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Abstract: A large number of retroviruses, such as human immunodeficiency virus (HIV) and pro-
totype foamy virus (PFV), recruit the endosomal sorting complex required for transport (ESCRT)
through the late domain (L domain) on the Gag structural protein for virus budding. However, little
is known about the molecular mechanism of bovine foamy virus (BFV) budding. In the present
study, we report that BFV recruits ESCRT for budding through the L domain of Gag. Specifically,
knockdown of VPS4 (encoding vacuolar protein sorting 4), ALIX (encoding ALG-2-interacting protein
X), and TSG101 (encoding tumor susceptibility 101) indicated that BFV uses ESCRT for budding.
Mutational analysis of BFV Gag (BGag) showed that, in contrast to the classical L domain motifs,
BGag contains two motifs, P56LPI and Y103GPL, with L domain functions. In addition, the two L
domains are necessary for the cytoplasmic localization of BGag, which is important for effective
budding. Furthermore, we demonstrated that the functional site of Alix is V498 in the V domain and
the functional site of Tsg101 is N69 in the UBC-like domain for BFV budding. Taken together, these
results demonstrate that BFV recruits ESCRT for budding through the PLPI and YGPL L domain
motifs in BGag.

Keywords: bovine foamy virus; L domain; ESCRT; virus-like particles

1. Introduction

Foamy viruses (FVs), or spumaretroviruses, are a group of Retroviridae that use a
different replication pathway from orthoretroviruses [1,2]. These differences include the
following: infectious FV particles contain double-stranded DNA, indicating that reverse
transcription occurs in the virus particles before a new round of infection; instead of pro-
ducing Gag–Pol fusion proteins, PFV Pol proteins are translated from spliced mRNA [3];
an internally functionally active second transcription unit for the expression of unstruc-
tured genes is present in the FV genome [4]; with respect to budding, FV Gag proteins
lack a membrane-targeting signal, and therefore cannot produce cell-free Gag-only virus-
like particles, thus FV is dependent on the capsid–glycoprotein interaction to provide
a membrane-targeting function for Gag. However, studies have shown that if FV Gag
proteins are fused with Fyn or Lck myristoylation to enable Gag to target the membrane,
particles can be released independently of Env. These observations indicate that FV Gag
contains all the other structural motifs necessary for capsid assembly and budding [5,6]. FVs
infect humans and other mammals, including simians, equines, bovines, and felines [7–10].
The FV replication strategy represents a link between the Retroviridae and the Hepadnaviridae,
which makes FVs interesting research subjects.

The release of viral particles from infected cells is one of the last steps in the retroviral
replication cycle, in which budding from the cellular membrane or organelle membrane
is a critical step in a highly coordinated process, usually aided by a number of cellular
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factors [11]. Retroviruses are able to recruit endosomal sorting complex required for
transport (ESCRT) components through interactions mediated by one or more specific
motifs on their capsid precursor protein to complete budding [12]. These specific motifs
play an important role in late events in the intracellular virus life cycle; therefore, the motifs
on retroviral Gag that interact with ESCRT components were referred to as “late assembly”
or L domains [13,14]. To date, three typical L domain sequences have been characterized.
The P(T/S)AP L domain motif was first confirmed in the human immunodeficiency virus
type 1 (HIV-1) Gag p6 domain [15]; the YPXL L domain motif was first found in the equine
infectious anemia virus (EIAV) Gag p9 domain [16]; and the PPXY L domain motif was
originally identified in the Rous sarcoma virus (RSV) Gag p2b cleavage product [17,18].
Recently, the LXXL L domain motif was found in HIV and EIAV, which overlaps with the
YPXL motif [19]. Typically, a retroviral Gag that promotes budding by recruiting ESCRT
contains one or more L domain motifs [11,20].

The ESCRT components are utilized in the cell to bud cargo-enriched vesicles into the
lumen of multivesicular bodies (MVBs) and mediate membrane scission events to release
the vesicles. The ESCRT machinery also plays a role in the membrane scission events in
the final steps of cell division [12,21]. These processes are topologically identical to virus
budding. Different types of L domain motifs interact with different components of ESCRT.
The P(T/S)AP motif interacts with tumor susceptibility 101 (Tsg101), a component of the
ESCRT I complex, to mediate the budding of viruses containing this L domain motif, such as
HIV-1 [22,23]. The YPXL motif recruits ESCRT through interaction with ALG-2-interacting
protein X (AIP-1/Alix) and then mediates virus budding [24]. The recruitment of ESCRT
by the PPXY motif is related to its binding with the WW domains of a subset of NEDD4 E3
ubiquitin protein ligases (NEDD4)-like homologous to E6AP C-terminus (HECT) ubiquitin
ligases; however, the specific mechanism remains unclear [25,26].

Compared with orthoretroviruses, there have been few studies on the motifs associated
with budding of FV Gag. In the case of FVs, it has been confirmed that PSAP is the L domain
motif in prototype foamy virus (PFV) Gag, which can recruit ESCRT through an interaction
with Tsg101 to mediate PFV budding [27]. Surprisingly, the Gag proteins of all non-primate
FVs, including bovine foamy virus (BFV), do not have the P(S/T)AP motif. Therefore,
whether the budding of these non-primate FVs is ESCRT-dependent, and whether they
contain undiscovered motifs with L domain function requires investigation.

