
Increased Tea Saponin Content Influences the Diversity and
Function of Plantation Soil Microbiomes

Shouke Zhang,a,b Junqia Kong,a,c Longfei Chen,c Kai Guo,a,b Xudong Zhoua,b

aState Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, People’s Republic of China
bSchool of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, People’s Republic of China
cNorthwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, People’s Republic of China

Shouke Zhang and Junqia Kong contributed equally to this article. The order was determined by the corresponding author after negotiation.

ABSTRACT Plant secondary metabolites (PSMs) can affect the structures and func-
tions of soil microbiomes. However, the core bacteria associated with PSMs, and their
corresponding functions have not been explored extensively. In this study, soil physi-
cochemical properties, tea saponin (TS) contents, microbial community compositions,
and microbial community functions of different-age Camellia oleifera plantation soils
from representative regions were analyzed. We evaluated the effects of plantation age
increase on PSM accumulation, and the subsequent consequences on the structures
and functions of soil microbiomes. Plantation ages increase positively correlated with
accumulated TS contents, negative effects on soil physicochemical properties, and soil
microbiome structures and functions. Clearly, the core functions of soil microbiomes
transitioned to those associated with PSM metabolisms, while microbial pathways
involved in cellulose degradation were inhibited. Our study systematically explored
the influences of PSMs on soil microbiomes via the investigation of key bacterial pop-
ulations and their functional pathways. With the increase in planting years, increased
TS content simplified soil microbiome diversity, inhibited the degradation of organic
matter, and enriched the genes related to the degradation of TS. These findings signif-
icantly advance our understanding on PSMs-microbiome interactions and could pro-
vide fundamental and important data for sustainable management of Camellia
plantations.

IMPORTANCE Plant secondary metabolites (PSMs) contained in plant litter will be
released into soil with the decomposition process, which will affect the diversity and
function of soil microbiomes. The response of soil microbiomes to PSMs in terms of di-
versity and function can provide an important theoretical basis for plantations to put
forward rational soil ecological management measures. The effects of planting years on
PSM content, soil physicochemical properties, microbial diversity, and function, as well
as the interaction between each index in Camellia oleifera plantation soil are still unclear.
We found that, with planting years increased, the accumulation of tea saponin (TS) led
to drastic changes in the diversity and function of soil microbiomes, which hindered the
decomposition of organic matter and enriched many genes related to PSM degradation.
We first found that soil bacteria, represented by Acinetobacter, were significantly associ-
ated with TS degradation. Our results provide important data for proposing rational soil
management measures for pure forest plantations.

KEYWORDS plant secondary metabolites, soil microbiome, tea saponin, plantation
ages, soil physicochemical properties, core function

Artificial management leads to specific plants becoming the dominant species within a
particular area and their litter can significantly impact soil characteristics, including
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soil microbial composition and function (1, 2). Plant litter decomposition is a complex,
long-term process (2–4). In addition to organic matter and nutrients, plant secondary
metabolites (PSMs) that are recalcitrant to degradation are also released into soil (3). PSMs
play important roles in ecosystem processes such as plant succession and litter decompo-
sition by regulating interactions between plants and soil microorganisms (3). Healthy and
stable soil microbiomes with high diversity can promote soil decomposition, providing an
appropriate environment ideal for plant growth. However, most PSMs also have bacterio-
static effects which lead to the degradation of critical soil physicochemical properties (5).

Many studies indicated that microbiomes are influenced by numerous types of mol-
ecules, including coumarins, glucosinolates, benzoxazines, and triterpenoids (1, 6–9).
These PSMs can exert a wide spectrum of effects upon individual microbial strains or
groups, particularly when they function as toxins (1). Consequently, microbiome
responses to PSMs primarily result in changes to microbial structures (10–14) and their
functions accordingly (1, 13, 14). These changes include the circulation of soil carbon,
nitrogen, phosphorus, and other substances that directly affect plant growth and de-
velopment and are closely related to plant health (4). Thus, decreased plant growth
occurs mainly due to continuous planting of a single species over many years in a large
area, and to the degradation of circulation (4, 15, 16). For example, dominant plants
have more significant effects on soil abiotic and biotic properties (15, 16) which, in
turn, influence litter decomposition via changes to decomposer communities. Previous
studies have solely evaluated the relationship between soil microbiome changes, soil
physicochemical properties, and plant health (1, 13, 14). The core bacteria associated
with PSMs, and their functions, thus deserve further investigation.

