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Abstract

Despite active research on trading systems based on reinforcement learning, the develop-

ment and performance of research methods require improvements. This study proposes a

new action-specialized expert ensemble method consisting of action-specialized expert

models designed specifically for each reinforcement learning action: buy, hold, and sell.

Models are constructed by examining and defining different reward values that correlate

with each action under specific conditions, and investment behavior is reflected with each

expert model. To verify the performance of this technique, profits of the proposed system

are compared to those of single trading and common ensemble systems. To verify robust-

ness and account for the extension of discrete action space, we compared and analyzed

changes in profits of the three actions to our model’s results. Furthermore, we checked for

sensitivity with three different reward functions: profit, Sharpe ratio, and Sortino ratio. All

experiments were conducted with S&P500, Hang Seng Index, and Eurostoxx50 data. The

model was 39.1% and 21.6% more efficient than single and common ensemble models,

respectively. Considering the extended discrete action space, the 3-action space was

extended to 11- and 21-action spaces, and the cumulative returns increased by 427.2% and

856.7%, respectively. Results on reward functions indicated that our models are well

trained; results of the Sharpe and Sortino ratios were better than the implementation of profit

only, as in the single-model cases. The Sortino ratio was slightly better than the Sharpe

ratio.

Introduction

Recently, trading systems based on machine learning have been actively studied in all fields

including the financial field [1–7]. With sufficient data, a machine can efficiently learn pat-

terns, exhibiting the notable advantage of the ability to learn unknown patterns [8]. This fea-

ture can be exploited for trading systems and consequently, is actively studied using machine

learning in the financial field. Through machine learning, vast amounts of data can be quickly

calculated, while an objective judgment of the database can help determine important financial
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transactions. Machine learning is largely divided into supervised, unsupervised, and reinforce-

ment learning [9]. In the financial field, the supervised learning method extracts important

features from labeled data and uses a classification and prediction model. Many studies have

been conducted, ranging from those based on statistical learning theory to those using state-

of-the-art machine learning algorithms such as Support Vector Machine (SVM), Random For-

est (RF), and Deep Neural Network (DNN) [10–13]. The unsupervised learning method,

which uses unlabeled data, is mainly used for clustering and finding patterns in the data using

dimension-reduction machine learning techniques such as auto-encoder. One of the represen-

tative studies is the Deep Portfolio Theory [14]. In reinforcement learning (RL), which is

mainly used in trading systems research, a model-free method that relies on the input of mar-

ket conditions as a state is applied using a reward function. A representative study by Moody

and Saffell [15] that led to numerous subsequent studies examined the optimal portfolio,

asset allocation, and trading system using Recurrent Reinforcement Learning (RRL).

Although trading systems research based on RL is actively conducted, there are many chal-

lenges, such as difficulties in analyzing and training, which arise from insufficient data or

excessive noise [4]. Additionally, RL itself is difficult to train. To improve performance, the

ensemble method is one of the most widely used machine learning methods [16]. However,

because applying the ensemble method to RL is more difficult than the general machine learn-

ing algorithm, it is yet to be applied in automated financial trading systems research. There-

fore, we posit that if an ensemble technique specialized for RL is applied to a trading system,

the performance of the trading system will improve.

We propose an action-specialized expert ensemble trading system—a novel ensemble

method designed specifically for RL—that can reflect investment propensity. This ensemble sys-

tem consists of action-specialized expert models, with each model specialized for each action

examined in the RL for trading systems by using different reward values under specific condi-

tions. Actions of trading systems typically include buying, holding, and selling; we designed an

expert single model corresponding to each action to reflect real investment behavior [2, 7, 15].

To create an expert single model, reward values for expert action are controlled. In the common

ensemble method, the single model is trained in the same data set with different models or in

different data sets with the same model. In other words, various distribution effects for an

ensemble can be obtained using these methods. Unlike the common ensemble method, this

study employs a method to create an action-specialized expert ensemble model that is specifi-

cally developed for buying, holding, and selling actions; we then combine these action-special-

ized expert models in an ensemble. Our proposed ensemble method is expected to improve

performance and reflect characteristics of RL for trading systems. We used soft voting with the

softmax function, which is more effective than hard voting, as an ensemble method [16].

To verify our proposed method and check its robustness, we include more action spaces by

discretizing, which determines the number of multiple shares of a stock to buy or sell by itself.

Previous studies have either only studied the three actions or proceeded to a continuous action

space [1–7, 15]. It is well known that as the output of the model network increases, learning

becomes more difficult [17]. In a previous study, however, discretizing action spaces yielded a

better performance than applying continuous action spaces [18]. Thus, in this study, we extend

the number of actions from 3 to 11 and 21, and the quantity of actions is increased by 5 and

10, respectively. Moreover, we expect the network to be able to recognize market risk and con-

trol the quantity by itself. One of the purposes of our research is to create a more profitable

automated trading system that allows for more investment when data-driven patterns are

clearer, such as real investors investing more boldly as compared to the information they

receive from the market. Therefore, our model is designed to learn various patterns from data

and vary actions to increase profit according to the magnitude of the reward value we designed.
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Compared to the existing 3-action models, existing models could not represent the diversity of

actions depending on the reward value of the model trained from the data. For example, we

could not determine whether the buy signal in the 3-action model is strong or weak. In contrast,

our proposed system with more discrete actions is significantly more profitable than the

3-action system because it can buy or sell more, depending on the market situation. More spe-

cifically, the trading model with 21 actions can ideally increase profits by up to 10 times, since it

can trade more quantities (up to 10 times) for stronger signals than weaker ones.

If the extended action space model can capture the level of obvious patterns from the dynamic

market data, it can decide the quantities of investment by itself—depending on the captured level

of information. As we give the adaptive signal to our model through controlling reward values by

extending action space, we expect that our model can analyze more detailed market information,

which includes the degree of both direction and magnitude of market movements. If the proposed

model is confident in the market condition, it will invest more in the market. Whereas, if the

model is less confident in the market condition, it will adjust the quantity to take a relatively small

risk in order to achieve a small loss or a small profit. In this regard, we have produced many

experimental results that can support this. Many RL-based trading system studies surveyed have

3-action spaces, and our research is meaningful as it is the pioneering study to attempts this. As

expected, our results indicate that Deep Reinforcement Learning (DRL) can learn not only three

actions, but also various other actions, depending on the strength of the network signals.

Further, we used three types of reward functions: profit, and the Sharpe and Sortino ratios,

to examine the sensitivity of our proposed ensemble model. Generally, profit is a frequently

used reward function in RL for trading systems research [2, 7, 15]. Since the Sharpe and Sor-

tino ratios are calculated using profits and volatilities, they are suitable reward functions to

train networks for RL [3, 4]. Thus, to compare the performance of reward functions, we con-

sider not only profit, but also volatility.

Our experiment employed three extensively used data sets—S&P500, Hang Seng Index

(HSI), and Eurostoxx50—that efficiently exhibit different price movements for the period from

January 1987 to December 2017 [2, 6, 7, 15]. For the same period, we divided these data sets

into training and test periods of 20 and 11 years, respectively. Our basic model is based on the

Deep Q-Network (DQN), and we employ online learning on the test data set. While the DQN is

well known for combining the Q-learning algorithm with DNN [19], online learning is a

method in which data become available in a sequential order, especially in a test data set [20].

The remainder of this paper is organized as follows. Section 2 describes the related research.

