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Abstract

Genome-scale metabolic network reconstructions (GENREs) are valuable tools for under-

standing microbial metabolism. The process of automatically generating GENREs includes

identifying metabolic reactions supported by sufficient genomic evidence to generate a draft

metabolic network. The draft GENRE is then gapfilled with additional reactions in order to

recapitulate specific growth phenotypes as indicated with associated experimental data.

Previous methods have implemented absolute mapping thresholds for the reactions auto-

matically included in draft GENREs; however, there is growing evidence that integrating

annotation evidence in a continuous form can improve model accuracy. There is a need for

flexibility in the structure of GENREs to better account for uncertainty in biological data,

unknown regulatory mechanisms, and context-specificity associated with data inputs. To

address this issue, we present a novel method that provides a framework for quantifying

combined genomic, biochemical, and phenotypic evidence for each biochemical reaction

during automated GENRE construction. Our method, Constraint-based Analysis Yielding

reaction Usage across metabolic Networks (CANYUNs), generates accurate GENREs with

a quantitative metric for the cumulative evidence for each reaction included in the network.

The structuring of CANYUNs allows for the simultaneous integration of three data inputs

while maintaining all supporting evidence for biochemical reactions that may be active in an

organism. CANYUNs is designed to maximize the utility of experimental and annotation

datasets and to ultimately assist in the curation of the reference datasets used for the auto-

matic construction of metabolic networks. We validated CANYUNs by generating an E. coli

K-12 model and compared it to the manually curated reconstruction iML1515. Finally, we

demonstrated the use of CANYUNs to build a model by generating an E. coli Nissle

CANYUNs model using novel phenotypic data that we collected. This method may address

key challenges for the procedural construction of metabolic networks by leveraging uncer-

tainty and redundancy in biological data.
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Author summary

Genome-scale metabolic network reconstructions (GENREs) are a mathematical represen-

tation of the biochemical reactions that may occur in an organism. GENREs are built using

known biochemistry, organism-specific genetics, and other types of context-specific data.

There is a need for automated GENRE construction methods that better quantify uncer-

tainty in biological data and context-specific data inputs. To address this issue, we present a

novel method that provides a framework for quantifying combined genetic, biochemical,

and growth assay data for each biochemical reaction during the automated GENRE con-

struction process. Our method, Constraint-based Analysis Yielding reaction Usage across

metabolic Networks (CANYUNs), generates accurate GENREs with a quantitative metric

for the cumulative evidence that is associated with each reaction in the network. CANYUNs

is designed to maximize the utility of data inputs and to assist in the curation of the refer-

ence datasets used for the automatic construction of GENREs. We validated CANYUNs by

building an E. coli K-12 model and compared it to the manually curated reconstruction

iML1515. Finally, we demonstrated the use of CANYUNs to build a model by building an

E. coli Nissle CANYUNs model using novel growth assay data that we collected.

Introduction

Complex microbial communities play an important role in human physiology and environmen-

tal processes [1–7]. Genome-scale metabolic network reconstructions (GENREs) have been

shown to model the functional capabilities of microbes and their interactions in communities

[8–11]. A GENRE is a constraint-based model structure that enables the combination of various

forms of biological data to gain an improved mechanistic understanding of metabolism [12].

This form of modeling explicitly accounts for biochemical thermodynamics and stoichiometry

to represent the physical constraints that govern cellular metabolism. Methods used to generate

GENREs are progressively being automated to reduce time and resource requirements with the

goal of modeling the vast number of unique species and strains that reside in human-associated

microbiota [13–16]. However, there remains a need for advancements in the procedural genera-

tion of GENREs to improve the accounting of uncertainty in the source biological data.

The foundational data that procedurally generated GENREs are built upon is a universal bio-

chemical reaction network with associated reference genetic annotation data for sequence-to-

reaction mapping. When building an organism-specific GENRE, a genome is annotated with pre-

cise biochemical reactions. The annotation process typically involves a threshold of sequence

alignment that is used to determine if a sequence is similar enough to the reference sequence to

justify annotation with the associated biochemical function [17]. The data used to build GENREs

is incomplete and subject to uncertainty, necessitating gapfilling of the metabolic network gener-

ated via genetic data alone. Gapfilling is the process of adding biochemical reactions with low or

no genetic evidence to a GENRE based on functional phenotypic growth data and cellular bio-

mass synthesis requirements. The resulting accuracy of the curated GENRE is then calculated by

how well it recapitulates the phenotypic growth data utilized for training. There are additional

methods for further assessment of model quality involving other data types, such as gene essential-

ity data, and separate validation data [18]. Recent methods have demonstrated that utilizing gene

annotation alignment scores in a continuous way can help to improve gapfilling results [14,19].

A curated GENRE consists of a set of reactions that have biological evidence suggesting that

they are catalyzed by the organism. When a GENRE is procedurally generated, the remaining

error is commonly dominated by false growth calls; these errors indicate that these models
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over-predict the metabolic capabilities of an organism. Additionally, annotation alignment

scores, universal biochemical network source data, and annotation reference data are all often

left out from published GENREs [20,21]. Without the source sequence-to-reaction data used

to generate a GENRE, the reactions that are included in the curated GENRE lack explicit indi-

cation of what type of biological evidence was used to justify inclusion.

Phenotypic growth data used for gapfilling is not utilized as context specific data to contextual-

ize a GENRE. Growth data is typically used during gapfilling without accounting for the additional

regulatory machinery that may be acting on the metabolic system. Whereas, transcriptomics data

can be used to gain context specific insight into how metabolic flux might be routed in an

unknown growth condition [22–24]. We hypothesize that phenotypic growth data provides a simi-

lar type of context-specific data compared to transcriptomic data, yet it is utilized to build a meta-

bolic network rather than contextualize the existing universal metabolic network. From a

biological point of view, it is an over simplification of an organism-specific metabolic network to

ignore the existence of gene regulation, that suppresses gene expression, during the GENRE build-

ing process [25]. The practice of including all genetic data in the functional GENRE and then gap-

filling remaining essential reactions with phenotypic data results in an over-constrained

assessment of the biological system under investigation [14]. There is a need for additional flexibil-

ity in the structure of GENREs to better account for uncertainty in biological data, unknown regu-

latory mechanisms, and context-specificity associated with phenotypic growth data inputs.