Camellia oleifera is considered an economically important woody edible oil crop
and over 4 million ha of plantation have been established in the mountainous areas of
southern China (17). This industry plays a critical role in alleviating poverty, and its
direct economic output is worth approximately 6.5 billion USD annually (18). However,
Camellia plantation management with limited knowledge-based human intervention
has led to weakened, older Camellia plantations that are much less productive and are
hardly profitable (17, 19–21). Most studies have attributed the results to the poor re-
sistance of older C. oleifera to diseases and insects (17, 19–21), although soil compac-
tion and high densities have also been investigated. Camellia plantations are generally
established on hillsides, and insufficient management has led to less soil compaction
due to excessive fertilization (17, 21). Therefore, it is possible that other factors influ-
ence the deterioration of conditions in older C. oleifera plantations. Camellia oleifera tis-
sues are rich in the triterpenoid saponin (10 to 20% concentration), which is a tea sapo-
nin composed of sugar chains and triterpenoids in addition to steroids or steroid
alkaloids linked by carbon-oxygen bonds; this saponin is an important PSM involved in
disease and pest resistance (17, 21, 22). As planting years increase, C. oleifera litters are
bound to accumulate and considerable amounts of PSMs, mainly tea saponin, may
also decompose into the soil. Consequently, we propose the hypothesis that tea sapo-
nin affects the composition and function of soil microbiomes in older C. oleifera planta-
tions, thereby influencing overall soil ecological functions.

To explore this hypothesis, soil samples were collected from three major oil tea-produc-
ing areas in China. In each area, soil samples from different planting years were collected.
The relationships between soil physicochemical properties, plantation ages, and tea sapo-
nin accumulation levels were analyzed. In addition, 16S rRNA gene high-throughput
sequencing and soil metagenomic sequencing were performed to analyze the effects of
planting period and tea saponin content on soil microbiome structures and functions,
respectively. Our results provide important insights into the reconstruction of less-produc-
tive C. oleifera plantations, and a framework for analysis and management improvement.

RESULTS
Soil physicochemical properties in different-age C. oleifera plantations. Soil physi-

cochemical properties clearly differed among C. oleifera soils from plantations of
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various ages. Specifically, soil organic matter (SOM), soil density (SD), and tea saponin
(TS) were significantly and positively correlated with Camellia planting years (R2 . 0.8,
P , 0.05) (see Fig. S1a, i, k in the supplemental material). Total nitrogen (TN), total
phosphorus (TP), and pH were also significantly and negatively correlated with
increased planting years (R2 . 0.75, P , 0.05) (Fig. S1b, c, h). A positive correlation was
observed between SW and planting years (R2 = 0.59, P , 0.05) (Fig. S1j). AP, TK, and AK
correlated moderately. However, AP and TK initially increased with planting years and
then decreased, while AK content fluctuated among groups (Fig. S1e, f, g). The accu-
mulation of tea saponin with increased planting years was significantly and positively
correlated with SD and moisture content (SW) (Fig. 1c). In contrast, TN, TP, and pH
were negatively correlated with tea saponin accumulation.

Effects of C. oleifera plantation age on soil microbiome structures and diversities.
A co-occurrence network analysis indicated that the species composition of the soil
microbiomes significantly changed with increasing planting years. Obviously dominant
flora were not present in the soil microbiomes of 1- to 5-year-old plantations, and no
significant differences were observed in the proportions of each genus which repre-
sented between 2% and 7% of the overall communities (Fig. 1a). They began to appear
in the 7- to 9-year-old C. oleifera plantation soils. Specifically, Enterobacter (50.41%),
Acinetobacter (11.79%), and Serratia (4.07%) became dominant in soils after the seventh
year of C. oleifera cultivation. Acinetobacter abundance further increased in 9-year-old plan-
tations (14.36%) (Fig. 1a). Bacterial richness and network complexity gradually decreased
from the first year (with an average degree of 40.51) to the fifth year (average degree of
34.96) and then to the ninth year (average degree of 25.49), with the last representing the
lowest richness and network complexity (Fig. 1a, Table 1). The number of ‘hub nodes’
(nodes with high degree values, .60; and closeness centrality, .0.3) in the network grad-
ually decreased with increasing planting years (Fig. 1a; Table 1).

Thus, C. oleifera tree age had a strong effect on bacterial alpha diversity (i.e., based
on Shannon, Simpson, Chao1, and observed richness indices) and network complexity
(i.e., a higher average degree, representing a greater network complexity) (Fig. 1b and
c). Among soil physicochemical properties, soil organic matter (SOM), pH, SD, SW, and
TS were negatively correlated with the four alpha diversity indices (Fig. 1c). PCoA anal-
yses of soil microbiomes were conducted using Bray-Curtis distances and indicated
that soil microbiome samples from across planting years could be clustered into three
groups. The first group included soil samples taken after the first year of planting, while
the second group included samples from 3- to 5-year-old plantations and the third group
included samples from 7- to 9-year-old plantations (Fig. 1d and Table 2). Random forest
classification was used to identify discriminatory taxa for soils of different-age plantations,
and revealed that Enterobacter, Acinetobacter, Aquabacterium, and Rhodoplanes were sig-
nificantly enriched in 7- to 9-year plantation soil microbiomes (Fig. 1e).

Correlation analysis of the relative abundances of these four genera and of soil physico-
chemical indices demonstrated that the accumulation of tea saponin was significantly and
positively correlated with increased relative abundance of Acinetobacter (Fig. 1f). Increased
age of an C. oleifera plantation was associated with more similar soil microbiome composi-
tions among different regions (Fig. 2 and Table 2). As indicated above, soil microbiome
samples could be clustered into three groups (QT, QZ, and JD) according to bacterial com-
munity similarity (Fig. 2 and Table 2). Furthermore, soil microbiome community composi-
tion became homogenous over time. For these groups, the soils from 1-, 3-, and 5-year-old
C. oleifera plantations showed intragroup differences, but the soils from 7- to 9-year-old C.
oleifera plantations exhibited the highest intragroup similarities (Fig. 2 and Table 2), in
agreement with the results of the co-occurrence network analysis (Fig. 1a).