Section 3 discusses the related methodologies of DQN, reward functions, and our proposed

method. Section 4 analyzes our data sets in various ways. Section 5 describes the experiments

of our proposed model and explains our methodology. Section 6 reveals experimental results

and conducts detailed analyses. Section 7 concludes and suggests future applications.

Related work

In the financial field, there are many recent studies that employ machine learning for forecast-

ing, classification, dimension reduction, and trading. In this section, we describe the relevant

literature.

Supervised learning in the financial field

Most financial studies using supervised learning attempted to predict price fluctuations or

trends. Trafalis and Ince [10] predicted stock prices using SVM based on statistical learning

theory and compared it to Radial Basis Function (RBF). Huang, Nakamori, and Wang [21]

also performed Nikkei225 index prediction using SVM, and compared Linear Discriminant
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Analysis (LDA), Quadratic Discriminant Analysis (QDA), and Elman Backpropagation Neural

Networks for performance evaluation. Tsai and Wang [22] studied the stock price prediction

model by combining Artificial Neural Network (ANN) and a decision tree to improve the per-

formance of a single model. Patel, Shah, Thakkar, and Kotecha [11] conducted two studies.

First, they used four forecasting models—ANN, SVM, RF, and Naïve Bayes—to predict stock

market index prices and trends. Second, they proposed a prediction model combining ANN,

RF, and Support Vector Regression (SVR) and indicated better performance than the single

model. Recent research has proposed a model to forecast a financial market crisis using DNN,

the boosting method [23], and ModAugNet, which adds two modules to prevent overfitting,

and improves prediction performance [13].

Unsupervised learning in the financial field

Most financial research that employed unsupervised learning were conducted in the direction

of dimension reduction using an auto-encoder. As a representative study, a deep portfolio the-

ory composed of 4 steps—auto-encoder, calibrating, validating, and verifying—was developed

by Heaton, Polson, and Witte [14]. Chong, Han, and Park [24] compared reconstruction

error, stock price fluctuation, and prediction using Principal Component Analysis (PCA),

auto-encoder, and Restricted Boltzmann Machine (RBM). Bao, Yue, and Rao [25] conducted

price prediction using the model combining Wavelet Transform, Stacked Auto-Encoder

(SAE), and Long-Short Term Memory (LSTM). First, wavelet transformation is applied to the

time series data to remove noise, while high-level features of data are extracted by SAE. Subse-

quently, the processed and transformed data are used for stock price prediction using LSTM.

Reinforcement learning in the financial field

Finance-related research using RL has been conducted mainly to improve the performance of

trading algorithms. Moody and Saffell [15] conducted a study on the optimal portfolio,

asset allocation, and trading system using RRL, which became the basis for a significant

amount of research. They compared various methods using profit, Differential Sharpe Ratio

(DSR), and Downside Deviation Ratio (DDR) as reward functions and indicated that RRL is

better than Q-learning. Since then, many researchers have used RRL and DSR: Almahdi and

Yang [3] proposed an optimal variable weight portfolio allocation model using RRL and

Expected Maximum Drawdown (EMD) to solve the dynamic asset allocation problem; Deng,

Bao, Kong, Ren, and Dai [4] improved performance by combining the RRL with the fuzzy

DNN model, which analyzes the market; Huang [5] used small replay memory, added feed-

back signal, and sampled long sequences to improve the existing research with Deep Recurrent

Q-Network (DRQN). Wang et al. [2] studied the trading system using DQN and compared it

to the RRL strategy performance. This study became the basis of our research to compare and

improve performance. In addition, another study added three ideas of the trading system by

applying the existing DQN, which technically added to and changed the network. First, the

number of stocks traded using DNN is determined. Second, the decision is suspended by ana-

lyzing the confusing situation. Lastly, this study uses transfer learning to account for the lack

of data [7]. We summarize trading system studies using RL in Table 1 and compare our experi-

ments with those of other papers.

Ensemble methods in the financial field

There is an ensemble learning method for machine learning that performs much better than

existing single models. Tsai, Lin, Yen, and Chen [26] proposed a model combining majority

voting and bagging that indicated better performance than a single model or existing ensemble
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methods. Booth, Gerding, and McGroarty [27] proposed a trading system based on weighted

ensembles of RF that is specialized in seasonality effects and improves profitability and predic-

tion accuracy. Giacomel, Galante, and Pereira [28] proposed an ensemble network that

approached stock price forecasting as a rising or falling classification problem and simulated it

by applying it to North American and Brazilian stock markets. Yang, Gong, and Yang [29]

proposed a DNN ensemble model that predicts the Shanghai index and the Shenzhen Stock

Exchange index using a bagging method. Weng, Lu, Wang, Megahed, and Martinez [30] pro-

posed a model that predicts short-term stock prices using four ensemble methods: neural net-

work regression ensemble, SVR ensemble, boost regression ensemble, and RF regression.

Continuous and discrete action space in reinforcement learning

There are also studies on continuous and discrete action space in RL. However, a majority of

these are related to games or robotics, with only a few studies related to finance. In general, the

action space of RL in most environments is continuous; therefore, it is inappropriate to apply a

discrete action space [7, 31, 32]. This is reflected in research by Google Deep Mind [33] and

the OpenAI team [34]. However, in some real case studies, discretizing action spaces has been

shown to be more effective than applying continuous action spaces [35]. Therefore, discretiza-

tion of actions can be said to improve performance. According to recent studies by OpenAI,

this may be because a discrete probability distribution is more expressive than a multivariate

Gaussian or because discretization of actions makes the learning of a favorable advantage func-

tion potentially easier [18]. Based on this evidence, we believe that extending the discrete

action space in this study could be a more efficient approach for the asset allocation problem

than what can be accessed as a continuous action space. In addition, we can extend this study

to solve the asset allocation problem that exists in the continuous action space with transfer

learning by first learning it as a discrete action space problem.

Table 1. Summary of trading system studies using reinforcement learning.

Authors (year) State Action Reward Data description (Training:Test) Method

Saud Almahdi, Steve

Y. Yang (2017)

104 (weekly 2 years) 3 (-1, 0, 1) SR STR CR 5 Funds Jan. 2011–Dec. 2015 (6:4) RRL

Yang Wang et al.

(2017)

200 (daily delta

price)

3 (-1, 0, 1) Long-term return (100

days)

2 Index Jan. 2001–Dec. 2015 (4:11) Online-learning DQN

Gyeeun Jeong, Ha

Young Kim (2019)

200 (daily close

price)

3 (-1, 0, 1) + 1 (# of

shares)

Long-term return (200

days)

4 Index Jan. 1987–Dec. 2017 Jan. 2008–Dec. 2017

Apr. 1991–Dec. 2017 Jul. 1997–Dec. 2017 (approx.

4:1:5) Online-learning

DQN + Extra

networks

John Moody,

Matthew Saffell

(2001)

84 (monthly price) 3 (-1, 0, 1) Profit DSR DDR S&P500, T-Bill Jan. 1950–Dec. 1994 (4:5) RRL

Huang, Chien-Yi

(2018)

198 (Time 3, Market

12x16, Position 3)

3 (-1, 0, 1) Log return 12 Currency Jan. 2012–Dec. 2017 (tick) Online-

learning

DRQN

Yue Deng et al.

(2017)

150 (minute price,

50x3)

3 (-1, 0, 1) SR TP IF future, silver, sugar Jan. 2014–Sep. 2015 (1:5) Jan.