In this study, we present a novel method for contextualizing a manually curated universal

metabolic network through the simultaneous integration of genetic annotation data and phe-

notypic growth data. Our method, Constraint-based Analysis Yielding reaction Usage across

metabolic Networks (CANYUNs), procedurally generates a GENRE by explicitly quantifying

the combined biological evidence for the inclusion of reactions in the resulting network.

CANYUNs utilizes a continuous weighting for each reaction in a curated universal metabolic

network to quantify the evidence provided by the biological data that is used during the recon-

struction process. Rather than gapfilling a draft network by leveraging phenotypic data,

CANYUNs determines the reactions required for computational growth in each known

growth condition separately to quantify the cumulative evidence for each reaction. The cumu-

lative evidence generated for each reaction during the CANYUNs training process is subse-

quently used to determine the reactions that are included in the final GENRE. The resulting

CANYUNs model consists of the universal metabolic network and associated reference anno-

tations, organism-specific genetic alignment scores, phenotypic growth data, and certainty val-

ues associated with each reaction included in the curated network.

Results

Constraint-based Analysis Yielding reaction Usage across metabolic

Networks (CANYUNs)

The model training process in CANYUNs is designed to capture and quantify the cumulative

experimental and genomic evidence for the inclusion of biochemical reactions in a procedur-

ally generated GENRE. CANYUNs simultaneously utilizes phenotypic growth data, genomic

annotation evidence, and universal biochemical network data making it distinct from existing

reconstruction methods that first reconstruct a draft metabolic network using genomic data

and then sequentially gapfill additional reactions to match model predictions with phenotypic

experimental data. CANYUNs maintains a direct connection with all annotation evidence

used during model building to help facilitate future model curation.

We built a curated universal biochemical network by combining the reactions from the

CarveMe universal network [14] and reactions from the manually curated E. coli K-12 model,
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iML1515 [26]. When metabolite formulas did not match, we used the iML1515 formulas to

maximize the number of mass-balanced reactions in the final universal network. For addi-

tional curation, we used an optimization method to check the network for generation of free-

mass (see Methods). In short, we created intracellular sink reactions for each intracellular

metabolite in the network and closed all exchange reactions to ensure the network did not

have access to any extracellular metabolites. We then maximized the sum of flux through all

sink reactions to identify any metabolites produced due to mass-imbalanced reactions or

mass-generating loops. We curated the universal network by manually removing reactions

that were contributing to free-mass generation. Using this optimization-based method, we

were able to more rigorously identify free-mass generation in the network compared to simply

checking each reaction for mass-balance. The universal metabolic network and a list of reac-

tions removed are available on GitHub (see Methods).

We utilized BLASTp to align the genome of the target organism with reference sequences

in the CarveMe sequence-to-reaction dataset. We used the sequence alignment bitscores for E.

coli K-12 genes and the CarveMe dataset to then generate reaction bitscores using the pub-

lished method [14]. We subsequently used a step-wise linear transformation to convert the

reaction bitscores to reaction weights that fall between -1 and 1 to use during linear optimiza-

tion and flux balance analysis. We developed a novel formulation of flux balance analysis

called, Data Guided Flux Balance Analysis (dgFBA) specifically for CANYUNs. This optimiza-

tion equation minimizes the sum of flux through all reactions with low or no genetic evidence

while simultaneously maximizing the sum of flux through all reactions with substantial genetic

evidence. The degree to which a reaction is minimized or maximized is linearly determined by

the reaction weights. During a dgFBA optimization, flux is required through the biomass reac-

tion to represent growth. Importantly, dgFBA allowed us to determine the flux-carrying reac-

tions (FCRs) in each experimental growth condition by setting the exchange reactions to

represent the specific growth media conditions. By tracking the FCRs for each growth condi-

tion, we were able to then calculate the ratio of growth conditions in which a reaction carries

flux and determine reaction Certainty Values (CVs) for each FCR indicating confidence in the

presence of each biochemical function in the target organism.

In the final stage, all flux-carrying reactions across the experimental growth conditions are

used to generate an organism-specific CANYUNs model (Fig 1A). The resulting network is

processed further by selectively removing a single reaction, or a small set of reactions, to fur-

ther improve the overall accuracy of the model and adjust the type of error remaining. For vali-

dation of CANYUNs, we generated an automatic GENRE for E. coli K-12 leveraging

phenotypic nutrient utilization data obtained from EcoCyc and compared it to iML1515

[26–28].

Data guided flux balance analysis

The reaction bitscores for E. coli K-12 were calculated directly from BLASTp sequence align-

ment bitscores using a previously published method [14]. One third of reactions in the univer-

sal network have a bitscore of 0 and the rest range from 1 to 2,500 (Fig 2A). A typical bitscore

threshold for assigning a reference enzymatic metabolic function to the query sequence(s) is

between 200 and 500 [29–31]. The level of confidence in a functional call increases with the

value of the bitscore, yet small changes in a sequence can result in large functional changes.

Bitscores below the threshold also contribute information about the protein in question, values

that are just shy of the threshold may still have the same function as the reference protein;

however, scores that fall far short of the threshold suggest that the protein in question does not

have the function of the reference.
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We designed dgFBA to account for some of the uncertainty inherent in setting a threshold

for assigning function to a given protein by utilizing reaction weights that are a function of the

reaction bitscores. The reaction weights influence the reactions that carry flux in the optimiza-

tion solution. Genomic annotation data must be transformed to a range of values that are com-

patible with dgFBA. The transformation function used in this study is graphically displayed in

Fig 2B. This function can be adjusted based on the user’s preferences. In this study we selected a

bitscore threshold of 500 based on a sensitivity analysis that demonstrated that model accuracy

was insensitive to values between 200 and 500 (Fig 2B). The resulting reaction weights are more

evenly distributed between -1 and 1 with the high bitscore reactions all receiving a weighting of 1

and the reactions without bitscores all receiving a weighting of -1 (Fig 2C and 2D).