In the present study, we aimed to characterize whether the BFV Gag protein (BGag)
has L domain functional motifs, to analyze their role in the particle budding process, and
determine their relationship with ESCRT components.

2. Materials and Methods
2.1. Cell Culture and Transfection

Human embryonic kidney (HEK293T), MDBK, and HeLa cells were cultivated in
Dulbecco’s modified Eagle’s medium (Gibco, Thermo Fisher Scientific, Waltham, MA,
USA), supplemented with 10% fetal bovine serum (FBS) (Gibco), 50 µg/mL streptomycin,
and 50 U/mL penicillin at 37 ◦C in a 5% CO2 atmosphere.

For transfection, cells were seeded at 70–80% confluence in either 6-well plates, 12-well
plates, or 10 cm dishes. Twenty-four hours later, the required plasmids were transfected
into the cells. The polyethylenimine (PEI, Polysciences, Warrington, PA, USA) used in
the experiment was added at a DNA:PEI (µg:µg) ratio of 1:4, according to the manufac-
turer’s protocol. After ten minutes, the mixture was added to the corresponding cells.
Small interfering RNA (siRNA) transfection was performed using lipofectamine 3000 (Life
Technologies, Grand Island, NY, USA) according to the manufacturer’s instructions.

2.2. Plasmid Constructs

Human ALIX and human TSG101 cDNAs were cloned into vector pCMV-3HA (Clon-
tech, Mountain View, CA, USA). Different site mutants (pCMV-3HA-Alix V498D, pCMV-



Viruses 2022, 14, 522 3 of 16

3HA-Tsg101 Y63A, and N69P) were generated using site-directed mutagenesis (Toyobo,
Osaka, Japan) according to the manufacturer’s recommendations.

The primers sequence used to construct the pCMV-3HA-Alix V498D mutant were:
forward primer—5′-GGAACCAACTTCAGAACAGATTTAGATAAAGCTGTGCAG-3; re-
verse primer—5′-CTGCACAGCTTTATCTAAATCTGTTCTGAAGTTGGTTCC-3′. The pri-
mers sequence used to construct the pCMV-3HA-Tsg101 Y63A mutant were: forward
primer—5′-GGAACAATCCCTGTGCCTGCTAGAGGTAATACATAC-3; reverse primer—
5′-GTAT-GTATTACCTCTAGCAGGCACAGGGATTGTTCC-3′. The primers sequence used
to construct the pCMV-3HA-Tsg101 N69P mutant were: forward primer—5′-GAGGTAAT-
ACATACCCTATTCCAATATGCCTATGG-3; reverse primer—5′-CCATAGGCATATTGGA-
ATAGGGTATGTATTACCTC-3′.

The coding sequence of BFV Env was inserted into pCMV-3HA to construct the pCMV-
3HA-BEnv plasmid, and the coding sequence of BFV Gag was cloned into pCE-puro-
3×FLAG to construct the pCE-puro-3×FLAG-BGag plasmid. Mutations were generated
by designing specific mutation primers and using site-directed polymerase chain reaction
(PCR) (Toyobo, Osaka, Japan).

All mutant plasmids were verified by sequencing before use (Genewiz, Beijing, China).

2.3. siRNA Construction

VPS4 (encoding vacuolar protein sorting 4) expresses two transcripts, VPS4A and
VPS4B. The VPS4-specific siRNA (5′-GGAUGUCCCUGGAGAUAAAtt-3′), which targeted
both transcripts, and a negative control siRNA (NC), were purchased from GenePharma
(Shanghai, China).

The siRNA (5′-GAACAAAUGCAGUGAUAUA-3′) specifically targeting position 2063
to 2081 bp of ALIX and an NC siRNA were purchased from GenePharma.

The siRNA (5′-CCUCCAGUCUUCUCUCGUC-3′) specifically targeting position 414
to 432 bp of TSG101 and an NC siRNA were purchased from GenePharma.

2.4. Quantitative Real-Time Reverse Transcription PCR (qRT-PCR)

Total RNA was extracted using the TRIzol Reagent (Invitrogen, Waltham, MA, USA)
according to the manufacturer’s protocol. The extracted RNA was reverse transcribed into
cDNA, and the cDNA was used as a template to perform quantitative real-time PCR on the
StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA), using
FastStart Universal SYBR Green PCR Master Mix (Roche, Basel, Switzerland). GAPDH
(encoding glyceraldehyde-3-phosphate dehydrogenase) was used as an internal control.

qPCR was performed using the following conditions: 94 ◦C for 3 min for 1 cycle; 94 ◦C
for 30 s, 60 ◦C for 30 s, and 72 ◦C for 30 s, for 40 cycles. The sequences of the primers used in
the experiment were: VPS4A-up: 5′-GTGATGGAGAAGCCCAACATAC-3′; VPS4A-low: 5′-
CAAGTGTGGGAATTTGATTGGC-3′; VPS4B-up: 5′-CGACCAAATGTGAAATGGAGTGA-
3′; VPS4B-low: 5′-TCCAGGCGGCCCAAATAATAG-3′.

After determining the specificity of amplification by melting curve analysis, the relative
expression of the target mRNA was calculate using the 2−∆∆CT method.