2014–Jan. 2015 (2:5) Online-learning

FDRNN

+ DRL

Parag C. Pendharkar

et al. (2018)

4 (yearly asset

statement)

5 (0:10, 2.5:7.5, 5:5,

7.5:2.5, 10:0)

Profit DSR DDR S&P500, T-note, AGG 1976–2016 (26:15) SARSA Q-

learning

Authors of the

present study

200 (daily close

price)

3 (-1, 0, 1) 11 (±5~

±1, 0) 21 (±10~±1,

0)

Long-term return

(100days) Sharpe ratio

Sortino ratio

3 Index Jan. 1987–Dec. 2017 (21:10) Online-learning DQN + Expert

Ensemble

SR: Sharpe ratio, STR: Sterling ratio, CR: Calmar ratio, DSR: differential Sharpe ratio, DDR: downside deviation ratio, TP: total profit, RRL: recurrent reinforcement

learning, DQN: deep Q-network, DRQN: deep recurrent Q-network, FDRNN: fuzzy deep recurrent neural network, DRL: deep reinforcement learning, SARSA: on-

policy reinforcement learning algorithm

https://doi.org/10.1371/journal.pone.0236178.t001
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Methodology

DQN (Deep Q-network)

Unlike supervised and unsupervised learning from the static environment data, RL is a meth-

odology wherein an agent directly explores environment data, confirms correlated rewards,

and establishes policies for optimal action. The objective of RL is to find an optimal policy that

maximizes the expected sum of discounted future rewards [36]. These rewards of optimal pol-

icy start with choosing the optimal value for each action, which is called the optimal Q-value.

RL generally solves problems that can be defined in the Markov Decision Process (MDP). The

elements of RL are represented by (S,A,P,R,γ), where S is a finite set of states, A is a finite set of

actions, P is a state transition probability matrix, R is a reward function, and γ is a discount fac-

tor. The process of RL is described in Fig 1—the agent observes the state st from the environ-

ment at time t and selects action at [19]. Subsequently, as a result of this action, we receive

reward rt from the environment and obtain the next environment st+1, which is changed by

the action at. If the reward is determined by both the state and action, we can define the action

value function Qπ(st,at) as follows:

Qpðst; atÞ ¼ Ep½
P1

i¼0
girtþiþ1jst; at� ð1Þ

From this action value function, we can represent the optimal action-value function Q�(st,
at), maximizing the future reward amount as indicated in Eq (1). The optimal action a�(st) can

be obtained from Eq (3) as follows.

Q�ðst; atÞ ¼ max
p

Qpðst; atÞ ð2Þ

a�ðstÞ ¼ argmax
at

Q�ðst; atÞ ð3Þ

Finally, the optimal action value function can be represented by the Bellman equation in Eq

(4) [37].

Q�ðst; atÞ ¼ E½rtþ1 þ g max
atþ1

Qðstþ1; atþ1Þjst ¼ s; at ¼ a� ð4Þ

Fig 1. Interaction of agent and environment in reinforcement learning.

https://doi.org/10.1371/journal.pone.0236178.g001
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The basic idea of the RL algorithm is to estimate the action value function by repeatedly cal-

culating and updating the aforementioned Bellman equation. If the iteration is infinite, the

action value function converges, and the result is the optimal action value function. The Q-net-

work is composed of a neural network to find the Q-value. The DQN is a deeply structured

network that learns by minimizing the loss function, shown by Eq (5).

losstðwtÞ ¼ E½ðyt � Qðst; at;wtÞÞ
2
� ð5Þ

yt ¼ max
atþ1

½rt þ gQðstþ1; atþ1;wt� 1Þjst; at� ð6Þ

where wt is the weight of the network. This is a neural network that approximates the Q-func-

tion, and it is trained in the supervised approach. Hence, it needs a label, and RL uses the target

Q-value as the label, i.e., yt in Eq (6). To obtain the target Q-value, we need the target Q-net-

work that fixes the weight every few steps. Thus, the DQN will train to minimize the loss until

the next few steps, repeating this process until convergence. In this study, we attempt to con-

struct a trading system in three index environments by the DQN method and establish an

extended discrete action space and action-specialized expert ensemble method.

Reward functions

The reward function is a guide for model-free RL. The network of RL updates through the

value of the reward function. We describe our reward functions as follows.

Profit function

The most common reward function is the profit function, which has been used in previous

studies [2]. This function is outlined as follows:

rt profit ¼ 1þ at �
pt � pt� 1

pt� 1

� �
pt� 1

pt� n
ð7Þ

where rt_profit is the profit reward function at time t, at is the action selected at time t by the

agent, and pt is the closing price at time t. Eq (7) is an appropriate function for RL because it

represents long-term returns over n periods and is less volatile than daily returns. This equa-

tion consists of one-day and long-term gross returns. Therefore, rt_profit is the same as 1þ rn ¼
1þ rð Þ

pt� 1

pt� n
when at = 1. In this equation, we assume that the action for sale is -1, the action for

hold is 0, and the action for purchase is 1. In the experiment, however, we assume that the

action for sale is 0, the action for hold is 1, and the action for purchase is 2 because the network

will output only positive numbers. Using long-term returns is useful because they can be con-

sidered as long-term stock trading or investments.

Sharpe and Sortino ratios

Another representative reward function is the Sharpe ratio [38], which can reflect profit and

volatility. The Sortino ratio is similar to the Sharpe ratio, and their equations are as follows:

rt sharpe ¼
Averageð

PI
i¼1

RiÞ

StandardDeviationð
PI

i¼1
RiÞ

ð8Þ

rt sortino ¼
Averageð

PI
i¼1

RiÞ

StandardDeviationbelowð
PI

i¼1
RiÞ

ð9Þ
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where rt_sharpe is the Sharpe ratio reward function at time t, Ri is the daily return with the num-

ber of multiple shares of a stock by action at, and Averageð
PI

i¼1
RiÞ is the average return over

period I: StandardDeviationð
PI

i¼1
RiÞ is the standard deviation of daily returns over period I. I

is the window size for calculating average and standard deviation of returns. rt_sortino is the Sor-

tino ratio reward function at time t, and StandardDeviationbelowð
PI

i¼1
RiÞ is the standard devia-

tion of the daily return below zero for I period. The Sortino ratio only considers the aspect of

volatility of the loss because the volatility under profit conditions is not important. In modern

portfolio theory, high Sharpe and Sortino ratios indicate high profit without a large fluctua-

tion. Due to these characteristics of the two ratios, they are appropriate reward functions of

RL. We assume that the risk-free rate is 0 (i.e., r_f = 0), and this assumption makes the Sharpe

and Sortino ratios invariant to leverage; hence, the leverage effect remains the same regardless

of the amount of investment. For instance, consider that there are two profits: 5% and 3%. The

average is 4% and the standard deviation is about 1.4%. Therefore, the Sharpe ratio is approxi-

mately 2.83. For the leverage effect that is to expand investing, if the number of multiple shares

of a stock is five, then profits are 25% and 15%, respectively. Its average is 20%, and the stan-

dard deviation is approximately 7.1%. In the end, the Sharpe ratio is approximately 2.83, same

as before, indicating that the assumption makes the Sharpe ratio invariant to leverage.

Proposed single model—action-specialized expert model

The action-specialized expert models are created by adjusting the reward function values

under specific conditions. The concept of our proposed single model is to develop an expert

model of each action that reflects investors’ behavior. For instance, if someone is inclined to

buy to generate profit, then we can reflect this behavior tendency in an expert model special-

ized for an aggressive investor. As aforementioned, we can create various action-specialized

expert models with investment strategies that are effective for analyzing buying, selling, and

holding actions. In other words, the expert model for buying yields a larger reward value when

profit is high, and the model works well in increasing price periods. Similarly, the expert

model for selling yields a larger reward value when absolute profit is high, and the model per-

forms well in the dropping period. Further, the expert model for holding yields a large reward

when the holding is in the range of profit from -0.3 to 0.3%.

