defined set of questionable hypotheses, all
subsets of hypotheses whose relaxation removes the
inconsistency (subsets of necessarily false hypotheses).
These subsets are represented as disjunctions of conjunc-
tions of negations of hypotheses. For example, the hypoth-
eses H1 and H2 must be relaxed or the hypothesis H3
must be relaxed: (¬H1 ∧ ¬H2) V ¬H3. Also GNBox auto-
matically identifies, among a defined set of hypotheses, all
subsets of hypotheses necessarily true. These subsets are
represented by disjunctions of conjunctions of hypotheses.
For example, the hypotheses H1 and H2 are true or the
hypothesis H3 is true: (H1 ∧ H2) ∨ H3.

Results and Discussion
Application to the immunity control by the l
bacteriophage
The analysis of this network adapted from [7] illustrates
mainly the capability of GNBox (i) to express constraints
about reachability of states, and (ii) to find the minimal
interaction graph consistent with observations.
The l bacteriophage (or simply l phage) is a virus that

infects the bacterium Escherichia coli. The infection
starts by the injection of the genetic material of the virus
into the cytoplasm of the bacterium. We focus here on
two simple observations about the evolution of the

bacterium after infection: either the viral DNA is inte-
grated in the genetic material of the bacterium, and the
cells continue to divide normally (thus reproducing the
phage DNA in the same process), or the genetic material
replicates in the cytoplasm of the bacterial cell to create
new viral particles and then new viruses until lysis
(destruction) of the cell, which leads to the release of
new virus particles in the extracellular medium. The first
case corresponds to the lysogenic phase while the second
corresponds to the lytic phase. The decision between
these two phases is made by a network of viral genes.
The model proposed in [7] contains four viral genes

denoted by cI, cro, cII and n. The gene cI is expressed
only in the lysogenic phase, cro is expressed only in the
lytic phase and genes cII and n are not expressed in
both phases. The graph  of interactions between these
genes is given in Figure 5. Interactions and interaction
compositions (deduced from experimental data) are
given in Table 1. We consider the set of all additivity
and observability constraints for all these interaction
compositions ( ( ), ( )a ic o iccI cI

1 1 , etc.). In the following we
assume that the thresholds t c

p are ordered so That
t pc

p = . According to the previous section the set of
interactions, the hypotheses about interaction composi-
tions (set of interaction compositions, additivity proper-
ties, observability properties) and the hypotheses on
threshold values define a parameterized constrained
model (couple composed of a focal equation system
derived from  and a set of structural constraints). We
call it Ml and it is defined formally by the predicate
model_l(Ml). A state S for this model is represented by
an ordered list 〈SCI, Scro, ScII, Sn〉 of discrete protein con-
centrations. According to  and hypotheses on thresh-
old values, we have maxcI = 2, maxcro = 3, maxcII = 1,
maxn = 1. So the concentration space contains (2+1)*(3
+1)*(1+1)*(1+1) = 48 states.
The uninfected cell does not have any viral protein

and can therefore be represented by the state S0 = 〈S0cI,
S0cro, S0cII, S0n〉 = 〈0, 0, 0, 0〉 In the lysogenic phase of

Figure 5 Interaction graph  for the model about immunity
control by the l phage.
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the virus-host system the only viral gene expressed is cI.
This phase is represented by the state S1 = 〈S1cI, S1cro,
S1cII, S1n〉 = 〈2, 0, 0, 0〉 such that the concentration of
protein cI remains equal to its highest value. In the lytic
phase the only viral gene expressed is cro. In a continu-
ous description this phase is represented by a state
which is not contained within a domain, but which is at
the border between two adjacent domains. We could
introduce in our formalism additional states correspond-
ing to borders between domains. Such states are called
singular states in [2]. We choose here to stick to the
simpler formalism, and we represent the lytic phase as a
cycle between the two following states: S2 = 〈0, 2, 0, 0〉
and S3 = 〈0, 3, 0, 0〉, such that the concentration of the
protein cro remains around the highest values 2 and 3
[7]. Biological observations tell us that these two phases
must be attractors of the network dynamics, and that
they are reachable from the initial conditions. These
observations are formalized by Constraint 1 where the
lengths of the third and fourth paths for the reachability
of the two phases are equal to 48 states, 48 being the
total number of states of the state space.
Constraint 1

model M

S

S

S

S

S

_ ( )

, , ,

, , ,

, , ,

, , ,

  ∧
= ∧
= ∧
= ∧
= ∧

0 0 0 0 0

1 2 0 0 0

2 0 2 0 0

3 0 2 0 0

233 0 23 0 0

23

1 1 2

2

= ∧
∈ ∧

[ ] ∧

, , ,

( , , , )

( , ,

S

S

path M S S

path M S

cro

cro 2..3



 SS S

path M S S

path M S S

3 2 3

0 1 48

0 23 4

, , )

( , ,..., , )

( , ,..., ,

[ ] ∧
[ ] ∧
[ ]



 88)

The GNBox environment proves the consistency of
this pool of constraints in 2 seconds. All run times

mentioned in this article are obtained on a laptop with
2 GB of RAM and running at 2.4 GHz. Moreover
GNBox can provide the instantiations of the parameters
of P that satisfy the pool of constraints.
Example 8 An example of instantiation is:

