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Hepatocellular carcinoma (HCC) is the main subtype of primary liver cancer with high
malignancy and poor prognosis. Metabolic reprogramming is a hallmark of cancer and has
great importance on the tumor microenvironment (TME). As an abundant metabolite,
lactate plays a crucial role in cancer progression and the immunosuppressive TME.
Nonetheless, the potential roles of lactate in HCC remain unclear. In this study, we
downloaded transcriptomic data of HCC patients with corresponding clinical information
from the TCGA and ICGC portals. The TCGA-HCC dataset used as the training cohort,
while the ICGC-LIRI-JP dataset was served as an external validation cohort. Cox
regression analysis and the LASSO regression model were combined to construct the
lactate metabolism-related gene signature (LMRGS). Then, we assessed the clinical
significance of LMRGS in HCC. Besides, enriched molecular functions, tumor mutation
burden (TMB), infiltrating immune cells, and immune checkpoint were comprehensively
analyzed in different LMRGS subgroups. In total, 66 differentially expressed lactate
metabolism-related genes (LMRGs) were screened. The functions of LMRGs were
mainly enriched in mitochondrial activity and metabolic processes. The LMRGS
comprised of six key LMRGs (FKTN, PDSS1, PET117, PUS1, RARS1, and RNASEH1)
had significant clinical value for independently predicting the prognosis of HCC patients.
The overall survival and median survival of patients in the LMRGS-high group were
significantly shorter than in the LMRGS-low group. In addition, there were differences
in TMB between the two LMRGS subgroups. The probability of genetic mutations was
higher in the LMRGS-high group. Most importantly, the LMRGS reflected the TME
characteristics. In the LMRGS-high group, the immune microenvironment presented a
suppressed state, accompanied by more inhibitory immune cell infiltration, including
follicular helper T cells and regulatory T cells. Additionally, the expression of inhibitory
checkpoint molecules was much higher in the LMRGS-high group. Our study suggested
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that the LMRGS was a robust biomarker to predict the clinical outcomes and evaluate the
TME of patients with HCC.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common histological
type of primary liver cancer, the third leading cause of cancer death
worldwide (Sung et al., 2021). As a highly malignant tumor, the 5-
year survival rate of HCC is less than 18% (Villanueva, 2019).
Treatment options for HCC include hepatic resection, liver
transplantation, image-guided ablation, transarterial therapies,
chemotherapy, and molecularly targeted therapy (Llovet et al.,
2021). Clinically, patients with HCC are often treated by a
combination of several modalities. However, the therapeutic
outcomes of advanced HCC remain unsatisfactory. Even after
successful tumor eradication, the recurrence rate of HCC is
remarkably high. Recently, immunotherapy has been shown to
improve the clinical efficacy of advanced HCC. Unlike the
mechanism of action of conventional therapy, immunotherapy is
based on activating the patient’s own immune system to fight against
tumors (Ringelhan et al., 2018). Cancermetabolism plays an essential
role in affecting the anti-tumor immune response through
modulating the interaction between tumor cells and the tumor
microenvironment (TME) (Bader et al., 2020). Therefore, it is
vital to identify a metabolism-related signature to assess the TME
and improve the treatment efficacy of immunotherapy.

Metabolic alterations of tumor cells not only favor cell
proliferation but also have profound influences on anti-tumor
immunity through the release of metabolites, especially lactate
(Xia et al., 2021). Unlike normal cells, tumor cells metabolize
glucose to produce lactate even under adequate oxygen
conditions. The accumulation of lactate provides an acidic
microenvironment that benefits tumor growth and
progression. Besides, lactate produced by aerobic glycolysis can
be secreted into the extracellular environment as a signaling
molecule to regulate intercellular interactions (Liao et al.,
2021). In gastric cancer, lactate derived from tumor cells
mediates the up-regulation of BDNF expression in cancer-
associated fibroblasts by activating the NF-κB pathway,
eventually resulting in acquired resistance (Jin et al., 2021).
Alterations in lactate metabolism have been shown to be
associated with cell invasion, migration, angiogenesis, drug
resistance, and immune escape. High levels of lactate in the
TME promote differentiation of tumor-associated
macrophages to the M2 subtype, while activated macrophages
facilitate tumor invasion through the CCL17/CCR4/mTORC1
signaling axis (Zhang et al., 2021). Lactate-induced PD-L1 up-
regulation on neutrophils impairs T cell cytotoxicity in HCC
(Deng et al., 2021). In addition, tumor cell-derived lactate induces
the expression of GPR81 in dendritic cells via paracrine mode to
inhibit the antigen presentation function of immune cells (Brown
et al., 2020). Moreover, lactate has an important role in epigenetic
regulation. Some studies have demonstrated that histone lysine
lactylation takes part in modulating gene transcription (Izzo and