The reward function of the expert model is expressed by the following Eq (10).

rexpertt ¼

rt �m; if at is an expertaction in the range of profit

according to Table 4 below

rt; otherwise

ð10Þ

8
><

>:

where rt is the reward value, m is the predetermined positive constant and m�1. For the m
(predetermined positive constant), we constructed the range of profit based on profit distribu-

tion, and divided it into buy, hold, and sell actions based on the threshold. We set the threshold

at 0.3% because it is used as a general transaction cost, and it is possible to prevent a loss by

choosing a holding strategy if it does not generate more than 0.3% profit. In Eq (10), m is

applied step-by-step—depending on the importance of profit and frequency. As frequency var-

ies according to the profit interval, the absolute value of profit is important. Table 2 indicates

the design of predetermined positive constants of the expert model by profit interval. Due to

this conditional reward function rexpertt , we can control the reward, and through this equation,

we used the adjusted reward value to develop the proposed single expert model.

By controlling the reward value with m, we can create the enhanced model for specific

action according to the reward value. In detail, we modify the reward function by multiplying
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it and m for learning the action-specialized expert model when the model makes a correct

decision. For example, according to Table 2, the buy-specialized expert model obtains the

enhanced reward value that is m times larger than the common reward value when its decision

is correct in the range of profit. The enhanced compensation is only applied when the decision

is correct. If the decision is wrong, the reward value is small or under zero but not at the

enhanced penalty value. In other words, the model obtains larger reward values when it works

well in the specific action, and so becomes the specific action-specialized expert model. Thus,

each action-specialized expert model of buy, hold, and sell can be created by controlling the

enhanced reward function with m. In addition, we apply the extended discrete action space

and it makes the reward value larger than the 3-action space. The extended action space helps

the model determine whether the action is strong or weak. Specifically, the buy action in the

3-action model is only one, whereas, the buy actions in the 11-action model are five—which

means buying 1 to 5 shares. The action of buying 1 share is similar to a weak buy action

whereas the action of buying 5 shares indicates a strong buy action. In addition, since the

reward function of the action-specialized expert model with extended action space is defined

as multiplying reward value, m and extended action (the number of shares), the action-special-

ized expert model can obtain more various reward values, which have a wide range. Thus, if

the model can detect the degree of obvious patterns, which can be the direction and magnitude

of dynamic market movements from input state, then it can determine how many shares to

buy or sell of a stock depending on the detected degree by choosing the correct extended

action.

Proposed ensemble model—action-specialized expert ensemble model

Fig 2 indicates the process of common ensemble model and our proposed model. The reward

of common model is the raw value of profit or Sortino ratio and common ensemble consists of

these models. The reward of our proposed model, on the other hand, is controlled by an addi-

tional value which is compensation for the expert action under specific condition. In this way,

it consists of three different action-specialized expert models based on DRL. In Fig 2, the col-

ored boxes represent enhanced expert action of each expert single model. In the common

ensemble method, performance substantially improves because an ensemble of a plurality of

networks can be averaged to reduce the deviation of the resulting network. Unlike the com-

mon ensemble method that combines similar models, our proposed ensemble method com-

bines buy-, hold-, and sell-specialized single expert models to improve performance. For

instance, our proposed ensemble model functions similarly to three experts from different

fields cooperatively making decisions with unifying opinions. Thus, each expert model yields a

different inference or decision with the same input; however, our ensemble method improves

performance. When we employ it, we use the soft voting ensemble method, which can avoid

Table 2. Predetermined positive constants of the expert model by profit interval.

Expert model: Buy Expert model: Hold Expert model: Sell

Range of

profit

Predetermined positive constant

(m)

Range of profit Predetermined positive constant

(m)

Range of profit Predetermined positive constant

(m)

-1– 0.3% 1 -1–-0.3% 1 -1–-5% 10

0.3–1% 3 -0.3–0.3% 7 -5 –-3% 7

1–2% 5 0.3 –1% 1 -3 –-2% 6

2–3% 6 -2 –-1% 5

3–5% 7 -1 –-0.3% 3

5 –1% 10 -0.3 –1% 1

https://doi.org/10.1371/journal.pone.0236178.t002
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loss of information [16]. The soft voting method equation is as follows.

Outputtj ¼ softmax at½j�ð Þ ¼
at½j�

PJ
j¼1

expðat½j�Þ
ð11Þ

where Outputtj is converted from the softmax function with at[j] at time t. at is the action as

outputs of the model and J is the number of outputs. The softmax function normalizes each

action value, which is the Q-value in DQN in the expert model, between 0 and 1. Since the

sum of all the action values after applying the softmax function becomes 1, each value of output

layer of DQN in the expert model indicates the probability of each action. For the final deci-

sion of the expert ensemble model, the Q-value of DQN in each expert model takes the soft-

max function. After that, the average of the activated Q-values of buy, hold, and sell-

specialized expert models become the final outputs of the expert ensemble model, that is, the

Q-values of the expert ensemble model. Thus, the action of the highest Q-value of the expert

ensemble model is selected as the final decision. To describe our proposed method in detail,

the DQN algorithm for our model is provided in Algorithm 1 below.
Algorithm 1 Deep Q Network for Single Models and Action Specialized
Expert Models
Hyperparameters: M—size of experience replay memory, R—repeat step of
training, Xtrain—training data set, Ttrain—episode of training data, m—
predetermined positive constant, mini-batch size—64, C—episode of
updating target Q̂ network, Ttest—episode of test data.
Parameters:w—weights of Q network, w-—weights of target Q̂ network
Variables: Total Profit—cumulative profit as performance measure, st—
state space at time t, at—action space at time t, rt—reward at time t,
rexpertt —reward for expert model at time t
Initialize replay memory M
Initialize the Q network with random weights w

Fig 2. Process of common ensemble model and our proposed model.

https://doi.org/10.1371/journal.pone.0236178.g002
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Initialize the target Q̂ network with weights w- = w
Training Phase
for STEP = 1,R do
Set training data set Xtrain
Total profit = 1
for episode = 1,Ttraindo
Set state st
Choose action at following ε-greedy strategy in Q
If common single model == True then
rt = rt

Else if action specialized expert model == True then
If range range of profit == True and expert action == True then
rexpertt ¼ rt �m (Eq (10))

Else if range of profit == True and expert action == False then
rexpertt ¼ rt

Else if range of profit == False and expert action == True then
rexpertt ¼ rt

Else if range of profit == False and expert action == False then
rexpertt ¼ rt

end if
end if
Set next state st+1
If len(M) == max_memory then
Remove the oldest memory from M

Else
Store memory (st,at,rt,st+1) in replay memory buffer M

end if
for each mini-batch sample from buffer M do

Qðst; atÞ  Qðst; atÞ þ a � ðrtþ1 þ g maxa Q̂ðstþ1; aÞ � Qðst; atÞÞ
Total profit  Total profit+profitt.

end for
in every C episodes, reset Q̂ ¼ Q, i.e., set weights w- = w
end for
end for
Clear replay memory buffer M
Test Phase
Set test data set Xtest for Online learning
Set Total profit =1
for episode = 1, Ttest do
Repeat Training Phase with R = 1

end for
Ensemble Phase
Prepare three models of each expert action model
Ensemble these models by soft voting at each time t (Inference time
ensemble)

To prevent overfitting our proposed method and to train the network better, we used expe-

rience replay and epsilon-greedy in our DRL experiments. Regarding experience replay, all the

experiences are saved in the replay memory in the shape of<st,at,rt,st+1> during the training

of the DQN network. Then, the replay memory is uniformly shuffled to make a mini-batch of

random samples so that the mini-batch sample is not sequential. This eliminates the time

dependency of subsequent training samples. In addition, the observed experience is reused to

train when it is sampled repeatedly and improves data usage efficiency. Thus, it helps to avoid

local minima and prevent overfitting. Next, the epsilon-greedy method is used to solve explo-

ration exploitation dilemmas in DRL. The epsilon-greedy method chooses an action randomly

with probability ε and the maximum Q-value action with probability (1-ε). The epsilon(ε) is
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decreased over an episode from 1 to 0.1. This will result in completely random moves to

explore the state space maximally at the start of the training, which settles down to the fixed

exploration rate of 0.1 at the end of the training. Therefore, the epsilon-greedy method helps

to prevent overfitting or underfitting.