Effects of C. oleifera plantation age on soil microbiome functions. Functional analy-
sis of soil microbiomes was conducted by analyzing new (1-year), middle-aged (3- and
5-year), and old (7- and 9-year) plantation soil microbiomes. Co-occurrence network
analysis based on annotations from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) indicated that new C. oleifera plantations exhibited the highest average degree
of soil functional composition (85.519). The density of functional components in soil
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communities significantly decreased over time (with an average degree of 19.178 in
new plantations), wherein the functional composition of old C. oleifera plantations was
the least dense (average degree of 18.592) (Fig. 3 and Table 3). In the soil functional
network for new Camellia plantations, four modules comprised more than 10% of the

FIG 1 Effects of C. oleifera plantation ages on soil microbiome structures and diversities. (a) Network of soil microbial populations among C. oleifera plantations
ageing from 1 to 9 years. Red lines indicate positive correlations and green lines for negative correlations. The area of the node is proportional to node degree,
calculated from correlations of abundances for each ASV. Only correlations with an r of .0.6 or ,20.6 and a P value of ,0.05 were included in the network. (b)
Alpha diversity values for soil microbial communities among plantations of various ages. (c) Correlations between soil physicochemical parameters and alpha
diversity index values. (d) PCoA analysis of soil community compositional variation based on Bray-Curtis distances. (e) Random forest classification analysis of
dominant bacteria in plantations of different ages. (f) Correlations between the abundances of dominant bacteria identified by random forest classification as
discriminatory for sample groups with soil physicochemical properties.
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overall network, including modules 7 (30.19%), 11 (23.05%), 1 (21.75%), and 0 (15.58%).
Among the three groups, node clustering degree was highest in the new plantations
(with an average clustering coefficient of 0.669). The compositions of modules changed in
the middle-age plantations, wherein modules 2 (33.19%), 6 (28.63%), 1 (21.75%), and 0
(15.58%) accounted for over 10% of the entire network. In particular, the first two modules
were different than those in the new plantation soil networks (Fig. 3 and Table 3). Only the
modules with the highest proportion changed compared to the intermediate-year net-
works (module 11, 32.5%) (Fig. 3 and Table 3).

Analysis of KEGG level 1 annotations indicated that metabolism was the core functional
category represented among the microbiomes of all three plantation age groups, while
comparison of KEGG level 2 annotations revealed differences in core functions among soils
of different-aged plantations. The functions within new plantation soil microbiomes pri-
marily comprised the categories of signal transduction (7.14%), metabolism of terpenoids
and polyketides (6.82%), xenobiotics biodegradation and metabolism (6.49%), biosynthesis
of other PSMs (6.17%), lipid metabolism (5.19%), carbohydrate metabolism (4.87%), glycan
biosynthesis and metabolism (4.87%), and amino acid metabolism (4.55%) (Fig. 3). In mid-
dle-aged plantation soils, xenobiotics biodegradation and metabolism (8.3%) and metabo-
lism of terpenoids and polyketides (7.47%) became more prominent (Fig. 3). Lastly, xenobi-
otics biodegradation and metabolism (8.33%) and terpenoid and polyketide metabolism
(7.08%) were similarly higher in old C. oleifera plantation soils. In addition, the biosynthesis
of other secondary metabolites (6.25%) and carbohydrate metabolism (6.25%) gradually
replaced the core functions of new Camellia plantation microbiomes and became core
functional pathways in the soil microbiomes of old ones (Fig. 3).

To better understand the effects of plantation age on differences in soil microbiome
function, KEGG pathway abundances were compared among the three different-age
plantation soils. Differences were not observed among groups in the proportions of

TABLE 1 Bacterial co-occurrence network characteristics of C. oleifera planting years

Niche/yr Node
Positive
edge

Negative
edge

Avg.
degree Modularitya

Avg. clustering
coefficientb

Avg. path
distancec

1 524 7234 3379 40.508 1.169 0.591 2.951
3 524 6773 2660 35.966 1.173 0.54 2.779
5 462 4501 1523 34.694 1.0968 0.625 2.513
7 246 3005 1152 33.797 1.062 0.664 2.429
9 195 1720 765 25.487 1.319 0.682 2.321
aDegree of nodes tending to differentiate into different network modules.
bDegree of nodes tending to cluster together.
cNetwork path distance is the length of the shortest path between two nodes within the network.