Wellen, 2019; Yu et al., 2021). Given the vital role of lactate in
oncogenesis and the immunosuppressive TME, targeting its
metabolism promises to become an effective means for cancer
treatment.

In this study, we screened the key lactate metabolism-related
genes (LMRGs) and constructed a prognostic signature to predict
the survival outcome. Next, we comprehensively analyze the
tumor mutation burden (TMB) features in different
subgroups. Then, the association between the TME and lactate
metabolism-related gene signature (LMRGS) was explored using
the R software package. We focused on the infiltrating immune
cells in the TME and characterized the differential immune
microenvironment in LMRGS subgroups. The results indicated
that the LMRGS had a high value for evaluating the prognosis and
reflecting the TME in HCC.

MATERIALS AND METHODS

Data Acquisition
RNA transcriptome sequencing data, somatic mutation profile,
and corresponding clinical information of HCC were obtained
from the TCGA data portal (https://portal.gdc.cancer.gov/). In
this study, the TCGA-HCC cohort was served as the training set.
To verify the training set results, we downloaded an independent
dataset of HCC from the ICGC website (https://dcc.icgc.org/
releases/current/Projects/LIRI-JP). Therefore, the ICGC-LIRI-
JP cohort was used as a validation set. The detailed clinical
information of HCC patients from two cohorts was
summarized in Table 1.

Differentially Expressed LMRGs and
Transcription Factors
The 289 LMRGs were retrieved from the Molecular Signatures
database (Liberzon et al., 2015). Transcription factors
associated with cancer were downloaded from the Cistrome
(Zheng et al., 2019). To identify the LMRGs and transcription
factors involved in the progression of HCC, we carried out
differential expression analysis between 50 normal tissues and
374 tumor tissues in the TCGA-HCC cohort. Genes with |log2
fold change (FC) | > 1 and false discovery rate (FDR) < 0.05
were defined as differentially expressed. For further
understanding the biological function and pathway of
differentially expressed LMRGs and transcription factors,
we used the “clusterprofiler” package in R (version 4.1.0) to
carry out the GO and KEGG enrichment analyses.

Construction and Assessment of LMRGS
The differentially expressed LMRGs were subjected to univariate
Cox regression analysis to determine the LMRGs with prognostic
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value. To avoid overfitting, we further performed the LASSO Cox
regression (iteration � 1000) using the “glmnet” package (Friedman
et al., 2010; Liu et al., 2021a; Liu et al., 2021b). After screening by
LASSO regression, the selected LMRGs were applied to establish the
LMRGS through the multivariate Cox regression analysis. The
LMRGS score was calculated as the following formula: LMRGS
score � expression level of gene1 × coefficient of gene1 + expression
level of gene2× coefficient of gene2 + . . . + expression level of genen×
coefficient of genen. We classified HCC patients into two subgroups
according to the median LMRGS score, including the LMRGS-high
and the LMRGS-low groups. Principal component analysis (PCA)
was used to evaluate the classification accuracy of the signature. For
assessing the prognostic value of the LMRGS, we conducted the
Kaplan–Meier (KM) survival analysis to compare the overall survival
(OS) andmedian survival time between the two LMRGS groups. The

time-dependent ROC curve was performed by the “timeROC”
package in R. We also applied the Cox proportional hazards
regression model to identify the LMRGS as an independent
predictor for OS. To explore the influence of the LMRGS on
HCC progression, we clarify the association between the
LMRGS and clinicopathologic factors, such as TNM stage,
pathological grade, fibrosis, vascular invasion, and virus
infection.

Establishing a Nomogram
To predict the one-, three-, 5-year survival rate of HCC patients,
we constructed a nomogram based on the LMRGS and significant
clinicopathologic parameters (Iasonos et al., 2008). The
calibration curve was used to estimate the consistency between
predicted survival and actual survival. The time-dependent ROC
curve was applied to evaluate the specificity and sensitivity of
the model.