Data

Data design

In this study, we use the data of three indices: S&P500, HSI, and the Eurostoxx50, to verify our

proposed method. We obtained these data from the Yahoo Finance Website and used the

same period for each data set. Specifically, the training period spans from January 1987 to

December 2006, and the test period from January 2007 to December 2017. By establishing the

same time periods, we were able to compare how the RL model freely learns and yields differ-

ent results over the same period in different environments. The data for the state space consists

of the 200-days close price as the input, and the action space as the output generally relates to

buy, hold, and sell, with 3, 11, and 21 actions according to the number of actions and experi-

ments. The data set periods are described in Table 3. In order to discuss the trade-off between

training costs and performance in more detail, we prepared three more training data sets with

S&P500 with different time periods of 5, 10, and 15 years with same test data set period of 11

years. Based on these experimental settings, we could discuss the trade-off between different

time period data set and the performance and another trade-off between training time and the

performance.

Data analysis

Fig 3 above demonstrates how each index changed during the same period. The graph indi-

cates that, during the training period of 1987–2006, a common upward trend resulted from

economic growth. Unlike the S&P500 and Eurostoxx50 movements, however, HSI displays

different moves toward the end of 1990. During the test period, the three indices indicate dif-

ferent movements. In this period, S&P500 moved upward except during the global financial

crisis in 2008; however, HSI and Eurostoxx50 exhibited large fluctuations even after the finan-

cial crisis. HSI recovered slightly after the drop; however, Eurostoxx50 failed to recover after

the decrease. Against the backdrop of these differences, we can compare the effectiveness of

RL in terms of training and showing results. The movement during the test period can be

thought of as a Buy and Hold strategy [39]. In the test period, analyzing data with the Buy and

Hold strategy indicates that S&P500 increased by 89% and HSI by 47.3%, while Eurostoxx50

decreased by 16.3% (-16.3%).

Profit distribution

We analyzed our data set, and Fig 4 indicates profit distribution and data balance during the

training period. Only training data were analyzed, and after this period, the model will update

Table 3. Description of data sets’ periods.

Index Training Test

Period # of data Period # of data

S&P500 Jan 2, 1987–Dec 29, 2006 5040 Jan 3, 2007–Dec 29, 2017 2767

Hang Seng Index (HSI) Jan 2, 1987–Dec 29, 2006 4935 Jan 2, 2007–Dec 29, 2017 2710

Eurostoxx50 Jan 1, 1987–Dec 29, 2006 5151 Jan 3, 2007–Dec 29, 2017 2745

https://doi.org/10.1371/journal.pone.0236178.t003

PLOS ONE Action-specialized expert ensemble trading system

PLOS ONE | https://doi.org/10.1371/journal.pone.0236178 July 27, 2020 12 / 39

https://doi.org/10.1371/journal.pone.0236178.t003
https://doi.org/10.1371/journal.pone.0236178


with test data using online learning. First, we divide the profit distribution into units of 0.5%,

and all three indices seem to follow a normal distribution shape. Based on this analysis, the

reward function was adjusted so that the action-specialized expert model could adaptively

learn according to the profit. For example, the interval from 0.3% to 1%, which frequently

occurs in the expert model for action of buy, is 3 times for the existing reward, 5 times for the

interval from 1% to 2%, 6 times for the interval from 2% to 3%, 7 times for the interval from

3% to 5%, and 10 times for the interval that exceeds 5%. On the contrary, the adjusted part of

the expert model for action of sell is the same, and the expert model for action of hold is

applied 7 times in the -0.3% to 0.3% range. The reason for using 0.3% as the standard is that

the transaction cost is assumed at 0.3% in many studies [40–44]. Therefore, our model learns

for action of hold in the interval of less than 0.3%. The circle graphs for data balance also indi-

cate the ratio of buy, hold, and sell data based on 0.3%, and data for the three indices appear to

be balanced.

Normality test

We attempted to interpret these three indices data sets by referring to their statistical proper-

ties in Table 4. As is known, stock returns are characterized by negative skewness and sharp

Fig 3. Movements of the three indices in the training and test periods (Buy and Hold strategy).

https://doi.org/10.1371/journal.pone.0236178.g003
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kurtosis. Negative skewness means a distribution shape where small profits are frequent but

extreme losses occur. Sharp kurtosis is a characteristic of daily return distribution, and is lower

during long-term return distribution.

Table 4 shows the basic descriptive statistics of each index data set. First, to analyze the dis-

tribution of train data set and test data set of three indices from Table 4, the train data set of

S&P500 shows negative skewness of -1.48 and the test data set shows relatively weak negative

skewness of -0.10. The train data set of HSI shows negative skewness of -1.94, while test data

set shows positive skewness of 0.29. The train data set of Eurostoxx50 has a negative skewness

of -0.17, which is relatively weaker than the other indices, and the train data set has a positive

skewness of 0.12. Negative skewness is a distribution where small gains occur frequently and

extreme losses occur, while positive skewness means distributions where small losses occur fre-

quently but extreme gains occur. Considered together, all three indices show a more negative

skewness of the train data set than the test data set, and an upward trend with statistical

Fig 4. Profit distribution during the training period and data balance for buy, hold, and sell.

https://doi.org/10.1371/journal.pone.0236178.g004

Table 4. Descriptive statistics of each index data sets.

S&P500 HSI STOXX50

Train Test Total Train Test Total Train Test Total

Count 5039 2767 7806 4934 2710 7644 5150 2745 7895

Mean 0.0004 0.0003 0.0004 0.0006 0.0003 0.0005 0.0004 0.0001 0.0003

Std 0.0107 0.0126 0.0114 0.0168 0.0159 0.0165 0.0122 0.0150 0.0132

Min -0.2047 -0.0904 -0.2047 -0.3333 -0.1270 -0.3333 -0.0793 -0.0862 -0.0862

25% -0.0046 -0.0040 -0.0044 -0.0065 -0.0068 -0.0066 -0.0051 -0.0069 -0.0058

50% 0.0005 0.0006 0.0006 0.0007 0.0005 0.0006 0.0007 0.0001 0.0005

75% 0.0056 0.0055 0.0056 0.0083 0.0079 0.0082 0.0063 0.0072 0.0066

Max 0.0910 0.1158 0.1158 0.1882 0.1435 0.1882 0.0733 0.1100 0.1100

Skewness -1.4796 -0.1033 -0.8337 -1.9444 0.2875 -1.2299 -0.1703 0.1163 -0.0354

Kurtosis 31.7070 11.1981 21.7192 45.6856 9.4156 34.5147 5.3473 5.8628 5.9805

https://doi.org/10.1371/journal.pone.0236178.t004

PLOS ONE Action-specialized expert ensemble trading system

PLOS ONE | https://doi.org/10.1371/journal.pone.0236178 July 27, 2020 14 / 39

https://doi.org/10.1371/journal.pone.0236178.g004
https://doi.org/10.1371/journal.pone.0236178.t004
https://doi.org/10.1371/journal.pone.0236178