2.5. Purification of BFV Virus-like Particles (VLPs)

At 48 h after transfection, the cell culture supernatant containing BFV VLPs (including
the VLPs released by Env alone and the VLPs formed by Env and Gag) were filtered
through a 0.45 µm filter, and then 1 mL of 20% sucrose buffer (weight/volume) was added
to the centrifuge tube, and then the prepared VLPs were added to the upper layer of sucrose.
Ultracentrifugation (Optima LE-80K, Beckman Coulter, Indianapolis, IN, USA) at 4 ◦C,
35,000 rpm was performed for 2 h, and the invisible pellet was resuspended in 40 µL of
loading buffer containing 2% SDS, and it was stored at −20 ◦C before immunoblotting.
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2.6. Western Blotting Analysis

Transfected cells were disrupted using lysis buffer (150 Mm NaCl, 50 Mm Tris, 2 Mm
EDTA, 3% Glycerol, 1% NP-40) on ice for 30 min, and then protein loading buffer was added
containing 2% SDS. Proteins were separated by sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE). Thereafter, the proteins were transferred from the gel to
a polyvinylidene difluoride (PVDF) membrane (GE Healthcare, Cincinnati, OH, USA) by
electroblotting at 95 V at 4 ◦C for 90 min. The PVDF membrane was then incubated in
phosphate-buffered saline (PBS) containing 5% nonfat milk for 45 min at room temperature,
followed by incubation with the primary antibodies for 1.5 h. The blot was the incubated
with species-specific, peroxidase-conjugated secondary antibodies and then with a chemilu-
minescent substrate reagent for visualization. The immunoreactive proteins were detected
using chemiluminescence (Merck Millipore, Darmstadt, Germany).

2.7. Immunofluorescent Assay

HeLa cells were seeded in 12-well plates with coverslips at the bottom, and transfected
with corresponding plasmids. Two days later, the cells were treated with 500 µL of fixative
(PBS containing 4% formaldehyde) for 10 min, and then treated with PBS containing
0.1% Triton X-100 for 10 min to perforate the cell membrane surface. Next, 500 µL of
PBS containing 5% non-fat milk and 5% BSA were added to the plates and incubated at
room temperature for 2 h or at 4 ◦C overnights for blocking. Cells on coverslips were
incubated with the primary antibody (1:250 dilution of the mouse anti-Flag antibody) at
room temperature for 2 h or at 4 ◦C overnight, washed 3 times using PBS, and incubated
for 40 min with fluorochrome-conjugated secondary antibodies in the dark. The coverslips
were washed 3 times with PBS for 5 min each time, and then 500 µL of 4′,6-diamidino-
2-phenylindole (DAPI) was added to the plates and incubated for 10 min in the dark.
The coverslips were washed four times with PBS, fixed on the slides using glycerol, and
air-dried at room temperature in the dark. The samples were stored at 4 ◦C in the dark for
long-term storage. Images were captured under a confocal fluorescence microscope (Leica
TCS SP5, Wetzlar, Germany).

2.8. Co-Immunoprecipitation

HEK293T cells were seeded in a 10 cm dishes and transfected with the corresponding
plasmids after 24 h. After 2 days, the cells were disrupted using lysis buffer containing
50 mM Tris, 150 mM NaCl, 2 mM EDTA, 3% Glycerol, 1% NP-40, and EDTA-free protease
inhibitor cocktail tablets for 1 h on ice, and then centrifuged at 10,000× g for 10 min at
4 ◦C. The sample were incubated with protein A agarose beads (cat. no. 16-125, Millipore,
Boston, MA, USA) for 3 h at 4 ◦C with rotation. The samples were centrifuged at 4 ◦C,
10,000× g for 1 min to remove the supernatant, and the immunoprecipitated components
in the pellet were washed with lysis buffer 6 times, and the supernatant was removed after
centrifugation at 4 ◦C, 10,000× g. After the last washing, the supernatant was removed
using a 1 mL syringe and only the immunoprecipitated components were retained. An
equal volume 2 × loading buffer containing 2% SDS was added to the samples for 20 min
at 100 ◦C and then the samples were subjected to Western blotting.

2.9. Separation of Cell Nucleus and Cell Cytoplasm

The cells (dish) were collected and washed 3 times with ice-cold PBS and centrifuged
at 4 ◦C, 3000 rpm for 5 min each time. After the final PBS wash, the cells were resuspended
in 500 µL Buffer A (protease inhibitor, 1 M HEPES, 2 M KCl, 1 M MgCl2, 1 M DTT), and then
incubated on ice for 15 min. The cells were passed through the needle of a 1 mL syringe
(26 G) 5–10 times and then left on ice for 15 min. The cells were centrifuged at 2800 rpm for
5 min at 4 ◦C: The supernatant contained the cytoplasm and the pellet contained the cell
nuclei. The pellet was resuspended in 1 mL of solution I (0.25 M sucrose, 10 mM MgCl2,
protease inhibitor), and the resuspended pellet was layered over 3 mL of solution II (0.35 M
sucrose, 0.5 mM MgCl2, protease inhibitor), and then centrifuged at 1430× g for 5 min at
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4 ◦C. This step resulted in a cleaner nuclear pellet. The nuclear pellet was resuspended in
100 µL Buffer A. The samples were stored at −80 ◦C, before being subjected to Western
blotting.