Calculation of TMB
For calculating the TMB of each HCC tumor sample, we selected
the somatic mutation data processed by the VarScan platform in
the TCGA-HCC cohort. Then, we compared the difference of
TMB between the LMRGS-high and the LMRGS-low groups.
Visualization of somatic mutations in the two LMRGS groups
was performed by the R package “maftools”. Moreover, we
explored the impact of the LMRGS score combined with the
TMB on the survival of HCC.

Comprehensive Analysis of TME in Different
LMRGS Subgroups
The TME is mainly composed of stromal cells and immune cells
(Gysler and Drapkin, 2021). Firstly, we used the ESTIMATE
algorithm to calculate the stromal score of all samples (Yoshihara
et al., 2013). ESTIMATE is a prevalent R package, which is widely
utilized in the cancer-related studies (Liu et al., 2021c; 2021d;
2021e). Then, the single sample gene set enrichment analysis
(ssGSEA) was performed to derive the immune enrichment score
based on the 29 immune gene sets (Bindea et al., 2013). To
identify the immune infiltration features of HCC samples, we
imported their gene expression profiles to the CIBERSORTx
website with 1000 permutations (https://cibersortx.stanford.
edu/). According to the obtained results, we compared the
relative fractions of 22 tumor-infiltrating immune cells in the
two LMRGS subgroups. Moreover, correlation analysis was
carried out to clarify the relationship between the immune cell
and the LMRGS score. Immune checkpoints expression and
immune function have crucial influences on the treatment
responses of immunotherapy. For further investigating the
effect of the LMRGS score on immunotherapy, comparisons
between the two LMRGS subgroups were analyzed to evaluate
the differences of immune checkpoints and immune function.

Gene Set Enrichment Analysis
The HCC samples were stratified into high- and low-LMRGS
score groups as described above. To determine the primary
signaling pathways and hallmark gene sets involved in the

TABLE 1 | Clinical and pathological characters of HCC patients in TCGA and
ICGC cohort.

Characteristics Number

TCGA cohort (N � 376)
Age ≤60 180

>60 196
Gender Female 122

Male 254
Pathological grade G1 55

G2 180
G3 123
G4 13
NA 5

T T1 185
T2 94
T3 81
T4 13
NA 3

N N0 257
N1 4
NA 115

M M0 272
M1 4
NA 100

Clinical Stage I 175
II 86
III 86
IV 5
NA 24

Fibrosis No 76
Yes 141
NA 159

Virus infection No 210
Yes 166

Vascular invasion No 210
Yes 110
NA 56

ICGC cohort (N � 231)
Age ≤60 49

>60 182
Gender Female 61

Male 170
Clinical Stage I 36

II 105
III 71
IV 19
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signature, we uploaded sample grouping and gene expression
files into the GSEA software (version 4.1.0) to conduct
enrichment analysis.

Statistical Analysis
All data analysis and visualization were completed by R
software. If the data did not follow a normal distribution and
the variance was uninformed, the differences between groups

were compared by the Wilcoxon rank-sum test or
Kruskal–Wallis test. The Cox regression model was used to
perform univariate and multivariate analyses. The log-rank
test was performed to evaluate the survival difference.
Correlation analyses of LMRGS score and immune
infiltration cells were conducted by Spearman’s rank
correlation test. In this study, p-value < 0.05 was considered
statistically significant as indicated.

FIGURE 1 | Identification and enrichment analysis of LMRGs in HCC. (A) The heatmap showed the expression level of LMRGs in each sample. (B) The volcano plot
displayed down-regulated and up-regulated LMRGs. (C) GO enrichment analysis. (D) KEGG pathway enrichment analysis.
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RESULTS

Identification of LMRGs
Through the differential gene screening analysis, we obtained 66
differentially expressed LMRGs, including three down-regulated

and 63 up-regulated genes. The heat map displayed the
expression of LMRGs in HCC samples and normal samples
(Figure 1A). The differential expression of down-regulated
and up-regulated LMRGs was represented in the volcano plot
(Figure 1B). The 66 differentially expressed LMRGs were further