K K K K

K K K K

K

cI cI cI cI

cI cI cI cI

c

1 2 3 4

5 6 7 8

0 2 0 0

2 2 1 1

= = = =

= = = =

, , , ,

, , , ,

rro cro cro cro

cII cII cII cI

K K K

K K K K

1 2 3 4

1 2 3

3 0 0 0

0 1 0

= = = =

= = =

, , , ,

, , , II

cII cII cII cII

n n n n

K K K K

K K K K

4

5 6 7 8

1 2 3

0

0 0 0 0

1 0 0

=

= = = =

= = =

,

, , , ,

, , , 44 0=

(remember that the indexes l of discrete kinetic para-
meters K c

l are set at their creation from the numbering
of interactions ic

r See Definition 1). The set of transi-
tions from S to S’, denoted by S ↠ S’, for this instantia-
tion is represented in Figure 6.
An interesting question, akin to reverse-engineering of

the network, is: what are the minimal numbers of inter-
action compositions necessary to get a model consistent
with Constraint 1 without specifying any additivity or
observability constraints? In other words, we search for
the minimal interaction graphs, in terms of interactions,
which satisfy the observed behaviors. From a constraint
point of view, this problem is specified and implemented
in the following way. For each interaction composition
on a gene c, a Boolean variable is created which means
“all pairs of states separated only by this interaction
composition have the same evolution tendency for c“.
Then GNBox searches for consistent models such that
the number of these Boolean variables which are true is
maximized. GNBox finds that only two interactions on
cro are necessary (in two seconds). So, the minimal
interaction graph contains only two interactions on cro
and no interactions on the other genes. The result is
surprising at first sight, but it should be borne in mind
that the query contains only poor information about
behaviours and no information on the interaction graph
(but the limitation to possible interactions), the goal
being to infer the minimum graph implied by this infor-
mation. This does not preclude the existence of other
interactions, but means that those are not necessary to
account for the behaviours included in the query.
Finally this application lead us to the interesting ques-

tion of the length L of the longest path without cycle in
the state space for a given set of hypotheses Set. We call
this length the diameter of the network for Set. This
knowledge permits to restrict the length of paths in sub-
sequent queries considering a set of hypotheses includ-
ing Set. In our case Set is Constraint 1. The diameter
for Set is 43. This highly combinatorial problem is

Table 1 Interactions and interaction compositions
hypotheses for the model about immunity control by the
l phage

species interactions interaction compositions

cI i cI t cIcI cI
1 2= ( , , ) ic icI cI

1 1=
i cro t cIcI cro

2 1=( , , ) ic icI cI
2 2= ¬

i cII t cIcI cII
3 1= ( , , ) ic icI cI

3 3=

cro i cI t crocro cI
1 2= ( , , ) ic icro cro

1 1= ¬
i cro t crocro cro

2 3= ( , , ) ic icro cro
2 2= ¬

cII i cI t cIIcII cI
1 2= ( , , ) ic icII cII

1 1= ¬
i cro t cIIcII cro

2 3= ( , , ) ic icII cII
2 2= ¬

i n t cIIcII n
3 1= ( , , ) ic icII cII

3 3=

n i cI t nn cI
1 1= ( , , ) ic in n

1 1= ¬
i cro t nn cro

2 2= ( , , ) ic in n
2 2= ¬
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answered in two queries: one to prove the existence of a
solution for a length L of 43 in 459 seconds, the other
showing inconsistency for a length L of 44 in 489
seconds.

Application to the carbon nutritional stress response in
the bacterium Escherichia coli
The modeling and analysis of this network is adapted
from [8]. It illustrates a case of model revision coming
from an inconsistency of the initial set of hypotheses.
We performed a similar and more exhaustive study
reported in [9]. We show that by an automatic relaxa-
tion method over biological constraints we can suggest
lines of research to the biologist or, said differently, gen-
erate new hypotheses.
Populations of the bacterium Escherichia coli grow

exponentially in favorable conditions. This state is called
the exponential phase. In stressing conditions, when
food (carbon) starts to be lacking, the populations stop
growing and they enter in a state called stationary
phase, with altered physiology and morphology. The
phenomenon is reversible: the population can return to

the exponential phase if the conditions become favor-
able again.
The model, proposed in [8] and adapted to our form-

alism, contains one input node sig (signal, 0 in the
absence of stress and 1 in the presence of stress) and
five species: crp, cya, fis, gyr and top. The interaction
graph  is given in Figure 7 where the input sig is
represented by a dotted circle filled in blue. Interactions
and interaction compositions are given in Table 2.
Moreover we consider the set of all additivity and obser-
vability constraints for all interaction compositions. As
before, the thresholds t c

p are ordered and equal to p.
The model obtained from all these hypotheses is
denoted by Mcoli. Thus we have maxcrp = 2, maxcya = 2,
maxfis = 3, maxgyr = 2 and maxtop = 2 (for the input sig
we have maxsig = 1). We obtain a concentration space
of (2 + 1) * (2 + 1) * (3 + 1) * (2 + 1) * (2 + 1) = 324
states.
The exponential phase and the stationary phase are

modeled by two states, respectively Sns (ns for “not
stressed”) and Ss (s for “stressed”). As stated in [8], there
exists partial knowledge about these states:

Figure 6 Set of possible transitions for the instantiation of parameters in Example 8 of the model about immunity control by the l
phage.