2.10. Antibodies

Antibodies used for protein analysis were as follows: monoclonal mouse anti-HA
(1:5000; cat. no. H3663, Sigma-Aldrich, St. Louis, MO, USA), monoclonal mouse anti-Flag
(1:5000; cat. no. F1804, Sigma-Aldrich), monoclonal rabbit anti-Alix-N-terminus (1:2000; cat.
no. ab186429, Abcam, Cambridge, MA, USA), polyclonal rabbit anti-Vps4A/B (1:2000; cat.
no. 17673-1-AP, Proteintech, Chicago, IL, USA), monoclonal mouse anti-Tsg101 (1:1000; cat.
no. ab83, Abcam, Cambridge), Alexa Fluor-488-conjugated goat anti-mouse IgG (1:5,00; cat.
no. A-11001, Invitrogen, Carlsbad, CA, USA), monoclonal mouse anti-GAPDH (1:5000; cat.
no. sc-47724, Santa Cruz Biotechnology, Dallas, TX, USA), monoclonal mouse anti-Tubulin
(1:5000; cat. no. sc-32293, Santa Cruz), polyclonal rabbit anti-Histone H3 (1:2000; cat. no.
ab1791, Abcam), horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG (1:5000;
cat. no. sc-2005, Santa Cruz), and HRP-conjugated goat anti-rabbit IgG (1:5000; cat. no.
sc-2004, Santa Cruz).

2.11. Statistical Analysis

To quantify the levels of released VLPs, the amount of Gag in the VLPs was normalized
against the amount of intracellular Gag, which were first normalized against the GAPDH
loading control. In the Western blotting experiments, the corresponding immunoreactive
protein band intensities were determined using Image J [28,29].

All data were expressed as the mean ± standard deviation (SD) of the results of three
independent experiments, and each experiment was conducted three times. Comparisons
between two groups were performed using Student’s t-test with GraphPad Prism version
8.0 (GraphPad software Inc., San Diego, CA, USA). When the P value was less than 0.05, the
difference was considered statistically significant. The P values in the figures are expressed
as * p < 0.05, ** p < 0.001, *** p < 0.0001, and not significant (ns) (for p > 0.05).

3. Results
3.1. Alix and Tsg101 Are Necessary for the Budding of BFV VLPs

Recent studies have shown that the ESCRT pathway is the main escape route of enveloped
viruses, which is closely related to the L domains on viral structural proteins [30,31]. To
investigate whether budding of BFV also depends on ESCRT, we examined the effect of
knockdown of ESCRT components on BFV VLP formation. The bovine Alix and Vps4
sequences cannot be found in NCBI and studies have suggested that BFV zoonotic infection
might be possible [32]; therefore, we attempted to conduct experiments based on human
ESCRT proteins. We also compared the sequence similarity between human and bovine
ESCRT proteins, and found that the human Tsg101 (NP_006283.1) protein and the bovine
Tsg101 (NP_001091464.1) protein had a high sequence similarity of 97.44%. In addition, we
used antibodies recognizing human ESCRT protein to detect the corresponding proteins
in MDBK cells. As shown in Figure S1A, Alix, Vps4, or Tsg101 in MDBK cells could be
detected by rabbit anti-homo Alix, rabbit anti-homo Vps4 or mouse anti-homo Tsg101
antibodies, suggesting high similarity of ESCRT proteins between humans and cows. For
the above reasons, we conducted the follow-up experiments based on human derived Alix,
Tsg101, or Vps4.

Vps4, as an ATPase, is necessary for ESCRT-dependent virus budding [33,34]; therefore,
we examined the budding of BFV VLPs in VPS4 (siVPS4 can target both VPS4A and VPS4B
transcripts) knockdown HEK293T cells. In this study, we co-transfected the pCMV-3HA-
BEnv plasmid with the pCE-puro-3×FLAG-BGag plasmid to detect the production of VLPs.
Additionally, the secretion of non-infectious subviral particles (Env-only SVPs) is also a
feature of the spumaretroviruses-specific budding strategy, and this situation might only
be a byproduct of the unique Env-dependent egress strategy of infectious FV particles [5].
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Therefore, in this study, under the condition of co-transfection of pCMV-3HA-BEnv with
pCE-puro-3×Flag-BGag plasmid, the Env protein detected in the supernatant contains
two components: including Env-only SVPs and Gag-Env VLPs, thus the total amount of
Env in supernatant did not change with changing Gag levels. As shown in Figure 1A,B,
VPS4 knockdown reduced the amount of Gag in BFV VLPs to about 49.5%. These results
indicated that BFV budding is ESCRT-dependent.