FCRs in a dgFBA solution are a result of complex interactions among the reaction weight

values, media condition, and flux demands (i.e. biomass). Flux is maximized through reactions

with a bitscore above 500 and minimized through reactions below 500. However, the degree of

maximization and minimization depend upon the value of the bitscore. The low evidence reac-

tions that are included in the final flux solution are likely essential for flux through biomass

Fig 1. The CANYUNs pipeline integrates biochemical, phenotypic, and genomic data to quantitatively identify reactions that are

likely catalyzed by an organism. (A) Genomic annotation data and phenotypic growth data for a specific organism are used to influence

the flux distribution through a curated universal biochemical network to build an organism-specific metabolic network model. Parallel

growth simulations using Data Guided Flux Balance Analysis for each known experimental growth condition allows for a model building

process that is not influenced by the order in which growth conditions are integrated. This process allows for the explicit quantification of

reaction Certainty Values, determined by the ratio of times a reaction carries flux across all of the condition-specific solutions to the total

number of conditions. (B) The universal biochemical network used in this study consists of reactions from the CarveMe dataset as well as

novel reactions added from the manually curated E. coli metabolic network, iML1515. (C) The phenotypic data used in this study includes

Biolog minimal media growth data from ~275 different conditions. (D) The sequence-to-reaction dataset used to calculate reaction

annotation evidence consists of over 4,000 reactions with 1 to 800 sequences associated with each reaction. (E) The distribution of reaction

bitscores for E. coli K-12 shows that there are reactions in the universal network with high evidence that are not included in iML1515.

There are also many reactions with low evidence that are not included in iML1515, as expected. The annotation evidence generated for E.

coli K-12 shows that there are 1,460 reactions in the universal biochemical network that have no genetic evidence associated with them (left

of the dashed orange line), 260 of these reactions are in iML1515 and 1,200 of them are not.

https://doi.org/10.1371/journal.pcbi.1009341.g001
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and can be thought of as gapfilled reactions that maintain their genomic annotation evidence

(Fig 2E and 2F). Utilizing the reaction bitscores in this way allows for additional flexibility

with reactions near the bitscore threshold of 500 where the reaction weight is equal to zero.

Reactions with weights near zero are much less impacted by the dgFBA objective function and

therefore are influenced far greater by thermodynamic requirements.

Data Guided Flux Balance Analysis can be compared to parsimonious enzyme usage flux

balance analysis (pFBA) to demonstrate how flux through the network changes with additional

layers of information. The objective of pFBA is to uniformly minimize the sum of flux across

all reactions, while maintaining flux through the biomass reaction [32]. Since dgFBA maxi-

mizes the weighted flux through reactions with genetic evidence the flux distribution is consis-

tently different from the pFBA flux distribution. However, the two optimization problems

remain similar because the majority of reactions in the universal network do not have genetic

evidence and are thus minimized in a dgFBA problem, just as they are in a pFBA problem.

The flux distribution generated using dgFBA does not represent what the biological flux might

be; it is utilized in a binary way to determine which reactions carry flux and which do not. We

compared dgFBA to pFBA to quantify how much impact the genetic data has on the flux distri-

bution for each solution and thus the difference in the set of reactions that are required to

carry non-zero flux for simulated growth. We generated a separate pFBA and dgFBA flux solu-

tion for each known E. coli K-12 growth condition. We used two metrics to verify that dgFBA

results in more FCRs, while also increasing the number of reactions that have associated anno-

tation evidence (Fig 3A and 3B). We found that across all 199 growth conditions, the average

Fig 2. Data Guided Flux Balance Analysis. (A) Distribution of reaction bitscores for E. coli K-12. (B) This figure is a visual representation of

the transformation function for calculating the reaction weights based on reaction bitscores. The reaction bitscore of 500 corresponds with zero

in the weight space. (C) Distribution of the calculated weights for forward reactions. (D) The distribution of weights for reverse reactions shows

that there are far fewer reactions that allow flux in both directions or only in the reverse direction. (E) Data Guided Flux Balance Analysis

optimization problem. Reactions with a positive weight are maximized and reactions with a negative weight are minimized proportional to the

value of the weight. (F) Toy network example demonstrating the flux-carrying reactions that would result from the pictured annotation

evidence distribution and media inputs.

https://doi.org/10.1371/journal.pcbi.1009341.g002
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number of FCRs for dgFBA was 305, which was 45 reactions greater than the average for pFBA

solutions. We expected dgFBA to identify less parsimonious solutions than pFBA due to the

influence imparted on the solution from the annotation evidence. It is important to note that

the number of FCRs for the dgFBA solution in a single condition was always greater than the

number of FCRs in the corresponding pFBA solution by at least 10 FCRs. A second important

verification was to ensure that dgFBA also identifies solutions that contain a greater propor-

tion of FCRs that have associated annotation evidence. We found that the average number of

FCRs with annotation evidence greater than or equal to our reaction bitscore threshold of 500

in dgFBA solutions was nearly 20% greater than the pFBA solutions.

To determine the FCRs across all of the known growth conditions, we generated rarefaction

curves each consisting of 10,000 samples to measure the full distribution of unique permuta-

tions of growth conditions that could be used to generate the GENRE. The x-axis displays the

number of growth conditions used to calculate the total number of unique FCRs found (Fig

3C). The shaded regions show the minimum and maximum values sampled for each number

of conditions included. The small range between the minimum and maximum indicates that

there is minimal advantage to optimizing for the minimum number of growth conditions that

provide the maximum training value. Each individual growth condition adds unique reactions

Fig 3. Data Guided Flux Balance Analysis breaks parsimony and identifies fewer unique reactions required for

simulated growth on all experimental growth conditions for E. coli K-12. (A) The number of FCRs in each growth

condition is visualized for pFBA and dgFBA to quantify the degree to which dgFBA breaks parsimony. (B) The

number of reactions with bitscores above 500 that carry flux in a dgFBA solution is greater than the number in a pFBA

solution. (C) The cumulative number of unique FCRs identified by dgFBA is fewer than pFBA. The complete range in

number of unique FCRs is indicated by the shaded regions.

https://doi.org/10.1371/journal.pcbi.1009341.g003
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to the cumulative set of unique FCRs. However, the asymptotic shape of the average curves

indicates that the total number of valuable unique minimal growth conditions may not be far

beyond 200 conditions. The number of unique FCRs identified by dgFBA across all growth

conditions is fewer than pFBA, indicating that there is a core set of FCRs with genetic evidence

that dgFBA preferentially identifies over pFBA (Fig 3C). These data indicate that dgFBA per-

forms as intended; reactions with genetic evidence preferentially carry flux even when there is

a more parsimonious path which results in a diversion of flux away from extraneous reactions

that are more parsimonious but lack sufficient genetic evidence.