Corblin et al. BMC Bioinformatics 2010, 11:385
http://www.biomedcentral.com/1471-2105/11/385

Page 12 of 21



Constraint 2

S S

S S

S S

S

crp
ns

crp
s

crp
ns

cya
s

ns s

ns

fis fis

gyr

= =

= =

= =

∧ ∧

∧ ∧

∧ ∧

−

1 1

1 1

1 1

SS S Sgyr top
s

top
ns s> −

Note that only three components are instantiated in
each state and that there is a relationship between the
two others which expresses the fact that the super-
coiling of DNA is higher in the exponential phase. To
model the presence or the absence of stress we use two

models: a model Mcoli
ns without stress (sig = 0) and a

model Mcoli
s with stress (sig = 1). These two models are

the same biological model Mcoli in different conditions.
So they share the same discrete kinetic parameters K c

l .
In absence of stress the system beginning in the stressed
state Ss can reach the non-stressed state Sns, which is
steady. In presence of stress the system beginning in Sns

can reach Ss, which is steady. We formalize that by:
Constraint 3

path M S S

path M S S

path M

coli
ns ns ns

coli
s s s

col

( ,[ , ], )

( ,[ , ], )

(

2

2

∧

∧

ii
ns s ns

coli
s ns s

S S L

path M S S L

,[ , , ], )

( ,[ , , ], )

… ∧

…

where L is the length of the third and fourth paths for
the reachability of the two steady states. In the following
queries we choose L = 10 and L = 100 to compare per-
formance, but if we want a general query without any
limitation on L we should choose L = 324 (the total
number of states of the model) but the amount of mem-
ory needed to generate the pool of constraints becomes
very large. We point out here that for such queries
involving paths, this approach is limited to networks of
medium size.
With GNBox we prove that the pool of constraints

composed of constraints for models Mcoli
s and Mcoli

ns

Constraint 2 and Constraint 3 is inconsistent in 2 sec-
onds for path length L = 10 states, and 13 seconds for
path length L = 100. In fact just imposing the existence
of two steady states gives an inconsistency in less than
1 second, thus proving that the constraint pool is incon-
sistent whatever the value of L. In [8] it is noted that
the proposed instantiated model is indeed inconsistent.
Here we prove in addition that there exists no other
instantiation of the discrete kinetic parameters (accept-
ing the interaction compositions hypotheses) able to

Table 2 Interactions and interaction compositions
hypotheses for the model about carbon nutritional stress
in E. coli

species interactions interaction compositions

crp i sig t crpcrp sig
1 1= ( , , ) ic i i icrp crp crp crp

1 1 2 3= ∧ ∧   
i crp t crpcrp crp

2 1= ( , , )
i cya t crpcrp cya
3 1= ( , , )

i fis t crpcrp fis
4 1= ( , , ) ic icrp crp

2 4= ¬
i fis t crpcrp fis
5 2= ( , , ) ic icrp crp

3 5= ¬
cya i sig t cyacya sig

1 1= ( , , ) ic i i icya cya cya cya
1 1 2 3= ¬ ¬ ¬    ∨ ∨

i crp t cyacya crp
2 2= ( , , )

i cya t cyacya cya
3 2= ( , , )

fis i sig t fisfis sig
1 1= ( , , ) ic i i ifis fis fis fis

1 1 2 3= ¬ ¬ ¬    ∨ ∨
i crp t fisfis crp

2 1= ( , , )
i cya t fisfis cya
3 1= ( , , )

i gyr t fisfis gyr
4 1= ( , , ) ic i ifis fis fis

2 4 5= ∧ ¬ 
i top t fisfis top
5 2= ( , , )

gyr i fis t gyrgyr fis
1 3= ( , , ) ic igyr gyr

1 1= ¬
i gyr t gyrgyr gyr

2 2= ( , , ) ic i igyr gyr gyr
2 2 3= ¬  ∨

i top t gyrgyr top
3 1= ( , , )

top i fis t toptop fis
1 3= ( , , ) ic itop top

1 1=
i gyr t toptop gyr

2 2= ( , , ) ic i itop top top
2 2 3= ∧ ¬  

i top t toptop top
3 1=( , , )

Figure 7 Interaction graph  for the model about carbon nutritional stress in E. coli.
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restore consistency. In other words it is proved that this
network architecture with these hypotheses on interac-
tion compositions is incompatible with the observations.
It is thus necessary to revise the model. In [8] the
authors suggest that a regulator or an interaction may
be missing in the model. Here, instead, we keep the
interaction graph  as it is, and try to change the way
interactions are composed. The set of unreliable hypoth-
eses is the set of all additivity and observability proper-
ties about interaction compositions. We allow the
relaxation of these hypotheses and we obtain the prop-
erty ¬ ∨ ¬a ic a icgyr top( ) ( )1 1 in 7 seconds with a path
length L = 10, and in 830 seconds with a path length L
= 100. Discussions with the biologist lead to the conclu-
sion that it is not acceptable to relax the additivity prop-
erty of the first composition on gyr, ¬( , , )fis t gyrfis

3 .
This suggests that the composition on top,
( , , )fis t topfis

3 , is the one which is not additive and con-
sequently that it is possible to observe an inhibition of
top by fis. This inhibition effect is actually observed for
another kind of stress. In [10] it is said: “when Fis levels
are low, hydrogen peroxide treatment results in topA
activation”. This means that fis acts in some cellular
contexts as an inhibitor of top. This paper shows that
the protein fis can indeed play an inhibitory role on top
in some contexts, and it thus gives support to the new
hypothesis that fis plays an inhibitory role in the
response to nutritional stress. It is remarkable that this
pool of constraints is inconsistent given that the number
of adjustable parameters is relatively high. We insist
here on the fact that inspection of the constraint pool
did not allow to resolve manually this inconsistency.
Finally, it appears that the hypotheses of interaction

compositions on top are not well supported by experi-
ments, and we propose to determine the necessarily obser-
vable compositions of the type ic

r and ( ¬ic
r ). The

rationale for limiting the compositions to basic types
(signed interactions) is to provide easily interpretable
results in terms of the interaction graph  complemented
with interaction signs (corresponding to the choice
between activation and inhibition). This allows to
determine for example whether there are unnecessary
arcs in  . On the other hand this restriction still allows to
guide the user in the choice of hypotheses about
interaction compositions. We conserve all the
previous hypotheses except the ones about the interaction
compositions on top. We consider a new set of
these six interaction compositions for top:
ic i ic i ic i ic i ictop top top top top top top top to