TABLE 2 Intragroup and intergroup Adonis analysis based on Bray-Curtis distance

Plantation age (yr) Group dfa Sums of sqs Mean sqs F model R2 P value
1 Intra- 2 1.86 0.93 7.17 0.49 0.001

Inter- 15 1.95 0.13 0.51
Total 17 3.81 1.00

3 Intra- 2 1.66 0.83 5.53 0.42 0.001
Inter- 15 2.25 0.15 0.58
Total 17 3.92 1.00

5 Intra- 2 3.11 1.56 12.32 0.62 0.001
Inter- 15 1.90 0.13 0.38
Total 17 5.01 1.00

7 Intra- 2 0.18 0.09 5.00 0.60 0.001
Inter- 15 0.27 0.02 0.40
Total 17 0.45 1.00

9 Intra- 2 0.11 0.06 9.63 0.56 0.001
Inter- 15 0.09 0.01 0.44
Total 17 0.20 1.00

aDegrees of freedom.
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the 10 most abundant KEGG pathway groups. Overall, 71 pathways were significantly
enriched in soil samples from new Camellia plantations, while 1 pathway was enriched
in the old plantation soils, and no pathways were significantly enriched in the middle-
age plantation soils (Fig. 4b and c). We further analyzed KEGG pathway differences
between old and new Camellia plantation soils, observing the significant enrichment
of the Ko00984 pathway (KEGG level 3: steroid degradation) in old plantation soils,
while the other 19 pathways were enriched in new plantation soils, as described above
(Fig. 4c). Ko00365 (KEGG level 3: furfural degradation) is an important pathway
involved in cellulose degradation and was significantly enriched in new plantation
soils, but was in low abundance in old plantation soils (Fig. 4e). Ko00984 is an impor-
tant pathway involved in PSM degradation via the continuous decomposition of tea
saponin into smaller-molecular-weight compounds (Fig. 4d). Genomic binning analysis
was subsequently used to assemble genomes from the metagenomes of old and new
C. oleifera plantation soils to better assess the context of the Ko00984 and Ko00365
pathways. A Sankey diagram visualization indicated that the Ko00984 pathway could be
assigned to nine bacterial genomes, with two belonging to Bacillus and the other seven to
Acinetobacter. In addition, the Ko00365 pathway was attributed to four bacterial genomes,
belonging to Burkholderia, Paraburkholderia, Pseudomonas, and Kelebsiella (Fig. 4f). An SEM
model showed that the spatial variation of SOM was influenced by planting years, tea sap-
onin content, Acinetobacter abundance, Ko00984 and Ko00365; in total, 97.5% of SOM spa-
tial variation was explained by the SEM model. All of these indices can directly affect the
SOM: cultivated fixed number of years (b = 0.984), tea saponin content (b = 0.196),
Acinetobacter abundance (b = 0.309), and Ko00984 can directly increase SOM (b =
0.081), while Ko00365 (b = 20.062) can directly reduce SOM. Planting years, tea saponin

FIG 2 Effects of C. oleifera plantation ages on soil microbial community compositional variation among different sampling sites. (a to e) Comparison of
similarity between samples of plantation soils from different regions based on Bray-Curtis distances.
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content and Acinetobacter abundance also have indirect effects on SOM. It is worth not-
ing that planting years can indirectly affect SOM by affecting tea saponin content and
Acinetobacter abundance; furthermore, Acinetobacter itself can indirectly affect SOM by
affecting tea saponin content, Ko00984, or Ko00365 (Fig. 3–6).

Functional verification of Acinetobacter activities. Degradation experiments dem-
onstrated that new C. oleifera plantation soils exhibited higher furfural degradation
efficiencies than old soils (Fig. 5a). Further, furfural degradation was significantly differ-
ent after 12 h of degradation experiments (t test: t = 3.02, df = 8, P , 0.05) (Fig. 5b).
However, the efficiency of tea saponin degradation was higher in old C. oleifera forest
soils (Fig. 5c), although this degradation was relatively slow. Specifically, differences
between treatment and control incubations were only significant after 48 h (t test: t =
4.85, df = 8, P , 0.05) (Fig. 5d). Moreover, isolated Acinetobacter exhibited strong tea

TABLE 3 KEGG pathway co-occurrence network characteristics of C. oleifera planting years

Niche/yr Node
Positive
edge

Negative
edge

Avg
degree Modularitya

Avg. clustering
coefficientb

Avg. path
distancec

New 308 8688 4482 85.519 0.964 0.669 1.872
Middle 241 1429 882 19.178 2.614 0.609 2.85
Old 240 1627 604 18.592 1.049 0.603 2.849
aDegree of nodes tending to differentiate into different network modules.
bDegree of nodes tending to cluster together.
cNetwork path distance is the length of the shortest path between two nodes within the network.

FIG 3 Variation in core soil microbial community functions associated with C. oleifera plantation ages. Functions are based on KEGG annotations. Red lines
indicate positive correlations and green lines indicate negative correlations. The area of the node is proportional to the node degree, which is calculated from
correlations of abundances for each KEGG pathway. Only correlations with an r of .0.6 or ,20.6 and a P value of ,0.05 were included in the network.
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FIG 4 Effects of C. oleifera plantation age on degradation. (a) Variation in C. oleifera plantation ages with the distribution of the 10 most abundant KEGG pathways
among soil metagenomes. (b) KEGG pathways significantly enriched in soil metagenomes from different plantation ages. (c) The 20 most abundant KEGG pathways

(Continued on next page)

Zhang et al.