Certainty values determine the reactions that are included in the

CANYUNs Model for E. coli K-12

The CANYUNs pipeline involves generating a dgFBA solution for each of the known growth

conditions using the curated universal metabolic network. During the process of recording the

FCRs for each condition, the directionality of each flux value is used to specifically determine

the cumulative evidence for each reaction specific to direction. We calculated a reaction cer-

tainty value for each reaction in the universal metabolic network based on the set of FCRs

from each growth condition. The Certainty Value (CV) for a reaction is the ratio of the num-

ber of times the reaction carries flux in the known growth conditions over the total number of

known growth conditions. A CV indicates the cumulative experimental evidence for the pres-

ence of the biochemical function in an organism-specific metabolic network. Using the E. coli
K-12 genome and phenome, we calculated 690 reactions with CVs greater than zero in the for-

ward direction (Fig 4A), and 127 reactions with CVs greater than zero in the reverse direction

(Fig 4B). There are 46 FCRs that were found to have both forward and reverse reaction CVs

(Fig 4C).

We built an E. coli K-12 specific GENRE that consists of the reactions identified to have

CVs greater than zero, including only the reaction directionalities specifically with CVs.

Reversible reactions that receive a CV above zero in only one direction were set to only

allow flux in that direction. Reactions that have genetic evidence, but have CVs of zero are

not included in the CANYUNs model. We simulated growth in each of the known growth

conditions using the resulting CANYUNs model to determine the baseline performance.

The draft CANYUNs model, at this point, had an overall accuracy of 80% with a strong

bias toward false positive growth calls (Fig 4D). To improve the model accuracy, we calcu-

lated the conditionally essential reactions for each of the conditions predicted to allow for

growth, including false growth predictions. A comparison across the sets of conditionally

essential reactions revealed reactions that, when removed, would provide a net benefit for

improving the overall accuracy of the adjusted model. We identified that with the removal

of a single reaction, RuBisCO, the number of false positives was reduced by 38 conditions

and the number of true positives was only decreased by 7 conditions. RuBisCO was manu-

ally selected for removal because it had the maximum net benefit of 31 conditions and the

least annotation evidence. All of the other candidate reactions for removal are plotted

based on their net benefit to accuracy upon removal versus their annotation evidence

value (Fig 4E). This process could be repeated for further alteration of the model.

Although RuBisCO is an obvious reaction that should not have been included in the uni-

versal metabolic network for microbial systems, due to its involvement with photosynthe-

sis; this result demonstrates that there are reactions that may require manual removal

from the universal metabolic network based on additional biological knowledge aside

from a lack of annotation evidence or contribution to mass-generating loops. However,
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CANYUNs allowed for rapid identification of reactions that may be improperly included

during the process of procedural generation of a CANYUNs model.

CANYUNs more accurately recapitulates phenotypic data

The final E. coli K-12 model from the CANYUNs pipeline can be compared with two automat-

ically generated models using CarveMe and the manually curated model iML1515 to bench-

mark and validate its performance. Using the same input biochemical and genetic data as the

Fig 4. E. coli K-12 CANYUNs model generation and draft processing. (A) Ranked scatter plot of forward reaction

Certainty Values. (B) Reverse reaction Certainty Values. (C) Certainty values for reversible reactions that carry flux in

both directions. (D) Initial accuracy of CANYUNs model before curation of the universal biochemical network is 80%

with a Matthews Correlation Coefficient of 0.45. (E) Simulation of conditionally essential reactions allow for the user

to identify reactions that can be selectively removed from the resulting model that improve the overall predictive

accuracy. The net benefit refers to the number of false positives that will be corrected minus the number of true

positives lost due to removing a given reaction. RuBisCO is the forward reaction in the top left corner of the plot with

maximum net benefit and minimum genetic evidence.

https://doi.org/10.1371/journal.pcbi.1009341.g004
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CANYUNs model, we generated a CarveMe model without using phenotypic data to establish

how subsequent gapfilling impacts the model accuracy (Fig 5A). The gapfilled CarveMe model

that we generated had an overall accuracy of 76%, a 24% improvement over the untrained

model (Fig 5B). The training process results in nearly all of the false negative predictions being

corrected, as can be expected. The manually curated reconstruction, iML1515, was not specifi-

cally curated for all of the known growth conditions used to train the CarveMe model and the

CANYUNs model, but it remains a valuable point of comparison as the best representation of

E. coli K-12 metabolism that is currently available. Our E. coli K-12 CANYUNs model shows

the highest overall accuracy, while maintaining a balance in type 1 and type 2 error. The dis-

tinction between false positives and false negatives is notable because false negatives represent

an opportunity to selectively add organism-specific reactions to the universal model that

directly corrects the issue. However, correcting false positive errors involves finding reactions

to remove or adjust that result in minimal negative impacts to the rest of the network.

CANYUNs provides a method for selectively adjusting the balance of error based on user pref-

erences during the construction of the GENRE.

CANYUNs more accurately identifies the reactions present in iML1515

It is possible to generate a CANYUNs model using pFBA instead of dgFBA; in this case no

genetic data is incorporated to influence the flux distribution of the solution for each growth

Fig 5. The E. coli CANYUNs Model performs better than iML1515 and CarveMe when simulating growth on all known phenotypic data. (A)

The CarveMe model without gapfilling has a base accuracy of 52% and a Matthews Correlation Coefficient (MCC) of 0.09. (B) The CarveMe

model we trained using all of the phenotypic data performs with an accuracy of 76% and an MCC of 0.29. However, there is a strong bias toward

false positive predictions. (C) The manually curated E. coli K-12 model, iML1515, was not trained using all of the growth conditions. However, it

performs with 75% accuracy and an MCC of 0.40 while maintaining a relatively even split between false positive predictions and false negative

predictions. (D) The CANYUNs model we generated performs with 92% accuracy and an MCC of 0.78. The increased accuracy is primarily due

to an improvement in true negative prediction rate.