1 1 2 2 3 3 4 1= = = = ¬, , , , pp top top topi ic i5 2 6 3= ¬ = ¬ , .
Finally we challenge the observability constraints
onto them to find which of them are necessary for
these hypotheses. GNBox returns the property
o ic o ictop top( ) ( )2 4∨ (observability property of
( , , )gyr t topgyr

2 or observability property of ¬( , , )fis t topfis
3 )

in 4 seconds with a length of path L = 10, and the same
formula in 60 seconds with a length of path L = 100. This
indicates that any solution of all constraints (except the
hypotheses of composition on top) has the property
o ictop( )2 or the property o ictop( )4 . This result provides an
essential information to help the biologist to make
additional hypotheses about interaction compositions.

Application to the gap-gene module of the segmentation
of the Drosophila melanogaster embryo
In the first hours after fertilization, the embryo of the fly
Drosophila melanogaster undergoes segmentation along
the anteroposterior axis (head to tail). The embryo is
partitioned into segments, each segment being made of
cells characterized by specific levels of a set of proteins.
Segmentation takes place in several successive stages
controlled by distinct genetic modules. Here we focus
on the gap-gene regulatory module.
The modeling and analysis of this network illustrates

the expression of steady states in several segments of
the embryo for the wild type and several mutant types,
and the search for the minimum number of thresholds
necessary to account for all the observations. The initial
model is adapted from [11,12]. Although this model is
not the most recent available, it is convenient for our
purpose. The resolution of this query provides a set of
minimal models (in terms of number of thresholds) con-
sistent with a set of very diverse observations. The con-
nection between the observations for all these models
(one for each mutant type and for each segment) adds a
new level of complexity.
The model, proposed in [11,12], controlling the gap-

gene module contains seven genes: Giant denoted by gt,
Hunchback zygotic denoted by hbz, Hunchback mater-
nal denoted by hbm, Krüppel denoted by kr, Knirps
denoted by kni, Bicoid denoted by bcd, and Caudal
denoted by cad. The genes bcd, hbm and cad are input
genes: they influence other genes but are not influenced
by any gene. Stocks of maternal mRNA and proteins are
accumulated at specific places of the egg before fertiliza-
tion. These molecules generate gradients along the ante-
roposterior axis. In the model these quantities are
represented by input parameters (one for each chemical
species and each region). The interaction graph 
between these genes is given in Figure 8 where input
genes are represented by dotted circles filled in blue.
Interactions and interaction compositions are given in
Table 3. Moreover we consider the set of all additivity
and observability constraints for all interaction composi-
tions. The modeling in [11,12] takes into account four
adjacent segments along the anteroposterior axis,
denoted by A, B, C and D. Genetic experiments pro-
duced information on the concentration of the gap-gene
proteins for the wild type, denoted by wt, and nine
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mutants. The mutants are: knock-out (KO) on gt (the
focal value of the gt component is 0 everywhere)
denoted by gt0, KO on both hbz and hbm denoted by
hb0, KO on kr denoted by kr0, KO on kni denoted by
kni0, KO on bcd denoted by bcd0, KO on hbm denoted
by hbm0, KO on cad denoted by cad0, ectopic expres-
sion equal to 1 on gt (the focal value of the gt compo-
nent is everywhere equal to 1) denoted by gt1, ectopic
expression equal to 1 on kni denoted by kni1. We define
a model MR,T for each segment RÎ {A, B, C, D} and each
type T Î {wt, gt0, hb0, kr0, kni0, bcd0, cad0, hbm0, gt1,
kni}. For example, MB,gt0 corresponds to the model of
the mutant type gt0 in segment B. The input para-
meters, discrete kinetic parameters and threshold para-
meters, between models are linked by introducing
equality constraints between them, as explained in the
section on the formalization of Thomas networks. Thus
it would be redundant to impose constraints about inter-
action compositions for mutant types (the corresponding
constraints for the wild type are sufficient). Obviously,
these constraints lead to exactly the same threshold and
discrete kinetic parameters for the four models associated
to the four segments and each mutant.
The concentrations of the proteins produced by input

genes bcd, hbm and cad for each region R and each
mutant type T are respectively denoted by M Mbcd

R T
hb
R T

m

, ,,
and Mcad

R T, . We impose in Constraint 4 that the inputs
in the mutant types are equal to those of the wild type,
except in the cases where some input genes themselves
are mutated. This exception is due to the fact that the
inputs come from the mother system, so only a muta-
tion in this system can change the concentration value
of the corresponding input.
Constraint 4

R T gt kr kni gt kni

bcd
R T

bcd
R wt

hb
R T

hb
R

M M

M M
m

∧ ∧ ∈

=

=

∧

{ , , , , }

, ,

, ,

0 0 0 1 1

wwt

cad
RT

cad
R wtM M

∧

= ,

Moreover, we have inequality constraints between the
thresholds for this model:
Constraint 5

p p
c
p

c
pp p t t

1 2

1 21 2
,

( )∧ < ⇒ ≤

The observations relate to the existence of one steady
state by mutant type and by segment with some proper-
ties between these states. The steady states are

Figure 8 Interaction graph  for the model about gap-gene
module of the segmentation of the D. melanogaster embryo.

