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Abstract
Portable antennas have become an increasingly common technique for tracking fish

marked with passive integrated transponder (PIT) tags. We used logistic regression to eval-

uate how species, fish length, and physical habitat characteristics influence portable

antenna detection efficiency in stream-dwelling brown trout (Salmo trutta), bull trout (Salveli-
nus confluentus), and redband trout (Oncorhynchus mykiss newberrii) marked with 12-mm

PIT tags. We redetected 56% (20/36) of brown trout, 34% (68/202) of bull trout, and 33%

(20/61) of redband trout after a recovery period of 21 to 46 hours. Models indicate support

for length and species and minor support for percent boulder, large woody debris, and per-

cent cobble as parameters important for describing variation in detection efficiency,

although 95% confidence intervals for estimates were large. The odds of detecting brown

trout (1.5 ± 2.2 [mean ± SE]) are approximately four times as high as bull trout (0.4 ± 1.6) or

redband trout (0.3 ± 1.8) and species-specific differences may be related to length. Our

reported detection efficiency for brown trout falls within the range of other studies, but is the

first reported for bull trout and redband trout. Portable antennas may be a relatively unbi-

ased way of redetecting varying sizes of all three salmonid species.

Introduction
The use of passive integrated transponder (PIT) tags in fisheries research has become wide-
spread and has greatly advanced our understanding of fish behavior [1]. In monitoring studies,
PIT tags are less expensive than other electronic tag types, require minimal handling of fish to
obtain multiple detections, and last indefinitely. Multiple detections of fish are made possible
with the use of flat plate or pass-through fixed antenna arrays positioned at discrete locations,
such as at dams or spawning locations, enabling improved estimates of survival or other popu-
lation parameters [2].
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Increasingly, a combination of portable and fixed antennas are used to maximize PIT tag
detections across a study area [3,4]. This is especially applicable to small streams where a single
operator can scan the area of interest by carrying a transceiver, battery, and tuning mechanism
connected to the antenna [5]. Portable antennas also have proven valuable for evaluating fish
movement [6], improving rates of redetection [7], and for novel monitoring techniques, such
as tracking tagged fish under ice covered streams [8]. However, to obtain reliable and unbiased
estimates of population parameters, it is essential to account for variation in capture, or detec-
tion, efficiency [9].

Several studies have examined variation in detection efficiency of portable PIT tag antennas.
Detection efficiency of portable antennas varies due to operator experience or technique
[10,11] and is a function of tag size and transmission type (half or full-duplex; [12]). There is a
negative relationship between detection efficiency and stream velocity or stage height
[11,13,14], stream width [4], and water temperature [13]. Calmness of water and shadows cast
on water also appear to influence detection efficiency [13]. Despite the emerging body of work
evaluating the influence of physical habitat characteristics on detection efficiency, the effect of
large woody debris has not been evaluated in fisheries applications.

Research to date has indicated that detection efficiency of portable antennas may be influ-
enced by fish length, species, or a combination of the two. For example, 82% of small (72 mm
mean length) brown trout (Salmo trutta) implanted with 12-mm full-duplex PIT tags were
detected with a portable antenna, but only 69% of large (142 mmmean length) brown trout
with 12-mm tags were detected [15]. Average detection efficiency for 12-mm full-duplex PIT
tags reported in published studies varies dramatically among species [10]. However, differences
in detection efficiency among species may be explained by fish length. [15] reported the same
detection efficiency for slimy sculpin (Cottus cognatus) and brown trout, when they controlled
for stream, fish length, and tag type.

Here, our intent was to evaluate the influence of biotic (species and length) and abiotic vari-
ables on portable antenna detection efficiency for stream-dwelling salmonids tagged with
12-mm full-duplex PIT tags. We were specifically interested in 1) evaluating how detection effi-
ciency varies by size and among PIT-tagged brown trout, bull trout (Salvelinus confluentus),
and redband trout (Oncorhynchus mykiss newberrii); and 2) evaluating how physical character-
istics of study areas influence detection efficiency. We report the first evaluation of portable
antenna detection efficiency for PIT-tagged bull trout and redband trout and this work furthers
our understanding of portable antenna efficiency by assessing the effects of large woody debris
and other habitat variables.

