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Summary

Antigen receptor gene rearrangement is directed by DNA motifs consisting of a conserved
heptamer and nonamer separated by a nonconserved spacer of either 12 or 23 base pairs (12 or
23 recombination signal sequences [RSS]). V(D)J recombination requires that the rearranging
DNA segments be flanked by RSSs of different spacer lengths, a phenomenon known as the
12/23 rule. Recent studies have shown that this restriction operates at the level of DNA cleav-
age, which is mediated by the products of the recombination activating genes RAG1 and
RAG2. Here, we show that RAG1 and RAG2 are not sufficient for 12/23 dependent cleav-
age, whereas RAG1 and RAG2 complemented with whole cell extract faithfully recapitulates
the 12/23 rule. In addition, HMG box containing proteins HMG1 and HMG2 enhance
RAG1- and RAG2-mediated cleavage of substrates containing 23 RSS but not of substrates
containing only 12 RSS. These results suggest the existence of a nucleoprotein complex at the

cleavage site, consisting of architectural, catalytic, and regulatory components.

Rearrangement of antigen receptor genes occurs via a
process known as V(D)J recombination, which can
be divided into two phases. The first part of the reaction
involves recognition and cleavage of the DNA, and the
second phase involves resolution and joining (1, 2). Recog-
nition and cleavage are mediated by the lymphoid-specific
RAG1 and RAG2 proteins, which are directed in cis by re-
combination signal sequences (RSSs)! (3-7). The RSSs
consist of well-conserved heptamer and nonamer motifs
separated by nonconserved spacers of 12 or 23 bp. V(D))
recombination only occurs between DNA elements that
are flanked by RSSs containing different spacers, a phenom-
enon known as the 12/23 rule (8, 9). In vivo and in vitro
studies have shown that the 12/23 rule is imposed during
the DNA cleavage reaction (10-12). However, the precise
molecular requirements for 12/23-restricted cleavage have
not yet been determined. Eastman et al. (10) found that un-
fractionated lymphoid cell extracts overexpressing RAG1
and RAG2 can mediate 12/23 regulated cleavage in vitro.
In contrast, van Gent et al. (12) showed only preferential

1Abbreviations used in this paper: HMG, high mobility group protein; IHF,
integration host factor; RSS, recombination signal sequences; WCE,
whole cell extract.
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cleavage of a 12/23 RSS substrate using purified recombi-
nant RAG1 and RAG2 proteins, suggesting that RAG1
and RAG2 alone may not be sufficient for strict adherence
to the 12/23 rule.

Cleavage of the RSS by RAG1 and RAG2 in the first
phase of the V(D)J recombination reaction results in the
production of signal and coding ends (3, 4). The signal ends
are blunt and 5’ phosphorylated, whereas coding ends are
hairpin-like structures that are generated by a transesterifi-
cation mechanism (3, 4, 13-17). In the second phase of the
V(D)J recombination reaction, the hairpin coding ends are
resolved and both signal and coding ends are joined to pro-
duce signal and coding joints.

A number of ubiquitously expressed DNA repair pro-
teins have been shown to play a role in the second step of
V(D)J recombination. These include XRCC4, Ku-80 anti-
gen, and the large catalytic subunit of DNA-dependent
protein kinase (product of scid) (1, 2, 18). Other ubiquitous
factors may also play a role in V(D)J rearrangement, includ-
ing DNA-bending proteins, which are used extensively in
prokaryotic recombination systems (for reviews see 19, 20).
In these reactions, DNA-bending proteins seem to play an
architectural role by bending DNA into conformations that
facilitate interactions between other proteins.

Here, we present experiments that explore the molecular
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requirements for the 12/23 rule. Our results indicate that
RAGL1 and RAG2 are required but not sufficient to regu-
late 12/23-dependent cleavage, and that other ubiquitously
expressed cellular factors cooperate with RAGs to establish
the 12/23 rule. DNA-bending proteins specifically enhance
RAG-mediated cleavage of substrates containing a 23 RSS,
but are unable to impose 12/23 restriction in vitro.