Table 3 Interactions and interaction compositions
hypotheses for the model about gap-gene module of the
segmentation of the D. melanogaster embryo

species Interactions interaction compositions

gt i hb t gtgt z hbz

1 1= ( , , ) ic igt gt
1 1= ¬

i kr t gtgt kr
2 1= ( , , ) ic igt gt

2 2= ¬
i bcd t gtgt bcd
3 1= ( , , ) ic igt gt

3 3=
i cad t gtgt cad

4 2= ( , , ) ic igt gt
4 4=

hbz i hb t hbhb z hb zz z

1 1= ( , , )
i kr t hbhb kr zz

2 2= ( , , ) ic ihb hbz z

1 2= ¬
i bcd t hbhb bcd zz

3 1= ( , , ) ic ihb hbz z

2 3=
i bcd t hbhb bcd zz

4 2= ( , , ) ic i i ihb hb hb hbz z z z

3 3 1 6= ∧ ( )∨
i bcd t hbhb bcd zz

5 3= ( , , ) ic i i ihb hb hb hbz z z z

4 4 1 6= ∧ ( )∨
i hb t hbhb m hb zz m

6 1= ( , , ) ic i i ihb hb hb hbz z z z

5 5 1 6= ∧ ( )∨

kr i gt t krkr gt
1 1= ( , , ) ic ikr kr

1 1= ¬
i hb t krkr z hbz

2 1= ( , , ) ic i ikr kr kr
2 2 3= ∧ ¬ 

i hb t krkr z hbz

3 3= ( , , )
i kni t krkr kni

4 1= ( , , ) ic ikr kr
3 4= ¬

i bcd t krkr bcd
5 1= ( , , ) ic ikr kr

4 5=

kni i gt t knikni gt
1 1= ( , , ) ic ikni kni

1 1= ¬
i hb t knikni z hbz

2 2= ( , , ) ic ikni kni
2 2= ¬

i bcd t knikni bcd
3 1= ( , , ) ic ikni kni

3 3=
i cad t knikni cad

4 1= ( , , ) ic ikni kni
4 4=
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represented by ordered lists of four protein concentra-
tions: S S S S SR T

gt
R T

hb
R T

kr
R T

kni
R T

z

, , , , ,, , ,= 〈 〉 for each region R
and each mutant type T. The constraint associated to the
observation of the steady state of each region R and each
type T is:
Constraint 6

R T

R T R T
hp
R T

kr
R T

kni
R T

R T R T R T

S S S S S

path M S S

z

∧ ∧
= ∧, , , , ,

, , ,

, , ,

( ,[ , ],, )2

The gradients of maternal origin mentioned above are
used by the cell to derive positional information. To
represent these gradients, the antero-posterior axis is
partitioned into segments, each segment being identified
by a combination of values of the input molecules bcd,
hbm and cad. We impose that the combinations of input
quantities are different for all pairs of segments for the
wild type:
Constraint 7

( , ) { , , , } |

, , ,( , , )

(

R R A B C D R R

bcd
R wt

hb
R wt

cad
R wtM M M

M

1 2 1 2

1 1 1

2∈ ≠∧
≠

bbcd
R wt

hb
R wt

cad
R wtM M

m

2 2 2, , ,, , )

Table 4 shows the constraints between the concentra-
tions of the steady states in regions A, B, C and D for
each species and for each mutant; the bold font indi-
cates a change of constraint compared to the wild type.
All these constraints come from the interpretation of
data in [12]. The first column of the table gives the
mutant type, the second the genes, the third, fourth,
fifth and sixth represent the steady state of the region A,
B, C and D, respectively. Inequality symbols appear
between the columns labeled A, B, C, D. They indicate
constraints between concentrations of steady states of
adjacent segments. Finally the two last columns give
other constraints involving concentrations in segments
that are not necessarily adjacent and comments about
the differences compared to the wild type.
We note in the following Cgap the set of constraints

associated to the existence of the steady states of the 4
regions for each of the 10 types (composed of con-
straints defining and linking the models MR,T, Con-
straint 4, Constraint 5, Constraint 6, Constraint 7, and
constraints in Table 4).
If we add to Cgap the constraint represented in Table

5 about the instantiation of steady states for all types,
input parameters for the wild type according to the sec-
ond table of [12], and the constraint ∧c ∧p t pc

p = we
obtain a consistency in 11 seconds.

It appears in the second figure of [11] that there is no
auto-interaction onto hbz. In fact, after discussion with D.
Thieffry, a synergy between Hunchback and Bicoid on the
activation of Hunchback has been reported, and hbm and
hbz are the same species in distinct compartments. This
explain the interaction compositions onto hbz with indexes
3, 4 and 5. If we do not consider this auto-interaction in
Cgap by replacing the last three interaction compositions
onto hbz by ic i i ic i ihb hb hb hb hb hbz z z z z z

3 3 6 4 4 6= ∧ = ∧ , and
ic i ihb hb hbz z z

5 5 6= ∧ , and we still consider the constraint in
Table 5 and the constraint ∧c ∧p t pc

p = , we obtain an
inconsistency in 7 seconds.
So we consider in the following the proposed model with

this auto-interaction onto hbz (in order to have a similar
model to those in [11,12]). Obviously, Cgap alone (without
the constraint represented in Table 5 and the constraint ∧c
∧p t pc

p = ) is consistent according to the first query.
In previous applications the thresholds t c

p are instan-
tiated and equal to p, p taking a value between 1 and
maxc. This implies that the concentrations of c can take
values between 0 and maxc. Insofar as the subdivision of
the concentration space is only speculative, it is interest-
ing to ask what is the smallest number of distinct
thresholds necessary to get a model consistent with the
observations. The extreme case would be the satisfaction
of all observations and hypotheses with one threshold
per component, i.e. with a Boolean model. It appears
that Cgap plus ∧c ∧p t c

p = 1 is inconsistent in 2 seconds.
We can check easily this inconsistency: the constraint
t thb hbz z

1 3= is inconsistent with the observability con-
straint of ic kr

2 because no state S satisfies ic kr
2 i.e. the

condition S t S thb hb hb hbz z z z
≥ ∧ <1 3 .