Figure 1. Effect of Vps4, Tsg101, or Alix proteins on particle budding. (A) HEK293T (4 × 106) cells
were transfected with siVPS4 or siControl 6 h before being transfected with 3HA-BEnv or 3Flag-BGag
(BFV Gag protein), and then cultured for 24 h. The cell culture supernatants were filtered through
a 0.45 µm filter and purified by ultracentrifugation. Transfected cells were lysed using lysis buffer.
Levels of proteins in cells and supernatants were measured using Western blot. (B,F) To quantify
the levels of released VLPs, the amount of BGag in VLPs was normalized against the amount of
intracellular BGag, which was first normalized against the GAPDH loading control. Mean values
and the standard deviation of particle-associated BGag protein corrected for intracellular expression
levels (n = 3) are shown. The data are the averages of three independent experiments. Compared
with the siControl: ** p < 0.01. (C) HEK293T (4 × 106) cells were transfected with 3HA-BEnv,
3FlagBGag, and either the 3HA, 3HA-Alix, or 3HA-Tsg101 vector constructs and harvested at day 2
post-transfection. The cell culture supernatants were filtered through a 0.45 µm filter and purified
by ultracentrifugation. Transfected cells were disrupted using lysis buffer. Levels of proteins in
cells and supernatants were measured using Western blotting. (D) HEK293T (4 × 106) cells were
transfected with siAlix or siControl 6 h before transfected with 3HA-BEnv, 3Flag-BGag, and either
the pCMV-3HA or pCMV-3HA-Alix vector constructs, and then cultured for 24 h. The cell culture
supernatants were filtered through a 0.45 µm filter and purified by ultracentrifugation. Levels of
proteins in cells and supernatants were measured using Western blotting. (E) HEK293T (4 × 106)
cells were transfected with siTsg101 or siControl 6 h before transfected with 3HA-BEnv, 3Flag-BGag,
and either the pCMV-3HA or pCMV-3HA-Tsg101 vector constructs, and then cultured for 24 h. The
cell culture supernatants were filtered through a 0.45 µm filter and purified by ultracentrifugation.
Levels of proteins in cells and supernatants were measured using Western blotting. The levels of
released VLPs were quantified according to the method described in the statistical analysis section.
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Previous studies have shown that Alix and Tsg101 are key factors of the ESCRT path-
way, and different types of L domains recruit ESCRT complexes by interacting with them.
To determine whether BFV recruits ESCRT through Alix and Tsg101, we examined the
effects of ALIX and TSG101 knockdown on BFV VLP release. As shown in Figure 1D–F,
ALIX and TSG101 knockdown inhibited the budding of BFV VLPs, and the correspond-
ing inhibition could be compensated for by transfection of exogenous ALIX or TSG101.
Correspondingly, overexpression of ALIX or TSG101 promoted the budding of BFV VLPs
(Figure 1C). Taken together, these results demonstrated that Alix and Tsg101 are necessary
for BFV to recruit ESCRT complexes.

3.2. Identification of L Domain Sequences on the BGag Protein

BFV depends on the ESCRT pathway for budding; therefore, we hypothesized that
there would be L domain motifs in BGag. Three classes of L domain sequences, based on
the peptide sequences P(T/S)AP, PPXY, and (L)YPXnL, have been described in retroviruses.
Analysis of the amino acid sequence of BGag identified no classical L domain motifs. To
determine the possible L domain (s) in BGag, we mutated twelve motifs (L1–L12) in BGag
that closely resembled the three classes of L domain sequences (Figure 2A).

Figure 2. Schematic illustration of the BGag mutants and the impact of each mutant on BFV VLP
budding. (A) Schematic organization of the BFV Gag protein (BGag) precursor protein and processing
products p56 and p3. Below, the sequences of the indicated specific regions of wild-type and mutant
BGag proteins are shown. Putative L domain sequence motifs are highlighted in bold, and amino
acids altered in the mutant constructs are marked by red letters. (B) HEK293T (4 × 106) cells were
transfected with 3HA-BEnv and either the wild-type or domain-mutated (3Flag-BGag L1–L12) vector
constructs and harvested at day 2 post-transfection. The cell culture supernatants were filtered
through a 0.45 µm filter and purified by ultracentrifugation. Transfected cells were disrupted using
lysis buffer. Levels of proteins in cells and supernatants were measured using Western blotting.
(C) Quantification of BFV virus-like particle (VLP) budding. Mean values and standard deviation of
particle-associated BGag protein corrected for intracellular expression levels (n = 3) are shown. To
quantify the VLPs release levels, the amount of BGag in VLPs was normalized against the amount of
intracellular BGag, which were first normalized against the GAPDH loading control. The data are the
averages of three independent experiments. Compared with the wild type (wt): * p < 0.05, ** p < 0.01.
“·” stands for omission.



Viruses 2022, 14, 522 8 of 16

To identify the effect of different Gag mutants on BFV VLP budding, a BFV Env (BEnv)
expression plasmid and plasmids expressing different BGag proteins were co-transfected
into HEK293T cells. At 2 days post-transfection, levels of BGag and BEnv in the cells and
supernatants were measured (including Env-only SVPs and Gag-Env VLPs). As shown in
Figure 2B,C, mutations in the PLPI (L2) and YGPL (L3) motifs resulted in a reduction in the
fraction of BGag that was present in VLPs. The combination mutant (L2/L3) resulted in a
more obvious reduction in BGag levels in VLPs, and BGag was almost undetectable in the
supernatants (Figure 3A,B).