properties from 1987 to 2007. In addition, the S&P500 with negative skewness in the test data

set from 2007 to 2017 shows an upward trend graph while HSI with positive skewness shows

an upward trend, but it is more volatile and lower rising than the S&P500 (S&P500: 87%

increase, HSI: 47.3% increase). In addition, Eurostoxx50 shows a downward graph of -16.3%,

which shows characteristics of positive skewness that are prone to frequent losses. Statistical

characteristics of Kurtosis indicate the sharpness and the tail of the distribution. The kurtosis

of the train data set of the S&P500 and HSI is 31.71 and 45.69, respectively, with a sharp nor-

mal distribution with a long tail. These test data sets are 11.20 and 9.42, respectively, and are

more evenly distributed than the train data set. The kurtosis of Eurostoxx50 is 5.35 in the train

data set and 5.86 in the test data set, which is relatively more evenly distributed than S&P500

and HSI. We can also check the volatility of each index in the Table 4, with the highest volatil-

ity in the order of HSI, Eurostoxx50, and S&P500.

Fig 5 indicates the quantile-quantile (Q-Q) plots for each index, and they do not demon-

strate a linear pattern. This plot is a graphical technique for determining if two data sets come

from populations with a common distribution. This indicates that the data set is not a normal

distribution, and we establish that it follows a leptokurtic distribution shape through Figs 4

and 5.

Experiments

Experimental setup

The purpose of our proposed method is to create an automated trading system that is more

profitable. To achieve this, we develop the action-specialized expert ensemble method with

DRL. There are many studies to improve the accuracy of prediction in the financial sector, but

a higher accuracy of prediction does not mean higher profit. Thus, without return or price pre-

diction, we develop a profitable trading system based on DRL with action specific controlled

reward function to create the ensemble model of action-specialized expert models different

from the existing common ensemble method. The DQN network requires defining the state

and action space of the problem, as well as a reward function.

State space & action space

State space, as the input, uses the 200 days price data of each index. The agent analyzes the pat-

tern over 200 days and learns to take action. These experimental environments are similar to

those of previous studies [2, 7]. In this study, single and action-specialized expert models have

the same state space.

Fig 5. Q-Q plots for each index.

https://doi.org/10.1371/journal.pone.0236178.g005
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We attempt to apply the action space in three ways, and examine how results differ from

those of existing experiments when the available quantity increased 5 and 10 times. Further,

we want to verify our proposed method under various experimental situations. Therefore, the

first experiment was conducted with the same 3-action method—buy, hold, and sell—in which

the quantity of shares was limited to one. In other ways, we attempted to discretely increase

buy and sell actions. If the action space has 11 actions, there are 5 actions for purchase, 5

actions for sale, and 1 hold action. Additionally, the 21-action space case has 10 actions for

purchase, 10 actions for sale, and 1 hold action. Furthermore, these actions for purchase and

sale are the number of shares ranging from 1 to 5 or 10. As in the state space, the action spaces

of the single and expert models are the same.

Reward function

In the single model, we applied three types of reward functions: the profit, Sharpe ratio, and

Sortino ratio. We compared the trading system where only profit is used with the trading sys-

tem where profit and volatility are used. We employed three types of action spaces: the

3-action, 11-action, and 21-action spaces. Thus, at in Eqs (7), (8), and (9) is defined as the

number of shares: {−1,0,1},.{−5~−1,0,1~5}, and {−10~−1,0,1~10}. To be exact, since we cannot

trade these indices in the real market, at indicates the number of multiple shares of a stock. In

Eq (7), n is set to 100, and it is a network structure for maximizing the profit of 100 days by

observing 200 days. To verify the sensitivity of our proposed model, we first use the profit

function which only considers profit. Second, we use the Sharpe Ratio which allows for both

profit and volatility. Third, we use the Sortino ratio which only considers volatility in loss.

Action-specialized expert ensemble model

Our proposed model consists of three action-specialized expert models for buy, hold, and sell.

Fig 6 shows the process of our proposed method on training, test, and ensemble phases. In the

training phase, each action-specialized expert model for buy, hold, and sell is trained. Each

expert model follows steps for the training phase in Algorithm 1. As aforementioned in

Table 2, the action-specialized expert models have a specific range of profit, which is different

from the DQN models, to control reward value. After the training phase, we performed online

learning to match the RL approach with reflecting the dynamic financial market. We input the

first mini-batch of test data to obtain the first outputs of each action-specialized expert model.

Thereafter, through sliding window and the same mini-batch size as the test data, we trained

each action-specialized expert model, including former test data again; we input this next

mini-batch of test data to obtain the next outputs. The online learning continues till the end of

the test data. Further, we compiled the three expert models by soft voting, described in section

3.4, at each time t at inference time. To further explain the distinction between common and

expert ensemble models, the common ensemble model requires three models, which are

trained identically using the unenhanced reward function. The expert ensemble model, on the

other hand, uses an enhanced reward function to create expert models for buy, hold, and sell

action-specialized and ensemble these models.

Despite many advances in RL fields, DRL models are still unstable in learning, and hence, it is

difficult to reproduce state-of-the-art performance. Therefore, Henderson et al. [45] suggest that

presenting the mean and standard error of the five results shows a better performance of the

model than only the topmost result. Accordingly, most recent DRL studies [45–49] present the

mean and standard error (mean ± standard error) of five models. We ensembled the single mod-

els from the top five to three models and reselected the top five models from the ensemble results.

Expert models were selected by combining each two models of buy, hold, and sell, and we selected
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the top five models again from the expert ensemble results. Therefore, we also trained the models

of each approach 10 times and selected the top five to present the mean and standard error.

Fig 7 outlines the experimental steps. First, to compare the profit reward function with the

Sharpe and Sortino ratios, we examine it with single models and noticed that two ratios were

better than the profit reward function in two-thirds of these experiments. Second, since the

Sortino ratio is slightly better than the Sharpe ratio in the results of single model experiments,

we exclude the Sharpe ratio as a reward function. We then compare the profit reward function

with the Sortino ratio, which jointly considers profit and volatility. We also collect the top five

models of each reward function of the single model. Third, we train the action-specialized

expert networks with the profit and Sortino ratio reward functions and then collect the top

two models of each action-specialized expert model as Step 4. Step 5 is the ensemble step for

single models. We ensemble these three models out of five single models and extract the top

five out of the ten ensemble models according to the results. The next step is the development

of action-specialized expert models. We establish each expert model out of two models and

choose the top five of eight expert ensemble models. Lastly, we repeat Step 1 to 6 with three

types of extended discrete action spaces and three types of index data sets.

Describing the detailed architecture of our Q-network, we use three hidden fully connected

layers: the number of neurons is 200, 100, and 50, respectively. We use the ReLU activation

function and the following hyperparameters where the replay memory (M) is 10000, the step

of training (R) is 20, the episode of target Q-network (C) is 256, learning rate is 0.0001, the

gamma(γ) is the 0.85, and the mini batch size is 64; we also use Adam optimization.