To identify the minimum number of different thresh-
olds needed to satisfy all the observations and hypoth-
eses, we must build a query using the method of
relaxation of constraints. But in this case, the relaxation
takes place on the number of thresholds in 1..maxc for
each component c.
To summarize, we challenge the hypotheses about the

number of thresholds for all components. From a con-
straint point of view, this problem is specified and
implemented in the following way. We introduce Boo-
lean variables Bj,c equivalent to “the number of thresh-
olds for c is less or equal to j“, j being an integer in the
interval 1..maxc -1. So we get six Boolean variables in
our case: B hbz1, and B hbz2, for hbz, B1, kr for kr, B1, bcd

and B2, bcd for bcd, B1, cad for cad. Then GNBox
searches for models consistent with the set of con-
straints defined above such that the number of these
Boolean variables which are true is maximum. GNBox
finds in 22 seconds that the only Boolean variables to be
false are B hbz2, and B2, cad. This indicates that hbz must
have at least 2 different values of thresholds, and cad
must have at least 2 different values of thresholds.
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Table 4 Constraints between stationary states and between input parameters for each region and each mutant type
for the model about gap-gene module of the segmentation of the D. melanogaster embryo

Type species A B C D supp. constr. Comments

wt bcd Mbcd
A wt, ≥ Mbcd

B wt, ≥ Mbcd
C wt, ≥ Mbcd

D wt, Mbcd
D wt, = 0

hbm Mhb
A wt

m

,
≥ Mhb

B wt
m

,
≥ Mhb

C wt
m

,
≥ Mhb

D wt
m

, Mhb
D wt

m

, = 0

cad Mcad
A wt, ≤ Mcad

B wt, ≤ Mcad
C wt, ≤ Mcad

D wt, Mcad
A wt, = 0

gt Sgt
A wt, > Sgt

B wt, Sgt
C wt, < Sgt

D wt, S Shb
B wt

hb
D wt

z z

, ,>

hbz Shb
A wt

z

,
≥ Shb

B wt
z

,
≥ Shb

C wt
z

,
≥ Shb

D wt
z

,

kr Skr
A wt, < Skr

B wt, ≥ Skr
C wt, ≥ Skr

D wt,

kni Skni
A wt, ≤ Skni

B wt, < Skni
C wt, > Skni

D wt,

gt0 gt Shb
A gt

z

, 0
≥ Shb

B gt
z

, 0
≥ Shb

C gt
z

, 0
≥ Shb

D gt
z

, 0 S Shb
B gt

hb
D gt

z z

, ,0 0> Knock-out

hbz Skr
A gt, 0 < Skr

B gt, 0 ≥ Skr
C gt, 0 ≥ Skr

D gt, 0

Kr Skni
A gt, 0 ≤ Skni

B gt, 0 < Skni
C gt, 0 ≤ Skni

D gt, 0 Kni expands into D

hb0 bcd Mbcd
A hb, 0 ≥ Mbcd

B hb, 0 ≥ Mbcd
C hb, 0 ≥ Mbcd

D hb, 0 Knock-out

hbm

cad Mcad
A hb, 0

≤ Mcad
B hb, 0 ≤ Mcad

C hb, 0 ≤ Mcad
D hb, 0

gt
R gt

R hbS∧ ≥, 0 1 gt expand into BC

hbz Knock-out

kr
R kr

R hbS∧ =, 0 0 loss of kr into BC

kni
R kni

R hbS∧ =, 0 0 loss of kni into BC

kr0 gt
R gt

R krS∧ ≥, 0 1 gt expands into BC

hbz Shb
A kr

z

, 0
≥ Shb

B kr
z

, 0
≥ Shb

C kr
z

, 0
≥ Shb

D kr
z

, 0 S Shb
B kr

hb
D kr

z z

, ,0 0>

kr Knock-out

kni
R kni

R krS∧ =, 0 0 loss of kni into BC

kni0 gt Sgt
A kni, 0 Sgt

B kni, 0 Sgt
C kni, 0 < Sgt

D kni, 0

hbz Shbz
A kni, 0 > Shbz

B kni, 0 ≥ Shbz
C kni, 0 ≥ Shbz

D kni, 0 S Shb
B kni

hb
C kni

z z

, ,0 0>

kr Skr
A kni, 0 ≥ Skr

B kni, 0 ≥ Skr
C kni, 0 ≥ Skr

D kni, 0 Skr
C kni, 0 1≥

Kni < increase of kr into c knoct-out

bcd0 bcd Knock-out

hbm Mhb
A bcd

m

, 0
≥ Mhb

B bcd
m

, 0
≥ Mhb

C bcd
m

, 0
≥ Mhb

D bcd
m

, 0

cad Mcad
A bcd, 0 ≤ Mcad

B bcd, 0 ≤ Mcad
C bcd, 0 ≤ Mcad

D bcd, 0

gt Sgt
C bcd, 0 < Sgt

D bcd, 0 Sgt
A bcd, 00 = loss of gt into A

hbz R hb
R bcdS

z∧ =, 0 0 loss of hbz into ABC

kr
R kr

R bcdS∧ =, 0 0 loss of kr into BC

kni Skni
A bcd, 0

≥ Skni
B bcd, 0 ≥ Skni

C bcd, 0 > Skni
D bcd, 0 kni expands into AB
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The last query gives, in 17 seconds, two possible
instantiations of the t c

p accepting Cgap and the minimal
number of thresholds given by the previous query:
t t t t t t t tbcd bcd bcd hb cad cad gt hbm