Materials and Methods

Tissue Culture and Transfection.  293T cells were plated on Corn-
ing 25020 plates and cultured at 37°C and 5% CO,, in DMEM
containing 10% heat-inactivated calf serum (GIBCO BRL, Gaith-
ersburg, MD) (21). After a minimum of three passages, cells were
transfected, at a confluency of 30%. The 293 cells were cotrans-
fected with core RAG1-GST fusion and core RAG2-GST fu-
sion constructs as described previously (22). 48 h after transfection,
cell monolayers were washed and harvested for extract prepara-
tion and protein purification.

Extract Preparation.  Extracts from 293T cells cotransfected
with core RAG1-GST and core RAG2-GST were made based
on a modification of the protocol described in Eastman et al. (10).
In brief, 4 ml pelleted cell volume was resuspended in 15 ml of
buffer G, consisting of 20 mM Hepes—-NaOH (pH 7.9), 20%
glycerol, 1.5 mM MgCl,, 300 mM NaCl, 0.2 mM EDTA, 0.5
mM DTT, 0.5 mM PMSF, and other protease inhibitors. Sam-
ples were freeze-thawed five times. After the freeze—thaw cycles,
the samples were allowed to extract on a rocking platform for 30
min at 4°C. Samples were centrifuged in a Beckman 50.2Ti rotor
at 35,000 rpm for 55 min at 4°C, in a Beckman XL-90 prepara-
tive ultracentrifuge. Supernatant was saved and ammonium sul-
fate was added to 75% saturation at 4°C. After equilibration, sam-
ples were centrifuged at 12,000 rpm for 20 min at 4°C, in a
Beckman J2-MI high speed centrifuge (JA-20 rotor). The ammo-
nium sulfate pellet was then resuspended in 10 ml of dialysis
buffer (pH 8.0), consisting of 100 mM NacCl, 20% glycerol, 50 .M
ZnSQ,, 25 mM Tris=HCI, 2 mM DTT, and 0.5 mM PMSF. The
samples were dialyzed in 12,000 mol/wt cutoff dialysis membrane
for 6-8 h, in 100X buffer volume, with three buffer changes.
The concentration of the dialyzed extracts was estimated to be 10
mg/ml.

Purification of Core RAG1-GST and Core RAG2-GST. 900 pl
of a 1:1 mix of glutathione beads (Molecular Probes, Oregon)
and dialysis buffer was added to 10 ml of dialyzed 293 whole cell
extract (WCE) containing coexpressed core RAG1-GST and
core RAG2-GST (R1/R2 WCE). After overnight incubation at
4°C, samples were centrifuged at 1,000 rpm in a Beckman GS-
6KR swinging bucket centrifuge. Glutathione beads were then
resuspended and washed in 5 ml of dialysis buffer. This process
was repeated 12 times. RAG1 and RAG2 proteins bound to the
glutathione beads were then eluted at 4°C in elution buffer con-
sisting of 300 mM NacCl, 20% glycerol, 50 WM ZnSO,, 25 mM
Tris-HCI (pH 8.2), 2mM DTT, 0.5 mM PMSF and 20 mM glu-
tathione, for 2 h. Samples were then centrifuged and eluted RAG
proteins were dialyzed. Protein samples were electrophoresed on
SDS-PAGE gels, and the concentrations of core RAG1-GST and
core RAG2-GST were determined to be 100 and 200 ng/p.l, re-
spectively.