Figure 3. PLPI and YGPL are the two L domains in BGag. (A) Schematic organization of the BFV
Gag protein (BGag) precursor protein and processing products p56 and p3. Below, the sequences of
the indicated specific regions of wild-type and mutant BGag protein are shown. The two L domain
sequence motifs are highlighted in bold, and amino acids altered in the mutant constructs are marked
by red letters. (B) Representative Western blotting analysis of HEK293T cell lysates (Lysates) and
virus-like particles (VLPs) purified by ultracentrifugation through 20% sucrose using monoclonal
anti-Flag (α-BGag) and anti-HA (α-BEnv)-specific antisera. To quantify the levels of released VLPs,
the amount of BGag in VLPs was normalized against the amount of intracellular BGag, which were
first normalized against the GAPDH loading control. (C) Replacement of PFV L domain motif with
BFV L domain motifs. Schematic organization of the PFV Gag protein (PGag). The PGag L domain
sequence motif is highlighted in bold, and amino acids altered in the mutant constructs are marked
by red letters. (D) HEK293T (4 × 106) cells were transfected with 3HA-PEnv and either the wild-type
or domain-mutated PGag vector constructs and harvested at day 2 post-transfection. The cell culture
supernatants were filtered through a 0.45 µm filter and purified by ultracentrifugation. Transfected
cells were disrupted using lysis buffer. Levels of Gag and Env in the supernatant and cell lysate were
measured using Western blotting. To quantify the levels of released VLPs, the amount of PGag in
VLPs was normalized against the amount of intracellular PGag, which were first normalized against
the GAPDH loading control.
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Previous studies have shown that L domains of different viruses are functionally
interchangeable [35–37]. To further prove that PLPI and YGPL motifs are L domains, we
replaced the L domains in PFV Gag (PGag) with PLPI and YGPL (Figure 3C), and then
a PFV Env (PEnv) expression plasmids and plasmids expressing different PGags were
co-transfected into HEK293T cells. At 48 h, the levels of PGag and PEnv in cells and
supernatants were measured. As shown in Figure 3D, the levels of VLPs released from
different PGag mutants were not lower than those of the wild-type, although the expression
levels of the PGag L2 mutant were lower than those of the wild-type. This result indicated
that PLPI and YGPL can replace the L domain function of PFV to maintain the normal
budding of PFV VLPs. We also examined the effect of L domain mutation on budding of
BFV VLPs in the MDBK cell lines. As shown in Figure S1B, mutation of the L2/L3 domains
inhibited the budding of BFV VLPs (VLPs release levels were 57% compared with that of
the of WT). This was consistent with the results of the experiments conducted in HEK293T
cells (Figure 3B).

Taken together, these data indicated that the PLPI and YGPL motifs in BGag contain
the L domain activity for BFV particle budding, which is also consistent with the result that
BFV budding is ESCRT-dependent (Figure 1).

3.3. The Two L Domains of BGag Are Required for Its Cytoplasmic Localization

The nascent FV Gag precursor was reported to transiently traffic through the nucleus
during particle assembly [38]. The subsequent efficient transport of FV Gag from the
nucleus to the cytoplasm is necessary for the completion of budding, which undoubtedly
depends on the interaction between Gag and the intracellular transport system. The L
domains are related to the ESCRT pathway; therefore, we confirmed the interaction between
BGag (wild-type or L domains mutated) and Alix or Tsg101 using immunoprecipitation.
The results showed that the interaction between BGag and Alix was weakened significantly
after the L domains were mutated compared with that of wild-type BGag (Figure 4A). There
was a slight weakening of the interaction between BGag and Tsg101 after the L domains
were mutated (Figure 4B).

Therefore, we examined the effect of the two L domains on the subcellular localization
of BGag using immunofluorescence detection. As shown in Figure 4C, the wild-type BGag
was mainly localized in the cytoplasm, while the BGag L2/L3 mutant was almost exclu-
sively localized in the nucleus. The nuclear localization levels of the two mutants, BGag L2
and BGag L3, also increased markedly. We further examined the subcellular localization
of wild-type BGag and its L2/L3 mutant by performing a nuclear and cytoplasmic frac-
tionation assay. The distribution of L2/L3 mutated BGag in the cytosol was about 1/3 that
of the wild-type BGag, and its distribution in the nucleus was about 1.7 times that of the
wild-type BGag (Figure 4D and Figure S2A).

These results suggested that the two L domains are important for the cytoplasmic
localization of BGag during budding.