Methods

Study Area
We evaluated portable antenna efficiency at Leonard Creek, Brownsworth Creek, and Boulder
Creek in the upper Klamath River basin located in Klamath and Lake Counties, south central
Oregon, USA (42°30ʹN, 120°51ʹW). Leonard Creek is a tributary to Brownsworth Creek, which
flows into the South Fork Sprague River, and Boulder Creek is a tributary to the North Fork
Sprague River. These creeks were chosen for this study since they are the only streams in the
Klamath River basin that contain brown trout, bull trout, and redband trout. Each creek is a
first or second order stream (based on a 1:24,000 U. S. Geological Survey topographic map)
that originates in the Gearhart Mountain Wilderness. Land ownership in these drainages is U.
S. Forest Service at the headwaters and private timberland downstream. The hydrograph of
these creeks is representative of a spring snowmelt pattern. Reaches varied between 1671 m
and 1727 m in elevation. All sampling occurred during July 2012 when discharge was at or
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near summer base flow. We did not determine discharge at Brownsworth Creek or Boulder
Creek during the course of sampling; however, discharge at Leonard Creek was calculated to be
0.08 m3/s using a cross sectional method [16].

Field Survey Methods
Within each of the three creeks, we aimed to establish three enclosed reaches that were 250 m
in length. Actual distances varied based on suitability of block net placement (range 164 m to
445 m; Table 1). Beginning at the downstream end of each reach, we made one upstream pass
with a backpack electrofishing unit (Smith-Root model LR-24; Vancouver, Washington, USA)
set at 650 to 750 V, 50 to 60 Hz, and pulsed direct current, to capture trout in each creek. All
captured trout were anesthetized using tricaine methanesulfonate (MS-222) and fork length
(FL) measured to the nearest millimeter. Trout� 100 mm were tagged with a
12-mm × 2.15-mm full-duplex PIT tag (0.1 g, 134.2 kHz; Oregon RFID, Portland, Oregon,
USA) using a 12-gauge needle inserted into the dorsal musculature of the fish posterior to the
dorsal fin. As part of a concurrent study, previously PIT-tagged trout (� 100 mm) occurred
within some of the reaches at Leonard and Brownsworth creeks. Any previously tagged trout
that were captured were included in this study. We did not tag any trout< 100 mm to mini-
mize potential for injury and to capitalize on the tagged trout already present in Leonard and
Brownsworth creeks. After handling and tagging, trout were placed in a bucket of fresh creek
water until they regained equilibrium. Trout were subsequently released evenly throughout the
enclosed reach from which they were captured.

This study was carried out with approval and in strict accordance with the terms and condi-
tions outlined under Section 10(a)(1)(A) of the Endangered Species Act federal recovery per-
mits (permit FWSKFFWO-7 and TE-108507) and the state of Oregon scientific taking permit
(permit number: 17206). Both federal and state permits allowed the capture, handling, anesthe-
tization, and surgery (marking) performed on the fish in this study. All surgery was performed
under MS-222 and all efforts were made to minimize suffering. No fish that exhibited stress
were subject to surgery.We allowed marked fish to recover 21 to 46 hours after electrofishing
before returning to survey with the portable antenna. A 24-hour recovery and dispersal period
has been shown to be long enough such that marking and handling do not affect detection effi-
ciency [17]. To determine portable antenna detection efficiency, one upstream pass was made
through each reach using a Biomark BP portable antenna (Boise, Idaho, USA). The portable
antenna was connected to a chest pack containing a Biomark portable transceiver (model
FS2001FS-ISO) that recorded all detected PIT tags, a tuning box that controlled antenna cur-
rent, and a 12-V sealed lead acid battery that provided power. In field tests, the portable

Table 1. Physical habitat characteristics (mean ± SD) in Leonard, Brownsworth, and Boulder creeks (Oregon, USA).

Variable Leonard Brownsworth Boulder

Mean reach length (m) 254.6 (64.7) 316.5 (96.4) 250.0 (11.4)

Mean wetted width (m) 2.33 (0.04) 2.17 (0.16) 2.66 (0.35)

Percent undercut bank 12.9 (4.1) 11.1 (1.2) 6.0 (1.4)

Percent pool 13.3 (2.6) 15.8 (0.9) 24.4 (3.8)

LWD density (pieces/m2) 0.03 (0.008) 0.03 (0.006) 0.05 (0.017)

Percent cobble 16.7 (6.2) 25.0 (0.0) 36.7 (20.9)

Percent boulder 5.0 (4.1) 5.0 (0.0) 30.0 (14.7)

LWD, large woody debris

doi:10.1371/journal.pone.0149898.t001
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antenna was capable of detecting 12-mm PIT tags oriented perpendicular to the antenna face
at distances up to 35 cm. Four surveyors with equal experience took turns operating the porta-
ble antenna. Surveyors operated the portable antenna in a systematic manner to ensure all hab-
itats were scanned. The time spent operating the portable antenna within each reach was
63.6 ± 11.3 min (mean ± SD). All surveys were conducted during day light hours and block
nets were removed upon completion of surveying.