1 2 3 1 1 2 11 1 1 1 1 2 1= = = = = = =, , , , , , ,
zz z z

t t t t thb hb kr kr kni
1 2 3 1 2 11 1 2 2 1 1 1= = = = = =, , , , ,or .

One remarks that the three thresholds of hbz share only
two values.

Conclusions
Our methodology is composed of two parts: (i) a
declarative constraint-based approach; (ii) a formalism
for the description of the dynamics of discrete networks.
We have presented here applications involving gene reg-
ulatory networks whose behaviour is satisfactorily repre-
sented in the formalism of R. Thomas. But it is
important to note that the methodology can be applied

to many other types of dynamical rules, such as Hop-
field-like networks, Boolean networks with parallel,
sequential or block-sequential updating. The only
requirement is that the dynamical rules should be
expressed as constraints on finite-domain variables. The
potential domain of application of this methodology is
thus much larger than just gene regulatory networks.
The Thomas’ networks have largely been applied to

the analysis of GRNs, for example those described in
[7,13-15] or those described in [8,16,17] which use a
very similar qualitative formalism.
Several modeling and simulation tools of biological

regulatory networks (for example GINsim [18], BIOC-
HAM [19], GNA [20]) are used in combination with
model checkers (NuSMV, CADP) and based on diverse

Table 4 Constraints between stationary states and between input parameters for each region and each mutant type
for the model about gap-gene module of the segmentation of the D. melanogaster embryo (Continued)

hbm0 bcd Mbcd
A hbm, 0 ≥ Mbcd

B hbm, 0 ≥ Mbcd
C hbm, 0 ≥ Mbcd

D hbm, 0

hbm Knock-out

cad Mcad
A hbm, 0 ≤ Mcad

B hbm, 0 ≤ Mcad
C hbm, 0 ≤ Mcad

D hbm, 0

gt Sgt
A hbm, 0 > Sgt

B hbm, 0 Sgt
C hbm, 0 < Sgt

D hbm, 0

hbz Shb
A hbm

z

, 0
≥ Shb

B hbm
z

, 0
≥ Shb

C hbm
z

, 0
≥ Shb

D hbm
z

, 0 S Shb hb
B hbm D hbm

z z

, ,0 0>

kr Skr
A hbm, 0 < Skr

B hbm, 0 ≥ Skr
C hbm, 0 ≥ Skr

D hbm, 0

kni Skni
A hbm, 0 ≥ Skni

B hbm, 0 < Skni
C hbm, 0 > Skni

D hbm, 0

cad0 bcd Mbcd
A cad, 0 ≥ Mbcd

B cad, 0 ≥ Mbcd
C cad, 0 ≥ Mbcd

D cad, 0

hbm Mhb
A cad

m

, 0
≥ Mhb

B cad
m

, 0
≥ Mhb

C cad
m

, 0
≥ Mhb

D cad
m

, 0

cad

gt Sgt
A cad, 0 > Sgt

B cad, 0 Sgt
D cad, 0 0 knock-out

lass of gt into D

hbz Shb
A cad

z

, 0
≥ Shb

B cad
z

, 0
≥ Shb

C cad
z

, 0
≥ Shb

D cad
z

, 0 S Shb hb
B cad D cad

z z

, ,0 0>

kr Skr
A cad, 0 < Skr

B cad, 0 ≥ Skr
C cad, 0 ≥ Skr

D cad, 0 Skr
C cad, 0 1≥ increase of kr of into C

kni
R kni

R cadS∧ =, 0 0 lass of kni into C

gt1 gt ectopic expression

hbz Shb
A gt

z

, 1
≥ Shb

B gt
z

, 1
≥ Shb

C gt
z

, 1
≥ Shb

D gt
z

, 1 S Shb hb
B gt D gt

z z

, ,1 1>

kr Skr
A gt, 1 < Skr

B gt, 1 ≥ Skr
C gt, 1 ≥ Skr

D gt, 1

kni
R kni

R gtS∧ =, 1 0 lass of kni into C

Kni1 gt Sgt
A kni, 1

≥ Sgt
B kni, 1 > Sgt

C kni, 1 < Sgt
D kni, 1 activation of gt into B

hbz Shb
A kni

z

, 1
≥ Shb

B kni
z

, 1
≥ Shb

C kni
z

, 1
≥ Shb

D kni
z

, 1

Kr Skr
C kni, 1 ≥ Skr

D kni, 1 S Shb hb
B kni D kni

z z

, ,1 1=

kni S Skr
A kni

kr
B kni, 1 1 0 , lass of kr into B

ectopic expression
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formalisms (logic, Petri nets, ODEs). The idea is to add
to the simulation functionality a formal verification
functionality to check, or optimize [21], the fitness
between the simulated and the observed behaviours.
Three types of abstractions are available in BIOC-