Fig 6. Model training and the ensemble process on training as well as the test phase.

https://doi.org/10.1371/journal.pone.0236178.g006
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Experimental results and discussion

Single model with three reward functions

We investigated reward functions that consider both profit and volatility in the single model

experiment. Table 5 summarizes the top five models of each single model result using the

Sharpe and Sortino ratios as reward functions. In addition, the results of each ratio correlate

with the profit reward function. Since the average or volatility of the return is different depend-

ing on the window size of time series data, we conducted various window size tests. However,

we could not compare the two ratios even for each window size; consequently, we used a cross

window average to compare them. Specifically, it was not possible to compare the experimen-

tal results to determine which of the two ratios is a better reward function depending on win-

dow size, action, or index. Since the Sortino ratio was slightly better than the Sharpe ratio as a

result of cross-averaging, we only utilized the Sortino ratio when creating action-specialized

expert models. We observe that the results of the two ratios are better than the result of profit

in two-thirds of this experiment. We compared the reward functions using the profit and Sor-

tino ratio in the following experimental outline.

Results of action-specialized expert single model with two reward functions

Table 6 indicates results of the top two of each action-specialized expert models to be used in

the final expert ensemble, and each single model as compared with an expert single model.

When comparing results of the expert models according to each specific action, it is evident

Fig 7. The entire experiment processes.

https://doi.org/10.1371/journal.pone.0236178.g007
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that profit results of a few actions are lower than others in each expert model. For example, the

profit yielded by expert models for buy and hold is similar, while the profit yielded by the

expert model for sell is relatively low. In addition, the expert model for buy is better than

results of expert models for hold and sell. From these results, we noticed that the Sortino ratio

results were better than profit results in two-thirds of the single experiment. However, it is

unclear whether expert models may be effectively compared to single models. In other words,

the experiment demonstrates different results by index, number of actions, specific action, and

reward function. To demonstrate this comparison, we include the results in the Table 6.

Results of the action-specialized expert ensemble model

We investigated results of the proposed action-specialized expert ensemble system. We com-

pared ensemble results of expert models, which are specialized for each action, to ensemble

results of single models, which are well-balanced learning methods. Tables 7–9 and Figs 8–10

indicate results of the top five models of all experiments. Comparisons of ensemble methods

Table 5. Comparison of top five models’ average profits of single models with different reward functions.

Top 5 average, S&P500

# of action Ratio Window size Cross

0 15 20 25 30 35 50 Average

3 Profit 3.516 ±0.131 - - - - - - -

Sharpe - 3.133 ±0.050 3.192 ±0.098 3.159 ±0.035 3.178 ±0.146 3.203 ±0.094 3.242 ±0.047 3.184 ±0034

Sortino - 3.133 ±0.103 3.212 ±0.127 3.156 ±0.144 3.153 ±0.063 3.258 ±0.110 3.247 ±0.068 3.193 ±0.048

11 Profit 8.958 ±0.584 - - - - - - -

Sharpe - 10.369 ±0.252 10.654 ±0.787 10.402 ±0.337 11.907 ±0.420 10.328 ±0.674 10.274 ±0.241 10.656 ±0.572

Sortino - 10.272 ±0.588 10.455 ±0.402 10.647 ±0.634 10.351 ±0.057 10.849 ±0.560 10.516 ±0.337 10.515 ±0.191

21 Profit 20.71 ±0.424 - - - - - - -

Sharpe - 20.13 ±0.341 19.992 ±0.362 20.006 ±0.974 20.001 ±0.621 19.476 ±0.252 20.583 ±0.385 20.031 ±0.323

Sortino - 20.056 ±0.472 20.119 ±0.386 20.098 ±0.937 20.223 ±0.614 19.898 ±0.231 22.584 ±0.758 20.496 ±0.939

Top 5 average, HSI

3 Profit 3.22 ±0.032 - - - - - - -

Sharpe - 3.576 ±0.032 3.486 ±0.096 3.426 ±0.057 3.443 ±0.116 3.537 ±0.064 3.488 ±0.092 3.493 ±0.051

Sortino - 3.281 ±0.129 3.574 ±0.116 3.503 ±0.062 3.525 ±0.157 3.667 ±0.069 3.554 ±0.088 3.517 ±0.118

11 Profit 10.952 ±0.167 - - - - - - -

Sharpe - 11.968 ±0.508 12.117 ±0.437 12.175 ±0.305 11.828 ±0.459 11.411 ±0.427 11.598 ±0.617 11.85 ±0.273

Sortino - 11.446 ±0.330 11.75 ±0.194 12.156 ±0.363 11.319 ±0.251 11.801 ±0.271 11.846 ±0.544 11.72 ±0.274

21 Profit 21.436 ±1.165 - - - - - - -

Sharpe - 23.514 ±0.270 22.393 ±0.460 22.269 ±0.224 22.476 ±1.008 22.924 ±0.511 23.129 ±0.631 22.784 ±0.445

Sortino - 23.313 ±0.654 22.31 ±0.362 23.267 ±0.300 23.29 ±0.363 22.532 ±0.867 23.456 ±0.322 23.028 ±0.438

Top 5 average, Eurostoxx50

3 Profit 3.379 ±0.093 - - - - - - -

Sharpe - 3.456 ±0.096 3.415 ±0.118 3.425 ±0.174 3.553 ±0.202 3.319 ±0.028 3.284 ±0.025 3.409 ±0.088

Sortino - 3.556 ±0.205 3.265 ±0.112 3.389 ±0.017 3.314 ±0.053 3.327 ±0.105 3.415 ±0.125 3.378 ±0.094

11 Profit 9.068 ±0.127 - - - - - - -

Sharpe - 10.883 ±0.408 11.942 ±0.685 10.947 ±0.179 10.906 ±0.088 11.233 ±0.851 11.645 ±0.687 11.259 ±0.404

Sortino - 11.323 ±0.370 10.591 ±0.110 10.704 ±0.364 12.412 ±0.167 11.219 ±0.554 11.497 ±0.559 11.291 ±0.597

21 Profit 22.99 ±0.740 - - - - - - -

Sharpe - 20.649 ±0.405 23.793 ±1.162 21.978 ±0.301 22.241 ±1.184 20.651 ±0.272 21.049 ±0.536 21.727 ±1.109

Sortino - 21.258 ±1.055 22.624 ±0.694 21.778 ±0.424 23.255 ±0.843 22.325 ±0.850 21.098 ±0.455 22.056 ±0.760

https://doi.org/10.1371/journal.pone.0236178.t005
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Table 6. Comparison of top 2 action-specialized expert models and single models.

Top 2 returns of expert and single model, S&P500

# of action # of model Single Profit Profit Expert Single Sortino Sortino Expert

Buy Hold Sell Buy Hold Sell

3 1 3.774 3.657 3.709 3.089 3.242 3.563 3.521 3.305

2 3.492 3.473 3.252 2.913 3.217 3.481 3.396 3.269

11 1 9.899 11.376 11.056 9.297 10.43 11.395 9.907 9.612

2 9.066 11.049 10.624 9.189 10.393 11.154 9.848 9.569

21 1 21.482 22.266 19.377 22.296 21.237 19.314 19.491 22.047

2 20.85 21.488 18.59 21.502 20.43 18.939 19.056 20.322

Top 2 returns of expert and single model, HSI

3 1 3.269 3.625 3.433 3.71 3.555 3.767 3.552 3.498

2 3.232 3.436 3.281 3.483 3.504 3.426 3.378 3.204

11 1 11.196 10.421 10.775 10.771 11.686 10.17 10.901 11.972

2 11.108 10.102 10.401 10.624 11.494 10.1 10.804 11.521

21 1 22.947 19.18 21.034 20.011 23.892 24.41 23.438 22.718

2 22.764 18.943 20.921 19.813 23.427 23.84 23.099 22.066

Top 2 returns of expert and single model, Eurostoxx50

3 1 3.479 3.467 3.549 3.209 3.413 3.573 3.296 3.302

2 3.473 3.363 3.411 3.19 3.323 3.384 3.255 3.174

11 1 9.291 9.837 9.921 9.945 12.628 9.883 10.857 10.807

2 9.09 9.575 9.796 9.783 12.593 9.462 10.561 10.801

21 1 24.395 24.544 21.074 20.831 22.729 23.951 21.558 22.225

2 23.038 23.48 20.919 20.332 22.229 22.287 20.646 21.477

https://doi.org/10.1371/journal.pone.0236178.t006

Table 7. Cumulative profits of top five models on S&P500.