3.4. V498 in the V Domain of Alix Is Crucial for BFV VLP Budding

Alix is necessary for BFV to recruit ESCRT; therefore, we further identified the func-
tional amino acid site(s) of Alix. Previous studies have shown that the V498 amino acid
inside the V domain of Alix is very important for its biological function [39,40]. To de-
termine the effect of V498 in Alix on BFV budding, a plasmid with the V498D mutation
was constructed (Figure 5A). HEK293T cells were transfected with siControl or siAlix,
and then the corresponding cells were transfected with the same amount of pCMV-3HA,
pCMV-3HA-Alix, or pCMV-3HA-Alix V498D DNA constructs. The results showed that
knockdown of ALIX inhibited the budding of VLP, and full-length Alix (the third lane,
Figure 5B) could compensate for this inhibition, while Alix with the V498D mutation (the
fourth lane, Figure 5B) could not compensate for this inhibition (Figure 5B). Overall, these
results indicate that the V498 in the V domain is the functional site through which Alix
assists BFV budding.
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Figure 4. The localization of wild-type or L domain motifs-mutated BGag. (A) Immunoprecipitation
with Flag antibody of HEK293T (4 × 106) cells co-transfected with eukaryotic expression plasmids
encoding 3Flag-Gag or 3Flag-Gag L2/L3 and 3HA-Alix. (B) Immunoprecipitation with mouse
anti-Flag antibody of HEK293T (4 × 106) cells transfected with eukaryotic expression plasmids
encoding 3Flag-Gag or 3Flag-Gag L2/L3. The co-immunoprecipitated Tsg101 was detected using
mouse anti-Tsg101 antibody, and the co-immunoprecipitated BGag protein was detected using mouse
anti-Flag antibody. Tsg101 and BGag protein levels in the input were also detected using Tsg101
and Flag antibodies, respectively. (C) HeLa cells were transfected with 3Flag-BGag, 3Flag-BGag L2,
3Flag-BGag L3, or 3Flag-BGag L2/L3 (BFV Gag protein (BGag)). An indirect immunofluorescence
assay (IFA) was used to localize wild-type or L domain motifs-mutated BGag (with mouse anti-Flag
antibody and fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse secondary antibody).
Green represented the BGag protein, blue represented the nucleus, and brightfield showed the cell
morphology. Scale bar = 10 µm. (D) HEK293T cells were transfected with either 3Flag-Gag or
3Flag-Gag L2/L3. After 2 days, the cells were collected, and the nucleus and cytoplasmic components
were separated. The BGag protein levels in the two components were determined using Western
blotting. Histone 3 (H3) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were used as
nuclear and cytoplasmic markers, respectively.
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Figure 5. V498 in the V domain of Alix is crucial for BFV VLP budding. (A) Various forms of Alix
(including full-length and the V498D mutant) were cloned into pCMV-3HA. The sequences of the
indicated specific regions of wild-type and mutant Alix protein are shown. Amino acid altered in
the mutant constructs is marked by red letters. (B) HEK293T (4 × 106) cells were transfected with
siControl or siAlix 6 h before transfection with 3HA-BEnv, 3Flag-BGag (BFV Gag protein (BGag)),
and either the pCMV-3HA or various forms of Alix vector constructs were then cultured for 24 h. The
cell culture supernatants were filtered through a 0.45 µm filter and purified by ultracentrifugation.
Transfected cells were disrupted using lysis buffer. Levels of proteins in cells and supernatants were
measured using Western blotting.

3.5. N69 in the UBC-like Domain of Tsg101 Is Crucial for BFV VLP Budding

The Tsg101 UBC-like domain (1–157 aa) was shown previously to be the binding
domain of the PTAP L domain [41]. To identify the functional site(s) of Tsg101 that assist
BFV budding, as shown in Figure 6A, we constructed two Tsg101 mutants, Y63A and
N69P [42]. HEK293T cells were transfected with siControl or siTsg101, and then the
corresponding cells were transfected with the same amount of pCMV-3HA or various
forms of Tsg101 (including full-length Y63A and N69P). The results showed that Y63A (the
fourth lane, Figure 6B) could compensate for the inhibition of budding induced by TSG101
knockdown, akin to the effect of transfection with the plasmid expressing full-length Tsg101
(the third lane, Figure 6B), while N69P (the fifth lane, Figure 6B) had no compensatory
ability (Figure 6B). These results identified amino acid N69 in the UBC-like domain as the
functional site of Tsg101 that assists BFV budding.
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Figure 6. N69 in the UBC-like domain of Tsg101 is crucial for BFV VLP budding. (A) Various forms
of Tsg101 (including full length, and Y63A and N69P mutants) were cloned into pCMV-3HA. The
sequences of the indicated specific regions of wild-type and mutant Tsg101 protein are shown. Amino
acids altered in the mutant constructs are marked by red letters. (B) HEK293T (4 × 106) cells were
transfected with siControl or siTsg101 6 h before transfection with 3HA-BEnv, 3Flag-BGag (BFV Gag
protein (BGag)), and either the pCMV-3HA or various forms of Tsg101 vector constructs were then
cultured for 24 h. The cell culture supernatants were filtered through a 0.45 µm filter and purified by
ultracentrifugation. Transfected cells were disrupted using lysis buffer. Levels of proteins in cells and
supernatants were measured using Western blotting.

4. Discussion

Successful egress from infected cells is a prerequisite for virus spread within the host.
In this study, we reported that BFV also buds through recruitment of the ESCRT pathway,
similar to most retroviruses. We also identified that PLPI and YGPL are the two L domain
motifs in BGag. In particular, mutation experiments showed that the two L domains
of BGag were necessary for effective budding and also affected the distribution of Gag
between the nucleus and cytoplasm.

Our results clearly demonstrated that BFV requires late components of the Vps ma-
chinery for particle egress. SiRNA-mediated knockdown of VPS4A and VPS4B (encoding
AAA ATPases) inhibited BFV particle release. The majority of retroviruses express one or
two L domains in a specific protein, and the use of two distinct L domains have equiva-
lent functions in virus release [5]. The HIV-1 Gag protein contains the PTAP and YPXnL
domains and the blocked PTAP-Tsg101 or YPXnL-Alix interactions both affected HIV-1
release [43]. We observed that both the PLPI and YGPL motifs of BGag played an essential
role during virus budding. The inhibition of virus release was more obvious when two L
domain motifs were mutated simultaneously. In the present study, immunoprecipitation
verified that the interaction between BGag with mutations of the two L domains and
Alix or Tsg101 was weakened to a certain extent, which proved that the L domains are
important for BFV recruitment of ESCRT. The relevant mechanism and the corresponding
relationship between the two L domains (PLPI and YGPL) and Alix or Tsg101 require
further investigation. In addition, we found that V498 of Alix and N69 of Tsg101 were
important for BFV VLP budding. We confirmed the interaction between V498D of Alix
or N69P of Tsg101 with BGag. As shown in Figure S3, the interaction between BGag and
V498D was weakened significantly compared with that of wild-type Alix. This might be
the reason why V498D could not effectively rescued the inhibition of VLP budding by ALIX
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knockdown (Figure 5B). As shown in Figure S4, interestingly, the results showed that the
interaction between BGag and N69P was significantly enhanced compared with that in
wild-type Tsg101. Combined with the results in Figure 6B, N69P could not compensated for
the reduction in BFV VLP budding caused by TSG101 knockdown, which was not caused
by the change of interaction between N69P and BGag. This might reflect the fact that N69P
cannot efficiently recruit ESCRT complexes despite its strong interaction with BGag, which
needs to be verified using further experiments.