https://doi.org/10.1371/journal.pcbi.1009341.g005
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condition. The most parsimonious solution is determined for each condition when using

pFBA. In doing so, we are able to establish a more precise understanding of how the inclusion

of genetic annotation evidence impacts the discovery of reactions when compared to the man-

ually curated E. coli K-12 model, iML1515. We did not expect the CANYUNs reactions to

align perfectly with iML1515 since the manual curation process did not include all of the

growth conditions used to train the CANYUNs model. However, since the sequence-to-reac-

tion dataset used to generate annotation evidence does not include all of the sequences used to

build iML1515, we were able to track the FCRs that CANYUNs identifies without annotation

evidence, yet are confirmed to be E. coli K-12 reactions by the iML1515 model. The ‘Likely

additions’ category (Fig 6A and 6B) represents a set of reactions from the CANYUNs model

with high genetic annotation evidence (bitscore above 500) that are not present in iML1515

and cannot be validated using this comparison, but they may represent reactions that could be

added to iML1515 to improve alignment with the phenotypic data. We demonstrate that the

dgFBA CANYUNs model has 12% greater alignment with iML1515 at the reaction level, com-

pared to the pFBA CANYUNs model (Fig 6C). The discovery accuracy is calculated as the

Fig 6. CANYUNs reaction Certainty Values accurately identify reactions found in iML1515. The manually curated

metabolic network, iML1515, provides a point of comparison to determine if CANYUNs accurately identifies

reactions for inclusion in the network. (A) By comparing the CANYUNs model with iML1515, we were able to place

reactions into four categories. FCRs with genetic evidence and in iML1515 (confirmed), FCRs without genetic

evidence in iML1515 (true discovered), FCRs with genetic evidence not in iML1515 (likely additions), and FCRs

without genetic evidence and not in iML1515 (false discovered). The total amount of genetic evidence that is used to

generate a CANYUNs model influences the accuracy of the FCRs. (B) When we use pFBA instead of dgFBA in the

CANYUNs pipeline, there are far more reactions that lack genetic evidence and are not in iML1515. (C) The percent

overlap of FCRs with reactions present in iML1515 increases from 62% when no genetic evidence is used (pFBA) to

76% overlap when all of the available genetic evidence is used.

https://doi.org/10.1371/journal.pcbi.1009341.g006
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number of FCRs that are identified by CANYUNs while lacking sufficient annotation evidence

yet that were included in the iML1515 model. The dgFBA CANYUNs model has a discovery

accuracy of 62%, 24% greater than the pFBA CANYUNs model. CANYUNs accurately identi-

fies reactions that should be included in the E. coli K-12 metabolic network validated by the

most recent manually curated reconstruction, iML1515.

A further analysis of the reaction CVs demonstrates that the accuracy of reaction inclusion

in a CANYUNs model correlates positively with the magnitude of the reaction CV (Fig 7A and

7B). The percent overlap with iML1515 improves rapidly when the bottom 30 reactions with

the lowest certainty values are ignored (Fig 7A and 7C). Overall, dgFBA provides a noticeable

benefit over pFBA; however, there is a set of about 50 core reactions that are accurately identi-

fied with both optimization methods (Fig 7). We found that dgFBA strongly outperforms

pFBA and CarveMe when evaluating the discovery accuracy. The performance of CANYUNs

is in part explained by the reduced total number of discovered reactions compared to Car-

veMe. That number represents a significant advance when considering the process of manually

validating the reactions with insufficient annotation evidence by searching for the appropriate

gene-protein rule to add to the sequence-to-reaction dataset.

CANYUNs model for the probiotic strain: E. coli Nissle

We built a novel model of the E. coli Nissle metabolic network to demonstrate the application of

CANYUNs and to provide an example representation of a CANYUNs model with all accompa-

nying source data. Nissle is a probiotic strain that has demonstrated measurable impacts on colo-

nization resistance against human gastrointestinal pathogens [33–35]. Additionally, it is

important to note that several studies demonstrate that the metabolism of Nissle is phenotypi-

cally different from K-12. We generated novel phenotypic growth data for E. coli Nissle using

Biolog Phenotype MicroArray 96-well growth plates. We performed growth assays for the car-

bon source plates, PM1 and PM2A, in both aerobic and anaerobic growth conditions. We found

that the metabolic consumption profile of Nissle is 9% different from K-12 (Fig 8A and S1

Table). There are 25 media conditions in which Nissle and K-12 do not align out of a total of

285. Nissle is able to grow in 16 conditions in which K-12 is not; in the other 9 conditions K-12

grows when Nissle does not. All inconclusive results for K-12 were treated as no growth condi-

tions. Data for K-12 anaerobic growth in the PM2A plate does not exist on Ecocyc. All data is

displayed in the Supporting Information (S1 and S2 Figs and S1 Table).

We generated a CANYUNs model using the same input biochemical network data discussed

in Fig 1, while utilizing Nissle specific annotation evidence and our set of phenotypic growth

experiments from culturing Nissle. The final model that we generated recapitulated the pheno-

typic growth data with an overall accuracy of 92%, with no false positive error (Fig 8B). There

are 18 false negative conditions that could be fixed by manually adding organism-specific reac-

tions to the model via expansion of the sequence-to-reaction dataset. There were 466 reactions

that received CVs and had high genetic evidence, indicating that they are likely to be actively cat-

alyzed by Nissle during exponential growth. Additionally, in the process of building the Nissle

model, we identified 176 reactions that have low genetic evidence, yet were included in the

model with CVs greater than zero (Fig 8C). These reactions represent those that may benefit

from manual improvements to the sequence-to-reaction dataset to incorporate reference

sequences that will better align with Nissle genes. There were an additional 5 spontaneous reac-

tions included. The 1280 reactions that have genetic evidence in the Nissle genome, but are not

included in the set of CANYUNs model reactions represent reactions that were not required for

growth in any of the known growth conditions we utilized for building this model (Fig 8C). We

assessed CVs associated with the 176 low evidence reactions to determine their rank of
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Fig 7. Reaction Certainty Values correlate with accurate reaction inclusion and comparison with CarveMe. (A)

The percentage of reactions identified by CANYUNs that align with the iML1515 model correlates with the associated

certainty value. All reactions with a certainty value greater than or equal to 0.99 have a 94% chance of being in the

iML1515 model. (B) The accuracy of discovered reactions, with inclusion in iML1515 as reference, increases with the

certainty values assigned using CANYUNs. (C) Although the accuracy of the discovered reactions increases with the

certainty value, there is a significant drop in the number of reactions with the increase.

https://doi.org/10.1371/journal.pcbi.1009341.g007
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importance for future curation of the datasets used to generate this model. There were 65 reac-

tions within the set that have no reference sequences and thus have unknown genetic evidence

(Fig 8D). Finally, there were 103 reactions that had both low genetic evidence and CVs greater

than zero (Fig 8E). The reactions with bitscores closer to 500 and high CVs have high cumulative

evidence indicating that they should be assessed further to determine the appropriate reference

sequences that should be added to the sequence-to-reaction dataset used to generate this model.