Preparation of HMG1 and HMG2. HMG2 was prepared from
calf thymus by extraction with 0.35 M NaCl followed by chroma-
tography on Sephadex CM-25 (23). The purity of the protein was
assessed by electrophoresis in polyacrylamide gels as described (24).
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Natural human HMG1 was purified from HelLa cell nuclear
extracts (25) after chromatography over phosphocellulose (P11)
in buffer A (20 mM Tris—=HCI, pH 7.9, 0.1 mM EDTA, 20%
glycerol, 5 mM DTT) essentially as described (26). The 0.85 M
KCI eluate was dialyzed to 0.1 M KCI in buffer A and applied to
DEAE-cellulose (DE-52) column. The flow through and the 0.15
M KCI step eluates were pooled, dialyzed to 50 mM KCI in the
same buffer, and applied to a second DE-52 column. The column
was developed with a linear gradient (0.05-0.25 M KCI). Frac-
tions eluting between 0.075 and 0.12 M KCI were pooled, dia-
lyzed to 0.1 M KClI, and chromatographed over an FPLC MonoS
(Pharmacia, Piscataway, NJ) column, which was eluted with a
linear gradient (0.1-0.5 M KCI). Fractions eluting at 0.12-0.15
M KCI were virtually homogeneous in HMG1.

Histidine-tagged recombinant HMG1 was purified from a bac-
terial strain (BL21 DE pLysS) harboring the plasmid pET-HMG as
others (27). After lysis and chromatography over Ni-NTA resin,
the preparation was further enriched over S-Sepharose column.
Material eluting at 0.15 M KCI was employed for all studies.

Preparation of DNA Cleavage Substrate. ~ Recombination sub-
strates pJH290 12/23 (8), pJH290 12/12 were grown in XL-1
Blue cells (Stratagene, La Jolla, CA) and plasmid DNA was pre-
pared with a Qiagen (Chatsworth, CA) maxi-prep kit. pJH290 23/
23 deletion recombination substrate was constructed by digesting
parental pJH290 12/23 with Sall, releasing a 12-RSS-containing
fragment. Two annealed complementary oligonucleotides con-
taining a 23 RSS, oligo400, 5-TCGACCACAGTGGTAGTA-
CTCCACTGTCTGGCTGTACAAAAACCCTCGG-3'; and
0ligo401, 5'-TCGACCGAGGGTTTTTGTACAGCCAGACAG-
TGGAGTACTACCACTGTGG-3', were then ligated into the
digested parental plasmid, yielding a clone containing two 23
RSS, as determined by restriction endonuclease analysis. Clones
were then sequenced to confirm orientation. pJH290 23i (single
23 RSS) was generated by digesting parental pJH290 12/23 with
Sall, and self-ligating the resulting digested parental vector. All sub-
strates were then digested overnight with Sapl and Ncol (New
England Biolabs, Beverly, MA). The correct Ncol-Sapl fragment
was then gel-purified using agarose gel electrophoresis. pJH290
12/23, 12/12, 23/23, and 23i yielded RSS-containing fragments
of 1162, 1151, 1172, and 1123 bp, respectively. 50 ng of each
fragment was then double-labeled using exo~ Klenow (Strat-
agene, La Jolla, CA), and o-[*2P]JdCTP and «-[**P]dATP (Du-
Pont-NEN, Boston, MA). Labeled cleavage substrates, in a vol-
ume of 300 wl, were then purified using a Sephadex G50 column
(Pharmacia, Piscataway, NJ), and scintillation counting was per-
formed. ~40,000 cpm of each substrate was then used for each
cleavage reaction.