HAM, among which ordinary differential equations and
Boolean networks. The inference of parameters is based
on the technique of model-checking and the definition
of a continuous degree of satisfaction of a temporal
logic formula formalizing some observation on beha-
viour. This permits to find biochemical kinetic para-
meter values which are optimal with respect to a set of
biological properties. Moreover it is possible to find the
effect of parameter variations on the robustness of a
behaviour specification [22]. Our work differs signifi-
cantly in that it focuses to face the problem of incom-
plete knowledge to produce, by a constraint-based
process, a class of models from which it is expected to
design new experiments.
A steady state search module, including the so-called

singular states, exists in GNA based on an integration of
the SAT solver SAT4J [23]. This integration of a con-
straint approach avoids the generation of all the transi-
tions to identify the steady states. But in contrast to our
work aiming at providing general queries, [23] focus on
the search of steady states, and only in the case of com-
pletely instantiated models (kinetic parameters instan-
tiated and order of the thresholds predefined). The work
in [24] search the same steady states with a CSP (Con-
straint Satisfaction Problem) formalization, the perfor-
mances are worse than in [23]. In our work, we can
write easily queries to identify steady states, and even
cycles of length smaller than some predefined value. In
addition in our case the kinetic parameters and the
orders between thresholds can be only partially known.
As explained here, other much more sophisticated
queries are available, although in the current version we
do not include singular states.
The formal approach proposed here modifies deeply

the way to proceed in the building and in the explora-
tion of genetic and biochemical networks, first by avoid-
ing the usual trial-and-error procedure, and second by
putting the emphasis on sets of solutions, rather than a
single consistent solution arbitrarily chosen in a set.
Last, the constraint approach lends to a unified descrip-
tion of network architecture and network behaviour, as
both are described in terms on formal constraints. The
knowledge available to initiate the modeling of a given
phenomenon is generally sparse with respect to the
complexity of the behaviour of the underlying networks.

Table 5 Constraints of instantiation of stationary states
according to the second table in [12] for each region and
each mutant type for the model about gap-gene module
of the segmentation of the D. melanogaster embryo

type species A B C D

wt bcd 3 2 1 0

hbm 1 1 0 0

cad 0 0 1 2

gt 1 0 0 1

hbz 3 2 1 0

kr 0 2 1 0

kni 0 0 1 0

gt0 gt 0 0 0 0

hbz 3 2 1 0

kr 0 2 1 0

kni 0 0 1 1

hb0 gt 1 1 1 1

hbz 0 0 0 0

kr 0 0 0 0

kni 0 0 0 0

kr0 gt 1 1 1 1

hbz 3 2 1 0

Kr 0 0 0 0

Kni 0 0 0 0

kni0 gt 1 0 0 1

hbz 3 2 1 0

kr 0 2 2 0

kni 0 0 0 0

bcd0 gt 0 0 0 1

hbz 0 0 0 0

kr 0 0 0 0

kni 1 1 1 0

hbm0 gt 1 0 0 1

hbz 3 2 1 0

kr 0 2 1 0

kni 0 0 1 0

cad0 gt 1 0 0 0

hbz 3 2 1 0

kr 0 2 2 0

kni 0 0 0 0

gt1 gt 1 1 1 1

hbz 3 2 1 0

kr 0 1 1 0

kni 1 1 1 1

kni1 gt 1 1 0 1

hbz 3 2 1 0

kr 0 0 1 0

kni 1 1 1 1
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It is thus essential to exploit consistently, efficiently, and
in a joint manner, every bit of experimental information.
The representation of knowledge in terms of constraints
is a way to achieve, at least to some extent, this goal.
Our environment GNBox implements a wide panel of

functionalities: simulations, consistency proof, relaxation
in case of inconsistency, search for a minimal model,
prediction of properties in case of consistency. This last
functionality generates properties which are verified by
all solutions of the constraint pool. In line with what we
said above, note that such properties are really sup-
ported by data. This contrasts with the usual practice of
using just one solution to make prediction, neglecting
the existence of other solutions. Properties of the
selected single model should not be considered as true
predictions.
We have presented three biological applications illus-

trating the use of most of these functionalities. These
applications involve networks containing about 5 species
and 15 possible interactions, and with set of hypotheses
and observations without systematic instantiation of
threshold parameters, with a large range of types of
behaviours. In the third application the queries involve
several structurally related models in order to incorpo-
rate knowledge about wild-type and mutant behaviour,
in four segments of the embryo. The set of constraints
generates a dense network of dependencies between the
variables. The performances of GNBox are good for the
different types of queries presented in the three applica-
tions. The most computer-intensive queries are those
involving paths. For such queries our approach is lim-
ited to networks of medium size.
The perspectives are governed by the biological pro-

blems. The methodologies and technologies employed
must be chosen according to these problems. A first
perspective is to prioritize biological experiments. For
example, consider a situation in which the state of
knowledge is such that the number of consistent instan-
tiated models is still large, and it is possible to perform
double knock-out experiments. In such situation it
would be interesting to be able to determine the most
informative choice of pairs of genes to target for knock-
out, an informative experiment being one which will
potentially add non redundant constraints and thus
reduce the set of solutions. Another perspective is to
refine the abstraction of the discrete behaviours: for
example by taking into account the trajectories sliding
along the thresholds [17,25], and taking into account
the difference of delays of chemical reactions [26-28].
Another perspective is the extended repairing consis-
tency techniques adding species, related to the problem
of composing networks [29].

Additional material

Additional file 1: GNBox.
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