Discussion

Introduced here is a procedural metabolic network model construction method for the genera-

tion of CANYUNs models that accurately recapitulate phenotypic training data and select

Fig 8. E. coli Nissle Model. (A) Phenotypic data used to build the model. (B) The final accuracy of the model is 92% with no false positive

predictions. The model has an MCC of 0.83. (C) From the Universal Network, 1,746 reactions have Nissle specific genetic evidence associated

with them; of those, there are 466 reactions that receive CVs from the CANYUNs pipeline. There are 176 reactions that do not have Nissle-

specific genetic evidence, yet receive CVs and are thus included in the final CANYUNs model for Nissle. (D) These reactions received

certainty values, but do not have associated genetic evidence; they are candidates for manually finding sequences to add to the reference

dataset. (E) There is also a set of 103 reactions with CVs and low bitscores (below 500). Reactions with a high Certainty Value and a bitscore

above 200 are likely candidates for direct additions to the sequence-to-reaction dataset.

https://doi.org/10.1371/journal.pcbi.1009341.g008
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appropriate reactions to represent the biochemical capabilities of a target organism.

CANYUNs leverages a novel form of FBA, dgFBA, to direct flux through the universal meta-

bolic network during model building and curation resulting in a GENRE that is structurally

different from manually curated GENREs. Cumulative evidence for inclusion of a given reac-

tion in a CANYUNs model is explicitly quantified during the network model construction

process. Existing methods rely heavily on genetic data to estimate the metabolic capabilities of

an organism. CANYUNs fills a separate niche; it produces procedurally generated GENREs

that include functional data such as phenotypic growth data as an integral step in the curation

protocol. Maintaining a strong connection with all source data allows CANYUNs to guard

against information loss that can occur. Most importantly, a core objective of CANYUNs is to

leverage the uncertainty innate to the biological data used during the reconstruction process to

generate a GENRE built upon continuous data inputs. This aspect of CANYUNs models dif-

fers from the presence or absence of reactions in other GENREs. The structure of CANYUNs

models allows for the uncertainty across biological data to be managed via redundancy. Each

type of data provides various benefits while mitigating associated error.

With some exceptions, GENREs are frequently referred to in the literature as either a meta-

bolic network reconstruction or a metabolic network model depending upon the context in

which it is utilized. CANYUNs formalizes a structure that highlights the important differences

between a network reconstruction and a model. Through this lens, a CANYUNs model can be

viewed as a network reconstruction when including all of the evidence and data that is utilized

(sequence-to-reaction dataset, universal metabolic network, phenotypic growth data, and the

genetic evidence). Whereas, a CANYUNs model can be viewed and treated as a model when

simulating flux through only the reactions that have non-zero CVs. The conceptual framework

underlying this distinction is grounded in the idea that phenotypic growth data should be uti-

lized to contextualize the genetic and biochemical data, rather than determine the absolute

inclusion or exclusion of reactions from a GENRE. By accepting that an organism-specific

GENRE is simply a contextualized version of the underlying universal metabolic network,

there is additional flexibility that can be leveraged for future curation of the GENRE with addi-

tional biological data or expansion of the source data. This concept is a core difference between

CANYUNs and other methods for generating metabolic models or GENREs.

The technical characteristics that make CANYUNs unique from other methods revolve

around a consistent connection to source data and management of associated uncertainty in

the source data. CANYUNs models are structured to facilitate future curation by ensuring that

all source data is an integral part of the model. As seen in Fig 8C, a CANYUNs model when

viewed as a GENRE consists of four classifications of reactions: Universal biochemical reac-

tions, reactions with genetic evidence and no CV (Certainty Value), reactions with genetic evi-

dence and a CV, and reactions with a CV and no genetic evidence. Each class of reaction has

an associated continuous spectrum that indicates how much evidence has contributed to the

reaction being in that class. Universal biochemical reactions have a spectrum of reference

sequences (Fig 1D). Reactions with only genetic evidence have the reaction bitscore which is

positioned on a continuous spectrum. Reactions with only a CV have the magnitude of the CV

that represents the cumulative phenotypic and biochemical evidence associated with the reac-

tion. Finally, reactions with a CV and genetic evidence have the most complex array of associ-

ated evidence including: genetic, phenotypic, and biochemical.

Procedural generation methods benefit from existing manually curated GENREs via their

contribution to the universal biochemical network and the associated sequence-to-reaction ref-

erence dataset. Manually curated versions of foundational data provide the base on which proce-

dural generation methods can be built upon. It has been shown that procedurally generated

GENREs benefit from manually curated data inputs [14]. For example, ensuring that all
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reactions in the universal biochemical network are mass-balanced and that there are no mass-

generating loops in the network reduces the need for additional curation of the resulting GEN-

REs [14,36]. The high specificity required for the annotation of metabolic enzymatic function

with accompanying thermodynamic and stoichiometric directionality is relatively unique to

GENREs and thus a limiting factor in the building process. Reaction directionality is a simple,

yet important aspect of curating GENREs. Often sequence annotation databases do not include

specific information about reaction directionality. Directionality can become particularly impor-

tant when a reaction is thermodynamically unfavorable in a certain direction. Improper direc-

tionality assignments can lead to free mass-generation and improper assignment of catalytic

function. The CANYUNs method provides a way to quantify reaction evidence specific to direc-

tionality by calculating CVs specific to the direction of the flux through reactions. This level of

specificity provides more control over the behavior of an organism-specific network.

Genetic data is the base on which GENREs are built, yet not all genetic information is

required to represent the metabolic network for an organism. Due to gene regulation and

other aspects of metabolic control that are exceptionally challenging to incorporate into a

GENRE, it is important to keep in mind that genetic data, with all associated uncertainties, is

simply an imperfect lens through which an organism-specific model can begin to take shape.

Functional phenotypic data, when paired with a stoichiometrically accurate universal meta-

bolic network, provides information for contextualizing the underlying genetic data. This con-

ceptual framework provides the flexibility required for passively allowing unknown gene

regulation across differing growth conditions to influence the building process. The core

assumption in this conceptual model is that thermodynamic efficiency, both stoichiometric

and enzymatic, is the primary governing objective at the cellular level. This objective is techni-

cally achieved during the prediction of growth by utilizing only the reactions with CVs for flux

balance analysis. All other reactions with genetic evidence alone did not demonstrate their

activity during the training of the model and are thus not active for growth predictions.