Cleavage Reactions. Cleavage reaction conditions were essen-
tially as described in Eastman et al. (10). The total volume of the
reaction was 50 p.l, consisting of copurified RAG1/RAG2 (1 or
2 wl), high mobility group 1 (HMG1) (0.3 or 0.6 wlat 1 pg/pl),
recombinant HMG as others (0.3 or 0.6 wl at 200 ng/p.l), HMG2
(1.0 or 2.0 pl at 100 ng/pl), integration host factor (IHF) (0.5 or
1.0 pl at 400 ng/wl), HU (0.5 or 1.0 wl at 1 pg/pl), untrans-
fected whole cell extract (0.2 wl), and RAG1/RAG2 coexpressed
whole cell extracts (1 or 2 pl), in various combinations. This vol-
ume was adjusted to 20 wl with dialysis buffer, and 30 wl of a
master mix containing 40,000 counts of cleavage substrate, NaAc,,
MgAc,, Na-Hepes, EGTA, dNTPs, and ATP was added. Final
concentrations were as follows: 150, 10, 25, and 1 mM, respec-
tively. After preincubaton on ice for 5 min, samples were incu-
bated at 37°C for 1 h. The reactions were terminated by the addi-
tion of 0.5% SDS and excess EDTA. Phenol—chloroform extractions
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Figure 1. Schematic represen-
tation of the DNA substrates
used in the cleavage assay (not
drawn to scale). 32P incorpora-
tion on the 5 and 3' ends of
each probe is indicated as aster-
isks. 12 and 23 recombination
signal sequences are shown as 12

RSS and 23 RSS, respectively.
Note that the 262-bp product
contains one 2P molecule and
the 571 bp has two 2P mole-
cules, resulting in a twofold

12 RSS 23 RSS

[ P CHHD — 12/23 substrate (1162 bp)
£ ' 23 <D ] cleavage at 12 RSS
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262 339 571 —J coupled 12/23 cleavage
C — 12/12 substrate (1151 bp)
D> @ED———————————  23/23 substrate (1172 bp)

: D> = 23i substrate (1123 bp)

were then followed by ethanol precipitation, and resuspension in
TE buffer. Samples were loaded and resolved on a 4.5% nonde-
naturing polyacrylamide gel. Quantitative analysis of the cleavage
assays was performed using a Storm phosphorimager and Im-
agequant software (Molecular Dynamics, Sunnyvale, CA). Dried
gels were also autoradiographed.

Results

RAG1 and RAG2 Complemented with Whole Cell Extracts
Show Strict 12/23 Regulation. Experiments with purified
recombinant RAG1 and RAG2 proteins have shown pref-
erential, but incomplete 12/23-regulated cleavage by the
isolated proteins (12). In contrast, extracts from lymphoid
cells overexpressing RAG1 and RAG2 showed strict ad-
herence to the 12/23 rule (10). To clarify the requirements
for regulated cleavage, we performed cleavage reactions us-
ing crude extracts from cells expressing RAG1 and RAG2,
purified RAG1 and RAG2, and combinations of extracts
and purified proteins. Extracts containing RAG1 and RAG2
were prepared from 293T cells that were transiently trans-
fected with plasmids that encode RAG1 and RAG2 GST
fusion proteins. RAG1 and RAG2 GST fusion proteins
were copurified directly from the same transfected 293T
cell extracts, and control extracts were from 293T cells that
did not express RAG1 or RAG2.

In a typical cleavage reaction we used a 1,162 bp DNA
fragment from the deletion substrate pJH290 (Fig. 1) (8). This
fragment contains a 12 and a 23 RSS and will be referred to
as the 12/23 substrate. In all of the experiments, the 12/23
substrate was labeled at both ends with [22P]JdNTPs. Upon
regulated cleavage, three fragments are produced in equimolar
amounts. The two end fragments are labeled (262 and 571
bp), whereas the third internal fragment (329 bp) is not la-
beled. In contrast with regulated cleavage, unregulated
cleavage of the 12/23 substrate at the 12 RSS alone would
generate two labeled fragments of 262 and 900 bp, whereas
unregulated cleavage at the 23 RSS would produce two la-
beled fragments of 571 and 591, respectively (Fig. 1). Con-
trol substrates containing either 12/12, 23/23, and a single 23
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(isolated 23 RSS)

higher signal from the 571-bp
fragment.

RSS were produced in a similar manner (Fig. 1; Materials
and Methods).