Volume 10 Issue 1 e02324-21 MicrobiolSpectrum.asm.org 8

https://www.MicrobiolSpectrum.asm.org


saponin degradation abilities (Fig. 5d). After 12 h of culture, the efficiency of tea sapo-
nin degradation in soils with Acinetobacter was significantly different from that of soils
in the control group (CK; t test: t = 7.90, df = 8, P, 0.05) (Fig. 5e).

DISCUSSION
Soil properties gradually deteriorated with increasing ages of C. oleifera plantations.

Density and water content are important indices of soil water storage capacity. Lower
soil density represents greater soil porosity, resulting in better soil structure, perform-
ance, and water storage capacity (4). Older C. oleifera plantations had increased litter
and canopy densities that could improve soil conditions and promote the formation of
soft soils (Fig. 1c and Fig. S1). Nevertheless, the soil densities of old C. oleifera planta-
tions were significantly higher than those of new ones, while the organic matter con-
tents were also higher (Fig. 1c and Fig. S1). This indicated that litter decomposition was
suppressed in old plantations, and the release of organic matter, nitrogen, phosphorus,
and other substances into soils, as well as PSMs, was inhibited (3, 4, 23). Consequently,
the total nitrogen and phosphorus in soil continuously drop, while PSM (i.e., tea saponin)
accumulation keeps increasing significantly (Fig. 1c and Fig. S1). The lack of artificial sup-
plementation means that the demand for N and P by plants is a primary reason for the
significant decrease over time (Fig. 1c and Fig. S1). In contrast, the decomposition rate of
litters with higher amounts of structural carbohydrates, such as tea saponin, was slower,
although these PSMs may significantly accumulate within the soil as plantations age
increases (3, 24).

FIG 5 Degradation of furfural (a, b) and tea saponin (c, d) in soils of old and new C. oleifera plantations, and degradation of tea
saponin (e, f) in sterile soil with Acinetobacter and control.

FIG 4 Legend (Continued)
that differentiated soil metagenomes from old and new C. oleifera forest plantations. (d) Differential enrichment of the steroid degradation pathway among soil
metagenomes from different-aged plantations. (e) Differential enrichment of the furfural degradation pathway among soil metagenomes from different-aged
plantations. (f) Genomes and genome annotation information for the pathways Ko00984 and Ko00365.
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Concentration of tea saponin serves as the primary factor affecting soil microbiome
structures. Tea saponin is an important PSM of C. oleifera and belongs to the triterpe-
noid class of saponins (25). Its accumulation inhibits soil microbial decomposition in
plant litter. This litter contains diverse PSMs, including alkaloids, phenolic compounds,
and terpenes; all of these are often used against herbivores and pathogens, playing
key roles in plant-microbe and plant-herbivore interactions (3). Tannins may slow rates
of litter decomposition (26), and phenolic compounds can delay the colonization of lit-
ter by decomposer organisms (3, 27). Problematic root-derived phenolics in soils can
also drive shifts in microbial community compositions and prime decomposition activ-
ities in forest soils (28). The increasing age of a plantation was associated with gradual
decreases in soil microbiome diversity, and their community structures became simpler
(Fig. 1a to c). Further, soil microbial communities exhibited similarities as plantation
ages increased (Fig. 2) and tea saponin content was the primary factor driving this tran-
sition (Fig. 1c). Our results agree with those of other studies. Schütz et al. (29) disclosed
that plant-derived PSMs and their derivatives may contribute to the regulation of plant
microbiomes and their functional diversity; a considerable amount of allelopathic and
microbiota-modifying metabolites is released from plant litter, thereby influencing soil
microbial communities. Furthermore, benzoxazinoids, including microbial degradation
products, have been long known to exhibit allelopathic properties in soils (30).

Tea saponin is also an important fungicide, composed of sugar chains, triterpenoids,
and steroids or steroid alkaloids that are linked by carbon-oxygen bonds (21, 22). The
structures of insect gut microbiomes have been significantly changed after feeding on
fruits containing tea saponin (21). The soil microbiomes evaluated here also exhibited
similar changes in response to saponin contents. Moreover, the relative abundances of
Enterobacter, Acinetobacter, Aquabacterium, and Rhodoplanes were associated with the
increasing tea saponin accumulation that accrued across plantation ages (Fig. 1e and
f). In addition, Acinetobacter abundance was significantly and positively correlated with
tea saponin accumulation (Fig. 1f). This bacterium is frequently associated with both
aspen foliage and the gypsy moths that consume aspen foliage tissue, metabolizing
phenolic glycosides within the foliage. Further, the species A. calcoaceticus and A. olei-
vorans were able to degrade catechin, modulating host physiology and metabolism to
improve hexadecane utilization efficiency (31). Acinetobacter derived from wood-fed
termite guts can efficiently degrade phenolic compounds by using phenol as its sole
carbon source (32). Community interaction networks and random forest classification
analyses conducted in this study indicated that Acinetobacter was one of the core soil
bacteria in old C. oleifera plantations. The relative abundance of Acinetobacter was sig-
nificantly and positively correlated with tea saponin accumulation, firmly suggesting
that Acinetobacter is closely involved in tea saponin degradation.