FIGURE 2 |Cox regression analysis and LASSO analysis of LMRGs. (A) Univariate Cox regression analysis screened 29 prognostic LMRGs. (B) Tuning parameter
(λ) selection in LASSOmodel using cross-validation. (C) The LASSO coefficient profile of 29 prognostic LMRGs. (D)Multivariate Cox regression analysis of LMRGs was
shown by forest plot.
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analyzed by functional enrichment analysis. The primary
biological processes (BP) of LMRGs were involved in
mitochondrial genome maintenance, mitochondrial respiratory
chain complex assembly, electron transport chain, and metabolic
process. For cellular components (CC), the LMRGs primarily
existed in the mitochondrial inner membrane, respiratory chain
complex, and mitochondrial respirasome. The molecular
functions (MF) of LMRGs were mainly enriched in electron

transfer activity, NADH dehydrogenase activity, and
oxidoreductase activity (Figure 1C). Signaling pathway
analysis indicated that the differentially expressed LMRGs
were related to thermogenesis, diabetic cardiomyopathy,
oxidative phosphorylation, non-alcoholic fatty liver disease,
and reactive oxygen species (Figure 1D). The above results
showed that the LMRGs were mainly associated with
metabolic processes and oxidation responses.

FIGURE 3 | Prognostic value of LMRGS in HCC. (A) PCAwas used to determine whether the samples could be grouped correctly based on the LMRGS score. (B)
Heatmap for the expression of six crucial genes in LMRGS-low and LMRGS-high groups. (C) The distribution of LMRGS scores and survival status of HCC patients with
increasing LMRGS score. (D) KM survival analysis between LMRGS-low and LMRGS-high groups. (E) ROC curves analysis of LMRGS on OS at 1 year, 3 years, and
5 years.
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Development of the LMRGS
To identify the LMRGs correlated with OS, we performed the
univariate Cox regression analysis. A total of 29 LMRGs were
related to prognosis (Figure 2A). After selection by LASSO

regression, only 10 LMRGs were subjected to multivariate Cox
regression analysis to construct the LMRGS (Figures 2B,C).
Based on the coefficient and the expression of six crucial genes
involved in the LMRGS, we calculated the LMRGS score

TABLE 2 | Univariate and multivariate Cox regression analyses of the LMRGS score in the TCGA.

Variable Univariate analysis Multivariate analysis

HR 95% CI p-value HR 95% CI p-value

LMRGS score 3.461 2.179–5.499 1.469E-7 3.576 2.105–6.074 2.44E-6
Age 1.015 0.993–1.037 0.177 1.015 0.993–1.039 0.189
Gender 0.574 0.335–0.982 0.043 0.851 0.446–1.624 0.625
Grade 1.235 0.847–1.799 0.273 1.247 0.808–1.925 0.318
Clinical Stage 1.692 1.273–2.249 0.000 1.374 0.300–6.283 0.682
T 1.616 1.229–2.125 0.001 0.950 0.235–3.847 0.943
N 2.983 0.410–21.704 0.280 0.663 0.017–25.662 0.826
M 4.895 1.515–15.819 0.008 3.349 0.711–15.767 0.126
Fibrosis 0.589 0.335–1.035 0.066 0.875 0.468–1.636 0.675
Virus infection 2.252 1.310–3.872 0.003 1.923 1.050–3.552 0.034
Vascular invasion 1.330 0.760–2.329 0.317 0.828 0.451–1.517 0.540

HR, hazard ratio; 95%CI, 95% confidence interval.

FIGURE 4 | A nomogram was generated to estimate the survival rate of HCC patients. (A) Development of a nomogram by combining LMRGS score with age,
gender, and TNM stage to predict the survival probability. (B) Calibration plots of the nomogram. (C) ROC curves of the nomogram. *p < 0.05, **p < 0.01, ***p < 0.001.
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(Figure 2D). The LMRGS score of every HCC patient was
obtained as follows: LMRGS score � FKTN expression ×
0.2496 + PDSS1 expression × 0.0881 + PET117 expression ×
0.0648 + PUS1 expression × 0.0567 + RARS1 expression × 0.0362
+ RNASEH1 expression × 0.0928.

Prognostic Significance of the LMRGS
Taking the median LMRGS score as cut-off, we divided the HCC
patients into two subgroups: LMRGS-high and LMRGS-low
groups (Figure 3A). The heat map showed the differential
expression of six crucial genes in the two LMRGS subgroups
(Figure 3B). The LMRGS score and survival status of every HCC
patient were displayed in Figure 3C. KM analysis indicated that
patients with the high LMRGS score had shorter OS and median
survival than patients with the low LMRGS score (Figure 3D).