Whole cell extracts produced from RAG1- and RAG2-
transfected cells showed strict 12/23-restricted cleavage
(Fig. 2, A and B; and reference 10). There was no detect-
able cleavage on either 12/12 or 23/23 substrates, and
there were no unexpected cleavage products with the 12/
23 substrate (Fig. 2, A and B). In contrast, RAGs purified
from the same transfected 293T cell extracts showed only a
modest preference for cleaving the 12/23 substrate (Fig. 2,
C and E). In contrast with the RAG-containing extracts,
the purified proteins were also active on 12/12 and 23/23
RSS substrates. Quantitation with a phosphoimager showed
50% and 30% of the level of cleavage on 12/12 and 23/23
substrates when compared with the 12/23 substrate (Fig. 2,
C and E; data not shown). Consistent with the lack of spec-
ificity, we also found unexpected cryptic cleavage products on
the 12/23 substrate with the purified proteins (Fig. 2 C, as-
terisks). We conclude that crude cellular extracts containing
RAG1 and RAG2 strictly adhere to the 12/23 rule,
whereas RAGs purified from the same extracts have only a
two- to threefold preference for a 12/23 substrate.

To determine whether 12/23-regulated cleavage could
be restored to the purified RAG1 and RAG2 proteins with
factors found in whole cell extracts, we combined control
extracts from untransfected 293T cells with purified RAG
proteins. Addition of the untransfected cell extracts to puri-
fied RAGs had two prominent effects. First, there was a
two- to threefold inhibition of the cleavage activity, result-
ing in a level of cleavage similar to that obtained with the
RAG1/RAG2-transfected cell extracts. Second, the con-
trol extracts converted the preferential cleavage reaction
seen with purified RAGs to the strictly regulated pattern
seen with the extracts from transfected cells. In the pres-
ence of the control extracts, the 12/23 substrate was
cleaved such that the 262 and 571 bp products of coupled
and regulated cleavage were found in the same ratios as ob-
tained with extracts from RAG-transfected cells. In addi-
tion, the cryptic cleavage products seen with purified
RAGs on the 12/23 substrate were suppressed (Fig. 2, D
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293T whole cell extract (WCE), as indicated. All sam-
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and subsequently autoradiographed. Positions of the
uncleaved 1151-bp 12/12 substrate, the uncleaved

1,172-bp 23/23 substrate, and the uncleaved 1,162-bp 12/23 substrate are indicated. The 571 and 262 bp annotations indicate the positions of the ex-
pected coupled cleavage products in all cases. The size and migration of all the cleavage products were independently confirmed by restriction analysis of
the substrate. Radiolabeled 1-kb size marker was used in each experiment as an independent size marker. All volumes of protein and extracts used are in-

dicated in microliters.

and E). Further, 12/12 and 23/23 cleavage by purified
RAGL1 and RAG2 was completely inhibited by the extracts
of untransfected 293T cells (Fig. 2, D and E). No cleavage
was observed with the 12/12 and 23/23 control substrates
even upon prolonged exposure (data not shown). We con-
clude that untransfected 293T cell extracts contain an activ-
ity that complements purified RAGs and promotes strin-
gent adherence to the 12/23 rule.