CANYUNs has several limitations that are important to understand. The set of reactions

included in a CANYUNs model only includes the reactions that receive CVs as a result of uti-

lizing dgFBA to simulate growth in each known growth condition. Therefore, the resulting

network is best thought of as a contextualized model based on all of the known growth condi-

tions. A result of this model building process is a small network of reactions that have high

genetic evidence and allow for high accuracy when recapitulating the phenotypic data utilized

for building the model. Given the nature of a CANYUNs model, it is not designed to make

predictions about growth in unknown conditions, rather it is designed to provide an accurate

representation of the reactions that carry flux in the known growth conditions. Another limita-

tion that currently exists is the use of binary growth data, CANYUNs would benefit from

expanding the pipeline to incorporate exponential growth rates associated with each growth

condition. Finally, CANYUNs relies on BLAST, a slow alignment method, for generating the

reaction bitscores. In order to apply CANYUNs to much larger datasets, a more efficient align-

ment tool would be required.

A core focus of this study was the need for better curation of source data used for procedur-

ally generated GENREs. Curation of these datasets is far more useful for future model genera-

tion, opposed to the curation of specific models. The curation of specific models, separate

from the source datasets, can result in thermodynamic inconsistences among models that

make it difficult to simulate metabolic interactions. This method lays the groundwork for

data-driven expansion of the sequence-to-reaction dataset by quantifying phenotypic evidence

for the addition of sequences that are slightly below the functional bitscore threshold (set to

500 in this study) to the sequence-to-reaction dataset. Thus, phenotypic data could be utilized

through CANYUNs to systematically expand the sequence-to-reaction dataset and help to
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annotate other genomes. With enough phenotypic data from an array of organisms, it would

be possible to conservatively expand the reference dataset to propagate well-defined functional

annotations to many more sequences and thus expand the ability to generate accurate models

across a wide array of organisms. Additionally, CANYUNs models optimize for false negative

predictions, thus specifically identifying areas of the universal biochemical network that

require the manual addition of reactions. CANYUNs provides solutions for several challenges

in expanding genome-scale metabolic network reconstructions to model the vast array of

microbes that exist in human-associated microbial communities.

Methods

Universal metabolic network curation

We started with the CarveMe universal model and added any new reactions from iML1515 to

make the universal metabolic network. Any metabolites with multiple formulas were altered to

maintain only the metabolite formula used in the iML1515 model. Metabolites with multiple

formulas that are not in the iML1515 model were adjusted based on stoichiometric consistency

across all reactions. The final universal metabolic network is available on Github.

We utilized the following optimization problem to determine if the universal metabolic net-

work contained any thermodynamically infeasible mass generation. The problem maximizes

flux through a set of sink reactions that allow flux to leave the system from within the cellular or

periplasm compartment. No metabolites are allowed to enter the system through exchange reac-

tions. This basic formulation of FBA provides an output of all reactions that are able to carry flux

when no external metabolites are provided. The simultaneous maximization of flux through all

sink reactions allows for a thorough evaluation of all possible mass generating loops.

Optimization problem for free mass generation check

Maximize :
P

vsnk⃑

subject to

S � v⃑ ¼ 0

LB⃑ � v⃑ � UB⃑

0⃑ � vsnk⃑ � 1000
⃑

0⃑ � vex⃑ � 0⃑

vsnk⃑ ¼ Sink rxn flux vector

S ¼ stoichiometric matrix

v⃑ ¼ intracellular f lux vector

LB⃑ ¼ lower bound vector

UB⃑ ¼ upper bound vector

vex⃑ ¼ exchange rxn flux vector

Data guided flux balance analysis

Data Guided Flux Balance Analysis is formulated in Fig 2. In the presented formulation the

total sum of weighted flux through all reactions is maximized. The reactions are weighted

based on the associated genetic evidence. Reactions with greater evidence have a higher reac-

tion weight and are thus more likely to carry flux in the final solution. All reversible reactions

are represented as two opposing reactions and the net flux is calculated to determine the flux

value associated with the reversible reaction. This formulation of dgFBA is a linear
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optimization problem, unlike the similar problem presented in the CarveMe publication

which is a mixed integer linear program (MILP) [14]. Although not the driving reason for

developing dgFBA, the fact that it is an LP allows for the solution to theoretically be solved

faster than a MILP with the same number of variables. A key advantage of dgFBA is that it

allows for the calculation of certainty values that can then be utilized in the rest of the

CANYUNs pipeline to quantify cumulative evidence for the inclusion of reactions in an organ-

ism specific model. However, an important limitation of dgFBA is that the resulting flux distri-

bution is not representative of actual biological flux that may be present in a given growth

condition. A separate FBA problem must be solved in order to calculate a flux distribution that

can be compared to experimentally-measured biological flux in a metabolic network.

CANYUNs model building process

We utilized the sequence-to-reaction database provided in the CarveMe publication. We aligned

the unknown protein sequence fasta file with Diamond to calculate sequence alignment bitscores

for each protein [37]. We then calculated reaction bitscores for each reaction in the universal bio-

chemical network utilizing the CarveMe method. However, we did not normalize the bitscores,

as done previously [14]. For the CANYUNs model construction, the superset of all flux-carrying

reactions determined using dgFBA for each of the known growth conditions are utilized, while

excluding all other reactions from the model. A condition was considered to have simulated

growth when the flux through the biomass reactions, using FBA, resulted in a flux greater than

0.1. Reversible reactions are represented as two opposite reactions that can only proceed in the

forward direction; the sum of their opposing flux is then calculated to find the net flux through

the reversible reaction. We then calculate the ratio of times that each reaction carries flux across

all growth conditions to determine the certainty values for each reaction. Each reaction receives

two certainty values, one for each direction, the sum of these two values is never greater than 1.

We utilize all reactions with non-zero certainty values to build a draft CANYUNs model.