According to the different clinical characteristics, subgroup
survival analysis also confirmed this result (Supplementary
Figure S1). As shown in Figure 3E, the area under curve
(AUC) value of 1 year, 3 years, and 5 years for ROC analysis
was 0.768, 0.691, and 0.666, respectively, in the TCGA cohort.
Moreover, the univariate and multivariate regression analyses
demonstrated that the LMRGS score was an independent risk
factor for OS (HR � 3.576, 95%CI � 2.105–6.074, p � 2.44E-06)
(Table 2). The correlation of the LMRGS score and
clinicopathological factors was clarified in the TCGA cohort.
The results suggested that the LMRGS score was closely
associated with pathological grade, clinical stage, vascular
invasion, and virus infection (Supplementary Figure S2). The
above results indicated that the LMRGS score played a vital role in
HCC progression.

FIGURE 5 | Co-expression of transcription factors and key LMRGs. (A) Regulatory network of key LMRGs and transcription factors. (B) GO enrichment results of
transcription factors. (C) KEGG enrichment results of transcription factors.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 8019598

Li et al. An LMRGS for HCC Prognosis

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


A Nomogram for Predicting Survival
To accurately predict the probability of OS, we established a
nomogram that integrated the LMRGS score and other
clinicopathological features, including age, gender, and TNM
stage (Figure 4A). We could estimate the survival rate of
1 year, 3 years, and 5 years based on the total points. The
calibration curve demonstrated that the prediction value was
highly consistent with the actual value (Figure 4B). The time-
dependent ROC curve also indicated that this nomogram had
high accuracy for predicting survival (Figure 4C).

Regulation Network of Transcription
Factors
There exist close interactions between the LMRGs and
transcription factors. For exploring the relationship, we carried
out the co-expression analysis. As displayed in Figure 5A, we
identified 52 differential expressed transcription factors co-
expressed with six significant LMRGs. The main functions of

co-expressed transcription factors were chromatin remodeling
and histone modification (Figure 5B). KEGG analysis revelated
that these transcription factors mainly participated in the cell
cycle, cellular senescence, and Hippo signaling pathway
(Figure 5C).

Association With TMB
In the TCGA training cohort, we calculated the TMB of each HCC
patient. We found that the TMB was higher in the LMRGS-high
group (Figures 6A,B). Then, mutant situations of different LMRGS
subgroups were visualized by the waterfall plots (Figure 6C). For the
entire dataset, the top 10 mutated genes in HCC were TP53,
CTNNB1, TTN, MUC16, ALB, PCLO, APOB, RYR2, MUC4,
and FLG. Missense mutations were the most common somatic
mutational types. The mutation frequency of samples was higher in
the LMRGS-high group. Moreover, patients with high LMRGS
scores had a higher mutation probability of crucial genes,
especially TP53. Subsequently, we performed KM analysis to
evaluate the influence of the LMRGS score combined with the

FIGURE 6 | Tumor mutation characteristics in different LMRGS subgroups. (A) The differences of TMB in LMRGS-low and LMRGS-high groups. (B) The
association of TMB with LMRGS score. (C) Top 10 mutated genes in different LMRGS subgroups. (D) KM survival analysis of TMB. (E) Effects of the LMRGS score
combined with TMB on the overall survival.
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TMB on survival. The result showed that the survival time of the
high-TMB groupwas shorter than the low-TMB group (Figure 6D).
More importantly, patients with a low LMRGS score and low TMB
had a significantly longer OS than patients with a high LMRGS score
and high TMB (Figure 6E). In the ICGC validation cohort, we also
analyzed the mutation profiles of all samples. There existed no TMB
difference among the two LMRGS subgroups (Supplementary
Figures S3A,B). However, the mutation frequencies of
prevalently mutated genes in HCC were higher in the LMRGS-
high group (Supplementary Figure S3C). Survival analysis results of
the LMRGS score combined with the TMB were consistent with the
training cohort (Supplementary Figures 3D,E).