We recorded several habitat variables at each reach to determine how stream complexity
influences portable antenna efficiency. Beginning at the downstream end of each reach, we
established transects perpendicular to the flow approximately every 25 m. At each transect, we
recorded wetted width and visually estimated cobble (64 to 256 mm) and boulder (256 to 4,096
mm) substrate to the nearest 5% along a 1-m wide band centered on the transect. In each
reach, we summed length of undercut banks and conveyed this as a percent of total bank length
(left and right). An undercut bank was defined as at least 15.2 cm of undercut and 30.5 cm
long, which we assumed to provide cover for fish. We summed the number of large woody
debris pieces and calculated the density within each reach. Large woody debris was defined as
any piece of wood at least 3 m long by 10 cm in diameter located sufficiently within the wetted
channel such that it was capable of providing cover. The length of each pool was measured
throughout each reach, summed and multiplied by average wetted width, and expressed as the
percentage of pool habitat for the entire reach. Only pools that spanned the entire wetted width
were measured.

Data Analyses and Statistics
To evaluate portable antenna efficiency, we developed an a priori suite of logistic regression
models (hypotheses) using detection of PIT-tagged trout as a binary response variable
(detected = 1, not detected = 0). Efficiency was defined as the probability of detecting a fish.
We did not run all possible combinations of models since we selected models based on specific
biological hypotheses. Previous studies have reported detection efficiency may vary by fish spe-
cies, size, and physical habitat characteristics [17,18]. Thus, fish characteristics (species and
length), physical habitat characteristics (percent bolder, percent cobble, number of pieces of
large woody debris; Table 1), and stream were included as model predictors to evaluate porta-
ble antenna efficiency. We also included individual operator and time spent surveying (minutes
per unit length) to confirm that surveys were conducted in a consistent manner. Continuous
variables were converted to proportions to allow for ease of comparison. A null (dot) model
also was included to represent no biotic or abiotic influence on detection efficiency.

Prior to model development, we checked for correlation between continuous variables using
Pearson product-moment correlation coefficients with the ‘rcorr’ function (package Hmisc) in
program R, version 2.15 [19]. Variables were considered highly correlated when r2 values were
greater than 0.5 [20]. The proportion of pool habitat was positively correlated with proportion
of boulder substrate and large woody debris was positively correlated with the proportion of
undercut banks. Therefore, we did not consider the proportion of pool habitat or undercut
banks in our model set as large woody debris has not been evaluated previously and we believed
proportion of boulder substrate to provide more suitable fish cover. We also checked for corre-
lation between categorical variables using a polyserial correlation conducted with the ‘polyser-
ial’ function (package polycor) and identified a slight correlation (r2 = 0.16) between species
and length [21]. Brown trout were slightly larger (166 ± 30 mm FL [mean ± SD]) on average
than the other two species (bull trout, 130 ± 26 mm FL; redband trout, 124 ± 25 mm FL).
Therefore, we considered a model with just length, a model with just species, an additive model
with both (three intercepts and one slope), and a model with a species by length interaction
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(three intercepts and three slopes) to examine differences in detection efficiency among species
and lengths.

We assessed the goodness of fit of a model containing all the variables of interest (global
model) by estimating the variance inflation factor (ĉ). A ĉ of 1.0 indicates a perfect fit and a ĉ
over 4.0 indicates overdispersion [22]. We ranked models based on the principle of parsimony
with Akaike’s Information Criteria adjusted for small sample size (AICc; [22]) using the logLik
function in the ‘MASS’ package [23]. To avoid redundancy, we do not report ĉ for models with
a lower AICc value than the global model; these models were better fit to the data than the
global model. We considered models with AICc values no more than 2.0 units greater than the
lowest AICc to be well supported [22] and included these models in our confidence set. Nor-
malized model weights (wi) were calculated to determine the probability that a model was the
best one in the set for explaining the data. Importance weights were calculated as the sum of
model weights containing a parameter of interest [24]. We generated model-averaged parame-
ter estimates and unconditional 95% confidence intervals for all continuous variables in our
confidence set of models. Lastly, we calculated the odds of detecting each species and report
the unconditional standard errors for these odds [25]. Unconditional confidence intervals and
standard errors account for uncertainty in both model fit and model selection, and are there-
fore larger than standard errors conditioned on any single model being the true model.