The draft model is processed to determine all of the conditionally essential reactions for

each of the draft model growth predictions (true and false positives). The reactions that are

conditionally essential for more false positives than true positives are reactions that can be

used to improve predictive accuracy. The reaction with the most leverage to improve model

predictions is removed from the CANYUNs model to create the final model. All reaction

bounds were set to zero, negative 1000, or positive 1000 for the CANYUNs model building

process. Reactions that never carried flux in the known growth conditions were removed from

the final CANYUNs model. The model building process requires roughly 30 minutes from

start to finish on an Intel Xeon processor with 4 cores. The resulting CANYUNs model was

assessed using MEMOTE to determine that it has 100% Stoichiometric Consistency.

CarveMe model generation

We utilized CarveMe in a Windows 10 command line to generate a base model without gap-

filling and a gapfilled model with all known growth conditions. All default parameters were

used [14]. The phenotypic growth data for E. coli K-12 was acquired from the EcoCyc database

(https://biocyc.org/ECOLI/NEW-IMAGE?object=Growth-Media). These data are also avail-

able on GitHub.

E. coli Nissle data collection and model generation

We cultured E. coli Nissle in Biolog plates and evaluated growth with a TECAN microplate

reader. Optical density measurements were performed using a 600-nanometer wavelength.

We used Biolog PM1 and PM2A plates. The cultures were started with an overnight culture in
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M9 4% glucose medium at 37 degrees Celsius from a single colony selection off an LB agar

plate. The cells were centrifuged and washed with PBS three times and finally resuspended and

diluted into the base Biolog inoculation fluid. The resulting OD of the Biolog inoculation fluid,

after dilution, was calculated to be 0.01 OD. When cultured anaerobically the OD of the plates

were measured at the end of 40 hours shaking in an anaerobic chamber. The baseline OD for

each well was determined by filling a plate with the base media alone. The OD of the aerobic

plates was measured every 10 minutes for the whole time-course with shaking.

We acquired the Nissle genome from EMBL. With this genome we implemented CANYUNs

to calculate CVs and build an organism-specific GENRE. The resulting CANYUNs model was

assessed using MEMOTE to determine that it has 100% Stoichiometric Consistency.

Supporting information

S1 Fig. E. coli Nissle PM1 Biolog Growth Data. There are 70 aerobic growth conditions and

34 anaerobic growth conditions. The x-axis is time in hours and the y-axis is OD measured at

600 nanometers.

(TIF)

S2 Fig. E. coli Nissle PM2A Biolog Growth Data. There are 22 aerobic growth conditions

and 9 anaerobic growth conditions. The x-axis is time in hours and the y-axis is OD measured

at 600 nanometers.

(TIF)

S1 Table. Difference in E. coli Nissle growth compared to E. coli K12. Anaerobic data for K-

12 growth in Biolog plate PM2A was not available on EcoCyc.
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multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic Acids Res.

2020 Jan 8; 48(D1):D402–6. https://doi.org/10.1093/nar/gkz1054 PMID: 31696234

PLOS COMPUTATIONAL BIOLOGY Quantifying cumulative evidence for procedural generation of GENREs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009341 February 7, 2022 20 / 21

https://doi.org/10.1016/j.cell.2012.01.035
http://www.ncbi.nlm.nih.gov/pubmed/22424233
https://doi.org/10.1089/jmf.2014.7000
https://doi.org/10.1089/jmf.2014.7000
http://www.ncbi.nlm.nih.gov/pubmed/25402818
https://doi.org/10.1016/j.ccell.2018.03.015
http://www.ncbi.nlm.nih.gov/pubmed/29634945
https://doi.org/10.1007/s13238-010-0093-z
http://www.ncbi.nlm.nih.gov/pubmed/21203913
https://doi.org/10.1126/science.1223813
http://www.ncbi.nlm.nih.gov/pubmed/22674330
https://doi.org/10.1126/science.1153213
http://www.ncbi.nlm.nih.gov/pubmed/18497287
https://doi.org/10.1038/nbt.3703
http://www.ncbi.nlm.nih.gov/pubmed/27893703
https://doi.org/10.1128/mSystems.00606-19
https://doi.org/10.1128/mSystems.00606-19
http://www.ncbi.nlm.nih.gov/pubmed/31964767
https://doi.org/10.1038/s41559-020-01353-4
https://doi.org/10.1038/s41559-020-01353-4
http://www.ncbi.nlm.nih.gov/pubmed/33398106
https://doi.org/10.1016/j.ymben.2020.08.013
http://www.ncbi.nlm.nih.gov/pubmed/32905861
https://doi.org/10.1038/nbt.1614
http://www.ncbi.nlm.nih.gov/pubmed/20212490
https://doi.org/10.1093/bioinformatics/btu321
http://www.ncbi.nlm.nih.gov/pubmed/24812336
https://doi.org/10.1093/nar/gky537
http://www.ncbi.nlm.nih.gov/pubmed/30192979
https://doi.org/10.1093/bioinformatics/btx185
http://www.ncbi.nlm.nih.gov/pubmed/28379466
https://doi.org/10.1093/nar/gkaa746
http://www.ncbi.nlm.nih.gov/pubmed/32986834
https://doi.org/10.1038/nprot.2009.203
http://www.ncbi.nlm.nih.gov/pubmed/20057383
https://doi.org/10.1371/journal.pcbi.1000308
http://www.ncbi.nlm.nih.gov/pubmed/19282964
https://doi.org/10.1093/bioinformatics/btx796
http://www.ncbi.nlm.nih.gov/pubmed/29267848
https://doi.org/10.1186/1471-2105-11-213
https://doi.org/10.1186/1471-2105-11-213
http://www.ncbi.nlm.nih.gov/pubmed/20426874
https://doi.org/10.1093/nar/gkz1054
http://www.ncbi.nlm.nih.gov/pubmed/31696234
https://doi.org/10.1371/journal.pcbi.1009341


22. Schmidt BJ, Ebrahim A, Metz TO, Adkins JN, Palsson BØ, Hyduke DR. GIM3E: condition-specific mod-

els of cellular metabolism developed from metabolomics and expression data. Bioinformatics. 2013

Nov 15; 29(22):2900–8. https://doi.org/10.1093/bioinformatics/btt493 PMID: 23975765

23. Jenior ML, Moutinho TJ Jr, Dougherty BV, Papin JA. Transcriptome-guided parsimonious flux analysis

improves predictions with metabolic networks in complex environments. PLOS Comput Biol. 2020 Apr

16; 16(4):e1007099. https://doi.org/10.1371/journal.pcbi.1007099 PMID: 32298268
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