HMG Box—containing Proteins and Prokaryotic Counterparts
Enhance RAG-mediated Cleavage of 23 RSS-containing Sub-
strates. DNA-bending proteins have been shown to be
important components of a number of recombination reac-
tions that require DNA cleavage and formation of multi-
component DNA-protein complexes (for reviews see ref-
erences 19, 20). The role of the bending proteins in these
reactions made them good candidates to participate in, and
potentially regulate, RAG1- and RAG2-mediated DNA
cleavage. To investigate the role of DNA-bending proteins
on 12/23-regulated cleavage we performed cleavage reac-
tions with purified RAG1 and RAG?2 in the presence of
four different DNA-bending proteins that are known to
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bend DNA and to play architectural roles: HMG1, rHMG1
(recombinant), HMG2, IHF, and HU. As indicated in Fig.
3, three of these proteins, HMG1, rHMG1, HMG2, and
the prokaryotic HU enhanced the activity of RAG1 and
RAG2 on the 12/23 substrate. The magnitude of the en-
hancement on the 12/23 substrate was three- to fourfold
when quantitated. IHF differed from the other bending
proteins in that it failed to enhance cleavage and was inhib-
itory for RAG-mediated cleavage of 12/23 and 12/12 sub-
strates. Despite the enhanced cleavage by the purified
RAG:s in the presence of DNA-bending proteins there was
no significant effect on the stringency of 12/23 regulation.
A similar threefold increase in cleavage was also seen with a
combination of purified RAG1 and RAG2 and either
HMG1, rHMG1, HMG2, or HU on both 23/23 and 23i
substrates (Fig. 3 C; data not shown). In contrast to 23-
RSS—containing substrates, there was no significant en-
hancement of cleavage by the DNA-bending proteins on a
12/12 substrate as seen in Fig. 3 B and confirmed by quan-
titation (data not shown). Thus, the addition of the DNA-
bending proteins to purified RAGs enhanced cleavage of

V(D)J Recombination: 12/23-dependent Cleavage
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Figure 3. Effects of DNA-bending proteins on RAG-mediated cleav-
age activity. (A) Activity of purified RAG1/RAG2 (R1/2) on the 12/23
substrate, in the absence or presence of purified high mobility group pro-
tein 1 or 2 (HMG1 or HMG2, respectively), recombinant HMG1 (rtHMG1),
integration host factor (IHF), and HU protein. Size markers are as in pre-
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DNA substrates that contained the 23 RSS, but they failed
to induce regulated cleavage.

Because DNA-bending proteins enhanced cleavage of
23 RSS containing substrates, whereas unfractionated cell
extracts confer regulated cleavage, we asked whether we
could both enhance and regulate cleavage by combining the
two. We found that the extracts had a dominant effect de-
creasing the overall level of activity and increasing the spec-
ificity of the reaction (Fig. 4 A). There was complete inhi-
bition of the 12/12, 23/23, and 23 substrate cleavage even
when extract and rHMG1 were combined (Fig. 4, B-D).

Discussion

Elegant in vivo and in vitro studies demonstrated that
the 12/23 rule is established at the level of DNA cleavage
(10-12). We have determined that the stringency of the
12/23 rule is enforced by cellular activities other than RAG1
and RAG2. The cofactor(s) that enhance the selectivity of
the RAGs for substrates that contain both 12 and 23 RSSs
are not lymphoid restricted, but are found in all cell ex-
tracts assayed (data not shown), including nonlymphoid
293T cells. These factors have yet to be characterized but
are sensitive to heat and proteinase K. Finding that a com-
ponent of nonlymphoid cell extracts enforces regulated
cleavage resolves the apparent discrepancy between experi-
ments with purified RAGs and those performed with ex-
tracts from cells expressing high levels of RAG1 and
RAG?2. Purified RAGs have only a modest two- or three-
fold preference for 12/23-containing substrates, but the
discrimination is absolute when the same proteins are sup-
plemented with extracts from cells that do not produce
RAG1 and RAG2. A number of proteins other than
RAGL1 and RAG2 are known to be involved in V(D)J re-
combination, but none of these proteins has been suggested
as required for 12/23-regulated cleavage. XRCC4, Ku-80,
and the DNA-dependent protein kinase, all of which have
a function in DNA double-strand break repair, are thought
to be involved in the joining of signal and/or coding ends
(1, 2, 18, 28, 29).