Results
We physically captured 36 brown trout, 202 bull trout, and 61 redband trout that were given
new PIT tags (91% of captures) or were previously PIT tagged (9% of captures) in Leonard,
Brownsworth, and Boulder creeks during the course of the study. Brown trout ranged from 103
mm to 225 mm FL, bull trout from 100 mm to 199 mm FL, and redband trout from 101 mm to
203 mm FL. Overall, we redetected 56% (20/36) of PIT-tagged brown trout, 34% (68/202) of
bull trout, and 33% (20/61) of redband trout. Box plots revealed that the lengths of each species
of fish that were redetected closely matched lengths of all fish that were marked in this study
(Fig 1).

Fig 1. Box plots of fish length (mm) for all PIT-tagged brown trout, bull trout, and redband trout in
Leonard Creek, Brownsworth Creek, and Boulder Creek (white box) and for those individuals that
were redetected (gray box). The lower and upper boundaries of each box indicate the 25th and 75th
percentiles, respectively, and the median value is shown as a line within the box. The lines (whiskers) below
and above each box represent the 10th and 90th percentiles. All outliers are presented.

doi:10.1371/journal.pone.0149898.g001
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Our goodness of fit test revealed a ĉ of 1.3, demonstrating the global model fit the data well.
Model rankings indicated that five explanatory variables had some effect on detection effi-
ciency (Table 2). Our confidence set contained six models; of these, three contained length,
three contained species, and one each contained percent boulder, large woody debris, and per-
cent cobble. Length carried an importance weight of 0.50 and species carried an importance
weight of 0.44, whereas percent boulder, large woody debris, and percent cobble, carried
importance weights of 0.32, 0.20, and 0.13, respectively. The top ranked model indicated that
larger fish were easier to detect when boulder cover was scarce, but was only slightly more par-
simonious than other models in the confidence set. Model rankings provided scarce evidence
that portable antenna operator, time spent surveying, and stream had an effect on detection
efficiency.

There was a wide distribution in the normalized model weights among models that
ranked higher than the null (dot) model, indicating relatively little support for any of the
hypotheses fit to the data. Length was positively correlated with detection efficiency,
whereas proportion of boulder substrate, proportion of cobble substrate, and large woody
debris were negatively correlated with detection efficiency (Fig 2). However, 95% confi-
dence intervals for estimates were wide, indicating that these effects were not strongly sup-
ported (Fig 2). The odds (± SE) of detecting brown trout (1.5 ± 2.2), bull trout (0.4 ± 1.6),
and redband trout (0.3 ± 1.8) were imprecisely estimated (i.e., large standard errors). Never-
theless, odds indicated brown trout were on average four times as likely to be detected as
bull trout or redband trout. Model rankings indicated there was more likely to be an addi-
tive, rather than interactive, effect of length and species. The additive length and species
model indicated estimated detection efficiency ranged from 46% to 64% for brown trout,
29% to 47% for bull trout, and 30% to 48% for redband trout within the range of fish lengths
in this study (100 mm to 225 mm FL).

Table 2. Model ranking statistics for models describing factors influencing portable antenna detection efficiency.

Model K Log likelihood AICc ΔAICc wi

LENGTH * BOULDER 4 -190.82 389.77 0.00 0.19

SPECIES + LARGE WOODY DEBRIS 4 -190.94 390.02 0.25 0.17

LENGTH 2 -193.34 390.72 0.95 0.12

SPECIES 3 -192.36 390.79 1.03 0.12

LENGTH * COBBLE 4 -191.52 391.18 1.41 0.09

SPECIES + LENGTH 4 -191.71 391.56 1.79 0.08

SPECIES + BOULDER 4 -191.89 391.92 2.15 0.07

COBBLE + BOULDER 3 -193.50 393.08 3.32 0.04

DOT 1 -195.58 393.17 3.40 0.04

LARGE WOODY DEBRIS 2 -195.07 394.17 4.41 0.02

OPERATOR 5 -192.08 394.36 4.59 0.02

SPECIES * LENGTH 6 -191.29 394.87 5.11 0.01

BOULDER 2 -195.54 395.11 5.35 0.01

SURVEY TIME 3 -194.98 396.04 6.27 0.01

BOULDER + LARGE WOODY DEBRIS 3 -194.98 396.05 6.28 0.01

STREAM 3 -195.27 396.62 6.85 0.01

GLOBAL 12 -188.18 401.45 11.69 0.00

Note: Models in bold indicate the confidence set of models.