TME Characteristics in Different LMRGS
Subgroups
Stromal cells and immune cells in the TME have profound
impacts on tumor progression, treatment efficacy, and clinical

outcomes. The heatmap shown in Figure 7A and Supplementary
Figure S4A displayed the stromal score and immune activity of
all samples. We found that the abundance of stromal cells was
relatively higher in the LMRGS-low group. In addition, the
LMRGS-low group had higher immune scores than the
LMRGS-high group (Figure 7B and Supplementary Figure
S4B). As shown in Figure 7C and Supplementary Figure
S4C, there were differences in immune function between the
LMRGS-high and LMRGS-low groups. The activity of cytolysis
and IFN response was higher in the LMRGS-low group. In the
LMRGS-high group, there was a higher expression of MHC
class Ⅰ.

To comprehensively analyze the immune microenvironment,
we used the CIBERSORTx to calculate the infiltration degree of
22 immune cells. The immune landscape of TCGA-HCC samples
was shown in Figure 8A. By comparing the immune cell profiles,
we found that follicular helper T (Tfh) cells, regulatory T cells
(Tregs), and M0 macrophages were significantly increased in the

FIGURE 7 | The landscape of TME in HCC. (A) Stromal score and immune activity of all HCC samples. (B) The violin plot showed the difference in stromal scores
and immune scores between LMRGS-low and LMRGS-high groups. (C)Differences in immune function between the two subgroups. *p < 0.05, **p < 0.01, ***p < 0.001.
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LMRGS-high group. On the contrary, resting NK cells,
monocytes, resting mast cells, and activated mast cells
infiltrated more in the LMRGS-low group (Figure 8B). Apart
from immune cells, we further explored the correlation of
immune molecular and the LMRGS score. In our results, the
LMRGS score was positively associated with the expression of
immune checkpoints, including PD-1, CTLA4, LAG3, TIM3, and
TIGIT (Figure 9).

GSEA of the LMRGS
To explore the molecular mechanisms involved in the LMRGS,
GSEA was used to analyze the TCGA cohort. Enrichment results of
hallmark revealed that DNA repair, E2F targets, G2M checkpoint,
glycolysis, mitotic spindle, mTOR signaling, MYC targets, and
unfolded protein response were activated by the LMRGS-high
group (Figure 10A). Besides, the LMRGS also participated in
regulating the transcription factors, DNA repair, cell cycle, and
metabolism-related signaling pathways (Figure 10B).

DISCUSSION

Despite some advances in diagnosis and treatment, HCC is still
cancer with high morbidity and mortality (Forner et al., 2018). As

inflammation-driven cancer, there is an intricate interplay
between the TME and HCC development (Ringelhan et al.,
2018). Increasing evidence indicates that metabolic changes of
tumors can sculpt their microenvironment, and then the
remodeled TME confer a growth advantage to tumor cells
(Dimri et al., 2020; Li et al., 2021). Aerobic glycolysis is a vital
hallmark of tumor metabolic reprogramming. Glucose is not
completely oxidized but metabolized to produce lactate, even in
the presence of oxygen (Palsson-McDermott and O’Neill, 2013).
Recently, some studies have reported that there is lactate
accumulation in tumors (Yu et al., 2021). Lactate is now
considered an essential energy substance for tumor
metabolism and plays an indispensable role in restructuring
the TME (Certo et al., 2021). Hence, we constructed a novel
LMRGS based on LMRGs in this study. The results suggested that
the LMRGS was an independent prognostic factor for OS. In
addition, the LMRGS proved to have substantial value for
predicting the TME in HCC.

The LMRGS was composed of six crucial genes, including
FKTN, PDSS1, PET117, PUS1, RARS1, and RNASEH1. FKTN
participates in protein glycosylation modification (Kanagawa
et al., 2016). A study of gastric cancer indicated that higher
FKTN expression is associated with tumor progression, which
may be due to the protein encoded by FKTN promoting the