Accumulation of tea saponin affects soil decomposition functions. Most plant
species whose litter releases terpenoids, phenolics, steroids, and aliphatic acids gener-
ally inhibit litter decomposition and/or nutrient release (1, 33). Comparison of soil
microbiome functional profiles from C. oleifera plantations of different ages at three
sites revealed that metabolism is the primary KEGG level 1 function (Fig. 3). Correlation
analysis and subsequent network analysis indicated that functional modules became
less connected as plantation ages increased, while the predominant KEGG level 2 func-
tion changed among groups (Fig. 3). In the old-age plantation soils, functional modules
were primarily annotated as xenobiotics biodegradation and metabolism, terpenoid
and polyketide metabolism, and biosynthesis of other secondary metabolites (Fig. 3).
As discussed above, tea saponin accumulation significantly altered soil microbial popu-
lations in the old C. oleifera plantation soils, which corresponded to changes in com-
munity functions. Pathways involved in nitrogen and phosphorus cycling, which are
beneficial to soil quality improvement, were not significantly enriched. Similarly, a
study of the impact of continuous crop planting on soil functions indicated that the
pathways involved in nitrogen and phosphorus cycling were negatively affected, lead-
ing to crop yield reduction (34).

PSMs enter soils and significantly influence soil function following litter decomposition
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(24, 35–38). Our results indicated that a few KEGG pathways, primarily those involved in
steroid degradation, were significantly enriched in the soils of old C. oleifera plantations
with high tea saponin content (Fig. 4c and d). During the decomposition process, tea sapo-
nin is hydrolyzed into numerous steroids, glycosides, and other substances, and the enrich-
ment of the Ko00984 pathway could be related to the degradation of tea saponin. Soil
microbiomes may participate in the decomposition of tea saponin via enzymatic activities
after tea saponin-derived PSMs enter soils (Fig. 4c and d). To verify this hypothesis, we
used soils from old and new C. oleifera plantations to conduct tea saponin fermentation-
degradation experiments, observing a much higher degradation efficiency in the old plan-
tations compared to the new ones (Fig. 5c and d).

In addition, numerous pathways related to nutrient anabolism were significantly
less abundant in the soil of old C. oleifera plantations; this was especially evident for
the Ko00365 furfural degradation pathway, which is closely involved in cellulose degra-
dation (Fig. 4c and e). These litters contain abundant cellulose which is initially degraded
into hemicellulose, then furfural, eventually becoming an important component of SOM.
Cellulose passes through soil bacteria via soil respiration, eventually being decomposed
into carbon dioxide and water to complete carbon mineralization. In old C. oleifera planta-
tion soils, the decomposition of furfural into organic acids was inhibited (Fig. 4c and e),
probably due to the accumulation of SOM (Fig. S1a). Soils from old and new C. oleifera
plantations were used in furfural decomposition experiments to assess this process. The
results showed that furfural decomposition efficiencies in the soils of new C. oleifera plan-
tations were higher than those in old soils (Fig. 5a and b), indicating that the accumulation
of tea saponin and other PSMs in old C. oleifera plantations inhibited the increase of soil
bacterial populations involved in cellulose degradation. This apparent inhibition of cellu-
lose degradation pathways could be one of the factors underlying the continuous accu-
mulation of SOM with increasing plantation age.

In addition, the Ko00984 pathway was primarily enriched in the genomes of Acinetobacter
bacteria, while the Ko00365 pathway was primarily enriched in the genomes of bacteria
involved in nutrient degradation (Fig. 4f). To confirm whether Acinetobacter can degrade
tea saponin, an Acinetobacter strain was cultured from medium containing tea saponin as
the sole carbon source, and its ability to degrade tea saponin was confirmed (Fig. 5e and
f). The structural equation model also showed that planting years directly affected tea sap-
onin accumulation, Acinetobacter abundance, and SOM, while tea saponin affected SOM
through Acinetobacter abundance and the Ko00984 pathway (Fig. 5e and f; Fig. 6). Thus,
the enrichment of Acinetobacter in the soil of old C. oleifera plantations is considered to be
closely related to degradation of PSMs such as tea saponin (Fig. 5e and f; Fig. 6).

CONCLUSIONS

In this study, the effects of C. oleifera plantation age on soil properties, microbiome
structures, and microbiome functions were explored. Increasing plantation age led to sig-
nificantly decreased quality in soil nutrient indices, while SOM and soil density increased
dramatically. This could be the result of increased accumulation of tea saponin, an impor-
tant PSM of C. oleifera. Tea saponin exhibits bactericidal toxicity, and its accumulation
could be lethal to some soil bacteria involved in litter degradation. These dynamics would
then affect pathways involved with SOM degradation, resulting in increased SOM. The ho-
mogenization of a soil microbiome weakens soil decomposition function, increases soil
density, and causes soil compaction. Concomitantly, plant growth requires abundant nitro-
gen and phosphorus. Thus, as total nitrogen and phosphorus content in soil decreases
over time, old C. oleifera plantation soil becomes barren and productivity drops remark-
ably. Therefore, correct measures should be taken for sustainable management of old C.
oleifera plantations. First, functional bacterial fertilizers that can change soil microbial
community structures should be applied in old C. oleifera plantations to accelerate litter
decomposition. Second, the total nitrogen and phosphorus contents should be increased
following a formula to enhance productivity. Furthermore, these measures should be
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taken together with the planting of selected understory plants in old Camellia plantations
to achieve the goal of sustainable management.