Candidate factors that could be involved in assisting
RAG-mediated DNA cleavage include DNA-bending pro-
teins that are widely distributed, and have been shown to
participate in site-specific recombination reactions (for re-
view see references 19, 20). There are now many examples
of eukaryotic and prokaryotic bending proteins that fulfill a
number of essential architectural requirements during repli-
cation, transcription, and DNA recombination (30, 31). In
these processes, they are thought to stabilize the multicom-
ponent nucleoprotein complexes (32). HU, a prokaryotic
DNA-bending protein, is particularly interesting in that it

vious figures. (B) Activity of purified RAG1/RAG2 (R1/2) on the 12/12
substrate, in the absence or presence of purified HMG1 or HMG2, rHMGL1,
IHF, and HU protein. (C) Activity of purified RAG1/RAG2 (R1/2) on
23/23 and isolated 23 RSS (23i) substrate, in the absence or presence of
rHMG. Size annotations to the right of the figure refer to the 23i probe.
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participates during assembly of bacteriophage Mu transpo-
sition intermediates, a process that may be distantly related
to V(D)J recombination (17, 33). During in vitro Mu trans-
position HU loops the DNA between the L1 and L2 Mu A
binding sites, thereby facilitating the communication be-
tween these sites during the assembly of a higher order trans-
position complex. HMG1, a widely distributed mammalian
DNA-bending protein can substitute for HU in this reac-
tion (34), and was thus a good candidate to assist RAG-
mediated DNA cleavage. Our results show that HMGL,
HMG2, and HU all enhanced cleavage of a 12/23-RSS—con-
taining substrate in vitro, but cleavage was not regulated by
HMG1, because a similar increase in cleavage activity was
also seen with control 23/23-RSS-and 23i-RSS—contain-
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ing substrates. In contrast with 23-RSS—containing sub-
strates, RAG-mediated cleavage of a 12/12 substrate was
not affected by DNA bending proteins, suggesting that the
increased cleavage at the 12/23 substrate may reflect a spe-
cific effect on the RAG1 and RAG2 complex at the 23
RSS. Modification of the complex formed at the 23 RSS
may be sufficient to have a dramatic effect in coordinated
12/23 cleavage when these two different RSS are forming
a synaptic complex. DNA-bending proteins may enhance
cleavage at the 23 RSS in a number of different ways, in-
cluding direct architectural effects on the DNA bringing
one or more cis elements into closer proximity, or through
more complex interactions that directly alter the binding of
RAGs to DNA. IHF differed from the other bending pro-
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teins in that it was inhibitory for the 12/23 as well as the
12/12 substrate. This inhibition by IHF remains to be ex-
plained fully but may be due to a documented preference
of this bending protein for specific DNA sequences (refer-
ence 35 and references therein). Thus, IHF binding to spe-
cific sequences in the substrate might interfere directly with
binding of RAGs to the RSS.

Although the effects of DNA bending proteins on in
vitro cleavage by RAGs are readily demonstrable, the role
of these proteins in V(D)J recombination in vivo remains
to be elucidated. However, evaluating the role of these
proteins in vivo may be a daunting task, because the bend-
ing proteins are a large family that is found in all cell types,
and members of the family display functional redundancy.

DNA-bending proteins and cell extracts have distinct ef-
fects on the cleavage reaction. Extracts have an overall in-
hibitory effect on cleavage and specifically eliminate cleav-

age activity on isolated 23 RSS, 23/23 RSS, and 12/12
RSS substrate. In contrast, DNA-bending proteins enhance
cleavage on all 23-RSS—containing substrates and have no
effect on 12/12 substrates. When DNA-bending proteins
and the extracts were combined, the extracts were domi-
nant, with cleavage remaining regulated and with no ap-
preciable enhancement of cleavage by the DNA-bending
proteins. One way to explain this result is that the high lev-
els of HMGs already present in cellular extracts may be sat-
urating, in which case further addition of DNA-bending
proteins would be ineffective. Alternatively, there may be
an inhibitory factor(s) that interfere with the effects of the
DNA-bending proteins. Complete purification of the 12/23
coregulatory activity will be essential in order to reconsti-
tute 12/23-regulated cleavage in a system where the effect
of RAG1, RAG2, DNA-bending proteins, and other fac-
tors can be completely analyzed.
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