FIGURE 8 | Features of immune cell infiltrate in different LMRGS subgroups. (A) The heatmap displayed the proportion of immune cell infiltration in each HCC
sample. (B) Differences in immune cell infiltration between LMRGS-low and LMRGS-high groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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interaction between tumor cells and the extracellular matrix (Oo
et al., 2016). PDSS1 is the critical enzyme in CoQ10 biosynthesis,
mediating metabolism and mitochondrial function. The
mutation of PDSS1 has an impact on ATP production and
oxidative stress (Mollet et al., 2007). As for PET117, mainly
distributed in the mitochondrial matrix, it is related to oxidative
phosphorylation via influencing the biogenesis of cytochrome c
oxidase (Vidoni et al., 2017). PUS1 involves in the structural
modification of mRNA and is correlated with mitochondrial
disorders (Carlile et al., 2019). RARS1 fusion with MAD1L1
has been reported to stimulate the FUBP1/c-Myc signaling
pathway, inducing tumorigenesis in nasopharyngeal carcinoma
(Zhong et al., 2018). RNASEH1 plays a vital role in maintaining
the stability of mitochondrial DNA under oxidative stress
(Renaudin et al., 2021). However, the role of six essential
genes remains unclear in HCC. To clarify the regulation
mechanism of these crucial genes, we performed co-expression
analysis between transcription factors and six genes. A total of
52 co-expressed transcription factors were identified, and their
functions were mainly reflected in chromatin remodeling and
histone modification.

Genomic alterations are the main intrinsic drivers of tumor
heterogeneity (Müller et al., 2020). To further understand the
molecular features, we compared the gene mutations in different
LMRGS groups. As suggested by the results, missense mutation
was the most common type of mutations. In the LMRGS-high
group, the TP53 gene had the highest mutation rate, while
CTNNB1 and TTN were the most frequently mutated genes
in the LMRGS-low group. TP53 is not only playing a central role
in response to genotoxic stress but also in regulating metabolic
homeostasis (Levine, 2020). Increasing evidence reveals the
critical functions of TP53 in cellular metabolism (Wang et al.,

2018; Kim et al., 2019). The dysfunction of p53 protein encoded
by TP53 affects the tumor initiation and progression by
mediating the metabolism of tumor cells (Lonetto et al., 2019).
The poor prognosis of the LMRGS-high group could be due to
TP53 hypermutation. A study reported that increased lactate
better meets the metabolic needs of tumor cells and thus favors
cell proliferation in p53 mutated tumor cells (Boidot et al., 2012).
CTNNB1 and TTN also have links with the malignant
transformation of liver cells (Jhunjhunwala et al., 2014).
However, patients in the LMRGS-low group had lower
probabilities of genetic mutations than those in the LMRGS-
high group. Based on the gene mutations of the whole genome,
the TMB of every patient was calculated. We found that patients
with high TMB and high LMRGS scores had the worst clinical
outcomes, which might be because of the genome instability
caused by the high TMB (Ferguson et al., 2015).

Complex TME influences tumor progression and response to
treatment. There were great differences in the TME between the
two LMRGS subgroups, especially in the tumor immune
microenvironment. The two groups showed different immune
function statuses, including cytolytic activity, MHC class I
expression, and IFN response. Cytolytic activity of immune
cells reflects the ability to kill tumor cells. Transcriptome
hypomethylation of CD8+ T cells activates cytolytic activity
and effector function, which in turn enhances anti-tumor
responses (Loo Yau et al., 2021). In HCC, patients with a high
cytolytic activity score have favorable TME and more robust
immunogenicity, resulting in better prognoses (Takahashi et al.,
2020). Increased expression of MHC class I with high T cell
infiltration benefits the prognosis of patients with liver metastases
from colon cancer (Turcotte et al., 2014). In our analysis, MHC
class I expression was higher in patients with high LMRGS scores.

FIGURE 9 | Correlation of LMRGS score with immune checkpoints. (A) PD-1. (B) PD-L1. (C) PD-L2. (D) LAG3. (E) TIGIT. (F) TIM3. (G) CTLA4. (H) CD96.
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Consequently, the impact of MHC class I expression on the
prognosis of HCC patients needs to be further clarified. Besides,
the activation of IFN response is an essential link to anti-tumor
immunity (Takahashi et al., 2021). As it could be seen, patients in
the LMRGS-low group had better anti-tumor immune activity.