MATERIALS ANDMETHODS
Study sites and sampling. In this study, Qiangtian (28°11951.6199 N, 120°23915.2599 E), Quzhou (29°

394899 N, 118°3691599 E), and Jiande (29°019 32.0699N, 119°379 28.4599E) were selected as sample collec-
tion sites within Zhejiang, China. The sites exhibit a subtropical monsoon climate, and all are less than
300 m above sea level. Each site comprises a pure C. oleifera plantation where no chemical spray has
taken place to control diseases, insects, and weeds. Medicinal plants, including Dicranopteris pedata,
Polygonum perfoliatum, Cynodon dactylon, and Imperata cylindrica are also distributed throughout the
sites. The annual average temperature there is 15 to 18°C, with the coldest in January (3 to 9°C) and the
hottest in July (26 to 29°C).

Precipitation is abundant with an annual average of 1,600 mm. The clay content of the topsoil layer
is 31.28% and the weathering degree of soil minerals is high, with a powdery clay ratio ranging between
0.83 and 0.98. The clay minerals in the soil are primarily kaolinite. The red soils are acidic, with a surface
pH of ,5.5.

At each site, soil samples were collected from a test plot where trees had been planted for 1, 3, 5, 7, and
9 years. Eighteen sampling points were randomly selected within plots for each planting year. Within a verti-
cal ground projection of the canopy (1.5 m � 1.5 m), five points were randomly selected for sampling in
June 2020. The top litter layer was removed from the soil, and a soil collector was wiped with the soil that
was to be collected prior to sampling. The 0-to-20-cm soil layer was collected from each point and the soils
collected for each age group plantation were randomly divided into six samples. A total of 90 soil samples
were collected using the same method from three sites. Fresh soils were sorted by hand to remove roots
and stones. All samples were further divided into two sets and placed in sterile bags. The first soil portion
was immediately frozen in liquid nitrogen, stored on dry ice, and transported back to the laboratory, fol-
lowed by storage at 280°C until subsequent DNA extraction. The other set was passed through a 2-mm
sieve and stored at 4°C for determination of soil physicochemical properties.

Soil physicochemical properties. Soil physicochemical properties, including pH, moisture content
(SW, %), density (SD, g�cm23), organic matter (SOM, mg�g21), total nitrogen (TN, mg�g21), total phospho-
rus (TP, mg�g21), available phosphorus (AP, mg�kg21), total potassium (TK, mg�g21), and available potas-
sium (AK, mg�kg21) were determined as described by Jiang et al. Tea saponin (TS, mg�g21) contents
were determined with liquid chromatography (21). Correlational analysis of all soil physicochemical
properties and planting years was conducted using the R software package (v. 4.0) (21).

DNA extraction and high-throughput sequencing. Bacterial DNA was extracted using a Qiagen
DNeasy blood and tissue kit, followed by determination of DNA concentrations and size distributions.
The extracted DNA from each sample was used as input for library preparation using a TruSeq Nano
DNA LT Library Prep kit. Prior to sequencing, an Agilent BioAnalyzer was used to evaluate library quality

FIG 6 The structural equation model simulates the influence of PSMs on Ko00984 and Ko00365
pathways and SOM. (CFI = 0.992, GFI = 0.952, x 2/df = 3.862). Continuous or dashed lines indicate
positive or negative relationships, respectively. Width of the arrow indicates strength of the effect.
The digits besides the arrow are weight coefficients: R2, size of the variable; RMSEA, root mean square
error of approximation. ***, P , 0.001.
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using an Agilent High Sensitivity DNA kit. After the libraries had been validated, they were quantified
using a Quant-iT PicoGreen dsDNA assay kit (Promega). PCR was used to amplify the V5-to-V7 hypervari-
able regions of bacterial 16S rRNA genes. 16S rRNA gene amplification was performed using the forward
primer 799F (59-AACMGGAT-TAGATACCCKG-39) and the reverse primer 1193R (59-ACGTCATCCC-CACCTTCC-
39) (39). Paired-end sequencing (2 � 300 bp) of quality-validated samples was conducted on the Illumina
Miseq platform using the MiSeq reagent kit V3 (600 cycles) (39). A target fragment size of 200 to 450 bp was
used for library construction, which was performed at the Personal Biotechnology Company (Shanghai,
China).