To date, three consensus sequences of L domains have been characterized, a P(T/S)AP
L domain motif, a PPXY L domain motif, and a YPXL L domain motif. In this study, we
found that PLPI and YGPL in BGag were novel motifs that differ from the previously
discovered motifs. Furthermore, the PLPI motif and the YGPL motif have high homology
to the prototypic PPXY and YPXL L domains. Interestingly, the YXXL motif is conserved
in all FV isolates from different species [5]. There are two YXXL motifs in BGag, YGPL
and YAIL, respectively (Figure 2A). In this study, mutations in the YGPL motif resulted
in an approximately five-fold reduction in BFV particle release, and analysis using motif
interchange showed that YGPL is a motif with L domain function (Figure 3). Mutations
of the YAIL amino acids in BGag had no effect on particle release, suggesting that it has
no classical L domain function (Figure 2). Previous studies have shown that the YEIL in
PFV Gag has no classical L domain function but was important for capsid assembly [27].
Further comparison showed that both the YAIL motif in BGag and the YEIL motif in PGag
were YXXLGL-like motifs. In addition, the YGPL L domain motif in BGag belongs to the
YXXL-like motif group, but not the YXXLGL-like motif group. YEILGL is important for
the correct capsid assembly of PFV [44]; therefore, the influence of YAILGL on BFV capsid
assembly deserves further investigation. Overall, these results suggested that the conserved
YXXL motif in FV Gag might plays an important role in certain steps of the FV life cycle.

Like other retroviruses, the Gag protein of BFV interacts with the intracellular traf-
ficking machinery in a complex manner, which is consistent with its multiple functions in
viral replication. Studies have shown that the Gag proteins of several retroviruses shuttle
between the nucleus and cytoplasm, including those of murine leukemia virus (MLV), PFV,
RSV, HIV, and mouse mammary tumor virus (MMTV) [45–49]. PFV Gag has been reported
to be trafficked into the nucleus twice during its life cycle, including early-stage entry
into the nucleus as part of the pre-integration complex (PIC) and trafficking transiently
through the nucleus during virus particle assembly in the late stage [38]. However, the
cellular transport pathways and molecular mechanisms required for the newly synthesized
Gag to travel between the nucleus and cytoplasm remain unclear. Our results showed
that mutations in PLPI and YGPL led to the retention of BGag in the nucleus, which was
detrimental to the efficient assembly of the virus. Considering that BGag interacted with
Alix and Tsg101 through the two L domains, it would be interesting to follow up on the
relationship between these interactions and the ability of BGag to shuttle between the
nucleus and cytosol, which is currently unclear.

In summary, we first confirmed that there were L domains in BGag that interact with
Alix and Tsg101, which recruit the ESCRT pathway to mediate virus budding. PLPI and
YGPL are the two L domain motifs of BFV, which differ from the classical L domain. These
results suggest that some viruses without the classical L domain motifs in their structural
proteins might also use ESCRT to promote budding. Hence, our findings provide new
insights into the viral proteins that recruit ESCRT components, thus advancing the study of
the molecular mechanisms of virus budding.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14030522/s1, Figure S1: (A) High similarity of ESCRT proteins
between human and bovine. The same number of HEK293T or MDBK cells (1 × 106) were lysed with
lysis buffer. The corresponding proteins were measured by western blot. The primary antibodies were
rabbit anti-homo Alix, rabbit anti-homo Vps4 or mouse anti-homo Tsg101. (B) MDBK (2 × 106) cells
were transfected with 3HA-BEnv and either the wild-type or L2/L3 mutated BGag and harvested
at day 2 post-transfection. The cell culture supernatants were filtered with a 0.45 µm filter and
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purified by ultracentrifugation. Transfected cells were lysed using lysis buffer. Levels of proteins
in cells and supernatants were measured using western blot. VLPs release levels were quantified
according to the method described in Statistical Analysis; Figure S2: Quantification of nuclear
and cytosol distribution of wild-type or L2/L3 mutanted BGag proteins. The amount of BGag
in nuclear or cytosol were normalized against the amount of their respective Histone or GAPDH
loading control. Corresponding band intensities were determined by Image J. The data are the
averages of three independent experiments. Compared with the wild-type (wt), * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001; Figure S3: Immunoprecipitation with HA antibody of HEK293T (4 × 106)
cells cotransfected with eukaryotic expression plasmids encoding 3HA-Alix or 3HA-Alix V498D
and 3Flag-BGag; Figure S4: Immunoprecipitation with HA antibody of HEK293T (4 × 106) cells
cotransfected with eukaryotic expression plasmids encoding 3HA-Tsg101 or 3HA-Tsg101 N69P and
3Flag-BGag.
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