Tumor-infiltrating immune cells are one of the most
important components in the TME, which can be affected by
the lactate level (Certo et al., 2021). Low glucose and high lactate
accumulation in the TME have immunosuppressive effects.
Under lactate-rich conditions, reducing NAD+ to NADH by
lactate dehydrogenase (LDH) leads to blocked production of
GAPDH and PDGH, which in turn impairs effector T cell
proliferation dependent on post-GAPDH glycolytic
intermediates (Quinn et al., 2020). Tregs have inhibitory
effects on immune response and antigen activation, facilitating
cancer progression. Increased aerobic glycolytic activity creates a
lactate-enrich microenvironment that favors Tregs survival and
contributes immunosuppressive functions (Wang et al., 2017).
Moreover, elevated lactate levels in the TME can supply potential
nutrition to Tregs, which is due to lactate reversal to pyruvate and
NADH in the presence of LDH (Lochner et al., 2015). A study
suggested that inhibiting glycolysis and promoting oxidative

phosphorylation recover the differentiation of Tfh cells and
reduce inflammatory damage (Dong et al., 2019). Another
interesting study found that high lactate accumulation
decreases the PH of the microenvironment, then promotes NK
cell apoptosis and inhibits its natural killer function (Harmon
et al., 2019). B cells are of great significance in humoral immune
responses through antibody production. Altered intra- and
extracellular metabolic signaling can affect the immune
regulatory function of B cells (Rosser and Mauri, 2021).
Monocytes and mast cells play a vital role in regulating
immune responses, and they can alter the TME toward anti-
tumor immunity when fully triggered (Guilliams et al., 2018;
Dudeck et al., 2019). In addition, macrophages have two central
polarization states, including M1 and M2. Different TME leads
M0 macrophages polarization to different states, resulting in very
opposed effects. M1 macrophages polarization contributes to the
immunity against the tumor, while M2 macrophages promote
cancer progression and treatment resistance (Chen et al., 2021).
Lactate derived from tumors leads to M2 macrophages
polarization via activating the mTORC2 and ERK signaling
pathways (Zhang et al., 2021). The results of our study were
consistent with these conclusions. The infiltration levels of B cells,

FIGURE 10 | GSEA of LMRGS-low and LMRGS-high groups. (A) Enrichment results of hallmark. (B) Enrichment results of signaling pathways.
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NK cells, monocytes, and mast cells were higher in the LMRGS-
low group. Conversely, Tfh cells, Tregs, and M0 macrophages
were more abundant in the LMRGS-high group. The results
indicated that the immune cells of patients in the LMRGS-
high group were affected by lactate metabolism, so the TME
was more inclined to an immunosuppressive state.

Apart from the accumulation of immune cells that negatively
regulate immune activity, the immunosuppressive TME is also
associated with the up-regulated expression of inhibitory immune
checkpoints (Sangro et al., 2021). We further explored the
differences in the expression of inhibitory molecules between
the LMRGS subgroups. In the LMRGS-high group, inhibitory
immune checkpoint expressions were significantly higher,
including PD-1, CTLA4, LAG3, TIM3, TIGIT, and CD96. In
addition, the LMRGS score was positively correlated with PD-1,
CTLA4, TIM3, and TIGIT. Recently, immunotherapy targeting
inhibitory immune checkpoints has shown promising efficacy in
treating advanced HCC (Yau et al., 2020). The expression level of
the immune checkpoint is the predictive biomarker of
immunotherapy response. From our results, we speculated that
patients with high LMRGS scores might gain more benefit from
immunotherapy. Besides, TMB associated with neoantigen
production is an essential factor in driving anti-tumor
immunity. High TMB increases the efficiency of stimulating
host immune response (Shum et al., 2021). In our study, HCC
patients with high LMRGS scores had high expression of
inhibitory immune checkpoints and high TMB. Thus, the
LMRGS might have a good value for precisely predicting
which patients could respond to immunotherapy.

This study developed a novel LMRGS to predict the prognosis
and TME in HCC. Notably, there are certain limitations in the
present study. Firstly, the specific molecular functions of six genes
involved in the LMRGS remain unclear. There need further
experiments to elucidate the role of genes in HCC. Secondly,
the LMRGS was constructed and validated using the retrospective
data. In the future, we need to carry out multicenter prospective
studies to validate the clinical value.

In summary, our study constructed a novel LMRGS with a
high value for predicting prognosis and reflecting the TME in
HCC. The LMRGS was closely associated with clinical outcomes

and was an independent prognostic indicator. In addition,
patients with different LMRGS scores had different TME
statuses, including infiltration degree of stromal cells and
immune cells, immune activity, and expression of immune
checkpoints. Thus, the LMRGS was a promising biomarker to
speculate molecular and immune features in HCC, which might
provide new therapeutic strategies for HCC treatment.
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