doi:10.1371/journal.pone.0149898.t002
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Discussion
Our estimates of detection efficiency for brown trout fall within the range of other studies
examining the detection efficiency of portable antennas for brown trout tagged with 12-mm
PIT tags. Mean brown trout detection efficiency has been reported at 43% for fish with mean
FL 119 mm [10] and at 69% for fish with mean FL 148 mm [15]. Based on our additive species
and length model, the estimated detection efficiency (conditional 95% confidence interval) is
49% (4% to 95%) for a 119 mm FL brown trout and 53% (4% to 97%) for a 148 mm FL brown
trout. There are no previous studies specifically examining portable antenna detection effi-
ciency of bull trout or redband trout. Our results indicated detection efficiency for these two
species was lower than brown trout. Our detection efficiency was estimated to be 32% (6% to
78%) for a 119 mm FL bull trout and 32% (5% to 81%) for a 119 mm FL redband trout.

Our results indicate that portable antennas may be a relatively unbiased way of redetecting
varying sizes (100 to 225 mm in this study) of all three salmonid species under the physical
habitat characteristics encountered in our study streams. A wide distribution in normalized
model weights in the top set of models could either indicate that these models were capturing
similar components of the variation in the data or that hypothesized length, species, and habi-
tat effects on detection efficiency were minor. All of the top seven models had either a length or
a species effect, indicating that these two variables explained nearly all of the variation in detec-
tion efficiency. When all models that included length or species were compared collectively to
the dot model, each of these variables explained approximately four times the variation in
detection efficiency as the dot model. However, the effect sizes of length and species were
imprecisely estimated indicating that these effects were minor. Future research may be needed
to provide additional information how these effects apply to fish< 100 mm in length.

The effects of the physical habitat covariates on portable antenna detection efficiency were
minor to undetectable and unconditional 95% confidence intervals were large. Despite the
influence of the physical habitat, the box plots indicated that there was concordance between
the length of each species of fish that we redetected and the lengths of all fish that were initially
PIT-tagged. Similar findings also have been reported for shorthead sculpin (Cottus confusus),
Coho salmon (O. kisutch), and steelhead (O.mykiss) [26,27].

Differences in detection among species may be related to fish length. Species and length had
nearly identical importance weights indicating that both of these variables explained about the

Fig 2. Model averaged estimates of portable antenna detection efficiency for PIT-tagged brown trout,
bull trout, and redband trout in Leonard Creek, Brownsworth Creek, and Boulder Creek.Model
averaged unconditional 95% confidence intervals for estimates are displayed as dotted lines.

doi:10.1371/journal.pone.0149898.g002
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same amount of variation in detection efficiency. Including models with additive or interactive
effects of these two variables provided no additional insight because these more complicated
models ranked lower than both of the single variable models. Therefore, despite length and spe-
cies being only slightly correlated (r2 = 0.16), we cannot distinguish which of these variables is
causing the majority of the variation in detection efficiency.

Alternatively, differences in detection efficiency among species may be related to behavior,
which can be differentially influenced by environmental conditions. [10] speculated that spe-
cies with a propensity to hide were easier to detect whereas those with a propensity to flee were
harder to detect. Previous research has demonstrated that electrofishing and snorkeling within
streams may cause salmonids, including bull trout and rainbow trout (O.mykiss), to flee in
response to sampling [28,29]. Similarly, redband trout and bull trout may have fled as an oper-
ator approached with a portable antenna, resulting in lower detection efficiency of these two
species compared to brown trout.

Further, the reaction of a fish to an approaching antenna may be related to the environment.
For example, [13] determined that the flight response of Atlantic salmon (Salmo salar) sur-
veyed with a portable antenna was influenced by water temperature. The three species in our
study have different, but overlapping, temperature tolerances [30], and may react differently to
the same disturbance given the ambient conditions. Species-specific diurnal activity patterns
also might affect detection efficiency. For instance, bull trout appear to be more docile and eas-
ily captured by netting at night compared to during the day [31]. As well, portable antenna
detection efficiency for Atlantic salmon is higher at night than during the day [11], but there is
no difference between day and night detection rates of brown trout [10]. Future research may
be required to determine if day or nighttime surveys are more effective for bull trout and red-
band trout.

We have demonstrated the effectiveness of using portable antennas for detecting three spe-
cies of PIT tagged salmonids in small stream reaches (mean wetted width< 3.0 m) within a
reasonable amount of time (63.6 ± 11.3 min [mean ± SD]). The lack of physical habitat effects
within the range of habitats encountered in our study and the minor role of species and length
on detection probability make it possible to use portable antennas in mark-recapture studies of
stream-dwelling salmonids to estimate a wide variety of population parameters. Such informa-
tion will prove to be useful when designing studies on vital rates of these trout species.
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