Statistical analysis of diversity. 16S rRNA sequence quality filtering was conducted using Cutadapt (v.
1.9.1; https://cutadapt.readthedocs.io/en/stable/). Quality filtered paired-end reads were then merged using
UCHIME (http://www.drive5.com/usearch/manual/uchime_algo.html) (40). The high-quality sequences were
clustered into operational taxonomic units (OTUs) at the 97% nucleotide similarity level using UPARSE (40).
Chimeras were identified and removed from the data set. DADA2 (41) was used to BLAST representatives of
OTUs against the Silva database (https://www.arb-silva.de/) to obtain taxonomic information of each OTU
(42). OTU subsampling was conducted to facilitate comparison among samples. Spearman correlation analy-
sis was conducted for OTU abundances across samples, and only robust (Spearman’s r . 0.6 or r , 20.6)
and statistically significant (P , 0.01) correlations were retained for network analysis. Network analysis of
OTU abundances was conducted using the Psych software for R (43), followed by visualization with Gephi
(44). Alpha diversity indices (Shannon diversity, Simpson diversity, ACE richness, Chao1 richness, and whole-
tree PD) were calculated using QIIME2 (41). Beta diversity values (Bray-Curtis distances) were analyzed using
a principal coordinates analysis (PCoA) (42). Statistical significance of bacterial community variation among
the three regions was evaluated with an analysis of similarities (ANOSIM) test. To evaluate the most discrimi-
natory taxa across samples, the relative abundances of bacterial taxa at the genus level were assessed using
the random forest package (v. 4.6-14) for R with default parameters (45). Pairwise comparisons of environ-
mental factors were conducted based on Spearman correlation coefficients that were calculated in R (46).

Metagenomic analysis. Metagenomic analysis was used to assess the functional changes of soil
microbiomes based on respective forest settings (i.e., ages). PCoA analysis of microbiomes (described
above) indicated that samples were segregated based on plantation ages, with three groups being evi-
dent (“new,” 1-year-old trees; “middle,” 3 and 5 years old; and “old,” 7 and 9 years old). Six soil samples
from each group were randomly selected for metagenomic sequencing. Whole-genome shotgun (WGS)
metagenomic sequencing was used to sequence total metagenomic DNA on the Illumina Novaseq/
Hiseq high-throughput sequencing platforms using 150-bp paired-end sequencing after fragmenting
the extracted soil DNA. An average of 12 Gbp per sample was generated from the sequencing libraries.
Clean data were obtained by quality filtering the original data using Cutadapt (v. 1.17). Taxonomic annota-
tion of sequence data was conducted using Kraken2, while Megahit was used for assembly (47). After assem-
bly, contigs of ,200 bp length were removed (48). Species annotation of assembled contig sequences was
integrated with the abundance tables for each sample to obtain species abundance tables at each taxo-
nomic rank (i.e., domain, phylum, class, order, family, genus, and species). The MetaGeneMark software pro-
gram (http://exon.gatech.edu/GeneMark/) (49) was used to identify prokaryotic open reading frame (ORF)
and coding regions in addition to protein annotations. Nonredundant protein sequence sets were compared
against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to annotate gene functions (50).

To better understand the role of planting years in the degradation of soil microbiome function, ge-
nome-resolved binning analysis was conducted to assess functions among individual populations.
Spearman correlations were calculated among KEGG pathway abundances and only robust (Spearman’s
r. 0.6 or r,20.6) and statistically significant (P, 0.01) correlations were retained for network analysis.
Network analyses of KEGG pathway abundances were performed using the Psych software for R (43) fol-
lowed by visualization with Gephi (44) and Sankey diagrams (51).

Soil function validation.We specifically focused on the KEGG function Ko00984, which was sig-
nificantly enriched in old C. oleifera plantation soils and is related to PSM degradation. To assess in
situ functioning, we treated soils of old C. oleifera plantations with tea saponin (5 g � liter21). After
incubation for 24, 48, and 72 h, the remaining tea saponin contents were analyzed with high per-
formance liquid chromatography (HPLC). To assess more explicitly the in situ functioning of
Ko00365, which corresponds to a significantly suppressed carbon cycling pathway in soil micro-
biomes of Camellia plantations, we mixed furfural (5 g � liter21), an intermediate product of cellu-
lose degradation in the pathway, into the soils of old and new Camellia plantations. After incuba-
tion for 24, 48, and 72 h, residual furfural was measured using HPLC. To verify that the core
bacterial populations were associated with tea saponin degradation, Acinetobacter were enriched
using tea saponin as the single carbon source in media. Tea saponin (5 g � liter21) as a substrate
was then mixed with sterilized soil, after supplementing Acinetobacter cultures. In the control
group (CK), Acinetobacter was replaced with sterile water. After incubation for 24, 48, and 72 h, re-
sidual tea saponin contents in the soils were measured with HPLC. Structural equation modeling
(SEM) was used to gain a mechanistic understanding of the direct and indirect factors driving SOM
across planting years. SEM analyses of SOM, planting years, TS, Acinetobacter, Ko00984, and
Ko00365 were established as the main factors related to SOM accumulation. We selected the best
model based on overall goodness of fit, including the chi-square (x2) statistic, degrees of freedom
(df), whole-model P value, goodness of fit index (GFI), and normed fit index (NFI). SEM analyses
were conducted using Amos v.21.0 (IBM).

Data availability. Demultiplexed sequence data are available in the NCBI Sequence Read Archive
(Bio-Project ID of soil microbiomes: PRJNA772371; Bio-Project ID of soil metagenome: PRJNA772552).
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