# of action # of model Reward function and Ensemble

Profit PE EPE Sortino SE ESE

3 1 3.774 4.093 4.394 3.242 4.142 4.499

2 3.492 4.016 4.36 3.217 3.781 4.488

3 3.446 4.003 4.221 3.104 3.757 4.471

4 3.438 3.85 4.153 3.102 3.669 4.443

5 3.43 3.792 4.106 3.1 3.655 4.423

Avg 3.516 ±0.131 3.951 ±0.112 4.247 ±0.113 3.153 ±0.063 3.801 ±0.177 4.465 ±0.028

11 1 9.899 10.145 17.059 10.43 13.02 16.591

2 9.066 9.942 16.602 10.393 12.589 15.829

3 9.06 9.912 16.178 10.346 12.197 15.821

4 8.64 9.878 16.083 10.32 12.038 15.795

5 8.123 9.736 15.97 10.267 11.997 15.68

Avg 8.958 ±0.584 9.923 ±0.132 16.378 ±0.402 10.351 ±0.057 12.368 ±0.387 15.943 ±0.328

21 1 21.482 24.564 28.346 21.237 23.457 26.926

2 20.85 24.431 26.926 20.43 23.267 26.573

3 20.46 24.331 26.837 20.267 21.88 26.292

4 20.401 23.835 26.576 19.659 21.843 26.258

5 20.359 23.626 26.499 19.522 21.458 26.14

Avg 20.71 ±0.424 24.158 ±0.363 27.037 ±0.673 20.223 ±0.613 22.381 ±0.817 26.438 ±0.282

PE: profit ensemble (common ensemble), EPE: expert profit ensemble, SE: Sortino ensemble (common ensemble), ESE: expert Sortino ensemble

https://doi.org/10.1371/journal.pone.0236178.t007
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are conducted using two reward functions (profit and Sortino ratio). First, the subsequent

tables are analyzed from the perspective of the expert ensemble, common ensemble, and single

models.

Table 8. Cumulative profits of top five models on HSI.

# of action # of model Reward function and Ensemble

Profit PE EPE Sortino SE ESE

3 1 3.269 3.833 4.68 3.555 4.02 4.516

2 3.232 3.74 4.662 3.504 3.888 4.319

3 3.216 3.699 4.644 3.383 3.855 4.302

4 3.215 3.684 4.501 3.376 3.813 4.246

5 3.17 3.643 4.465 3.345 3.8 4.231

Avg 3.22 ±0.032 3.72 ±0.065 4.59 ±0.089 3.432 ±0.082 3.875 ±0.079 4.323 ±0.102

11 1 11.196 14.05 18.102 11.686 14.462 17.875

2 11.108 13.985 16.62 11.494 14.45 17.106

3 10.847 13.92 16.22 11.32 14.158 16.997

4 10.833 13.783 16.028 11.08 14.117 16.963

5 10.778 13.771 15.862 11.014 13.872 16.921

Avg 10.952 ±0.167 13.902 ±0.110 16.566 ±0.808 11.319 ±0.251 14.212 ±0.222 17.172 ±0.357

21 1 22.947 24.277 26.835 23.892 26.355 31.558

2 22.764 24.265 26.342 23.427 25.929 31

3 20.655 23.934 25.141 23.226 25.582 30.158

4 20.431 22.249 23.752 23.099 25.465 29.759

5 20.382 22.215 22.873 22.805 25.046 29.521

Avg 21.436 ±1.164 23.388 ±0.952 24.989 ±1.501 23.29 ±0.362 25.675 ±0.442 30.399 ±0.767

https://doi.org/10.1371/journal.pone.0236178.t008

Table 9. Cumulative profits of top five models on Eurostoxx50.

# of action # of model Reward function and Ensemble

Profit PE EPE Sortino SE ESE

3 1 3.479 3.768 4.348 3.413 3.776 4.124

2 3.473 3.747 4.278 3.323 3.657 4.112

3 3.398 3.717 4.265 3.283 3.577 4.103

4 3.298 3.635 4.256 3.281 3.571 4.099

5 3.248 3.582 4.194 3.271 3.566 4.006

Avg 3.379 ±0.093 3.69 ±0.070 4.268 ±0.049 3.314 ±0.052 3.629 ±0.081 4.089 ±0.042

11 1 9.291 10.025 16.419 12.628 15.001 16.686

2 9.09 9.866 15.746 12.593 14.262 16.669

3 9.064 9.681 15.628 12.319 14.203 15.736

4 8.97 9.613 15.566 12.306 14.126 15.673

5 8.925 9.581 15.207 12.213 13.871 15.399

Avg 9.068 ±0.127 9.753 ±0.168 15.713 ±0.396 12.412 ±0.167 14.293 ±0.378 16.033 ±0.539

21 1 24.395 27.238 34.863 22.729 27.526 30.05

2 23.038 24.646 32.15 22.229 26.785 29.418

3 22.629 24.57 31.965 22.209 26.781 29.129

4 22.575 24.391 31.959 21.747 26.766 29.051

5 22.311 24.304 31.69 21.669 26.743 27.763

Avg 22.99 ±0.740 25.03 ±1.110 32.525 ±1.178 22.117 ±0.383 26.92 ±0.303 29.082 ±0.747

https://doi.org/10.1371/journal.pone.0236178.t009
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Fig 8. Performance of DQN, common ensemble, and our proposed model with two reward functions on S&P500.

https://doi.org/10.1371/journal.pone.0236178.g008
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Fig 9. Performance of DQN, common ensemble, and our proposed model with two reward functions on Hang Seng Index.

https://doi.org/10.1371/journal.pone.0236178.g009
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Fig 10. Performance of DQN, common ensemble, and our proposed model with two reward functions on Eurostoxx50.

https://doi.org/10.1371/journal.pone.0236178.g010
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Table 10 summarizes the top five averages for comparing expert ensemble methods to com-

mon ensemble and single models. As a result of analyzing the application of each ensemble,

the increase in the range of the models (PE, SE) applying the common ensemble in the single

model (Profit, Sortino) was 7.6–26.9%, which indicated an average increase of 14.6%. On the

other hand, the profit range of the model (EPE, ESE) applying an action-specialized expert

ensemble was 16.6–82.8%, which was 39.1% on an average. As a result, our proposed expert

ensemble method in this study was 21.6% more effective than the common ensemble method.

The ensemble method is widely used in general machine and deep learning; however, there are

only a few cases applied in RL. Likewise, since the experimental results of the ensemble method

as a newly attempted expert model appeared to be effective, we expect that our proposed

method can be applied in further expansion of financial and various fields in the future.

Figs 8–10 indicate the average of the top five models, demonstrated by the thick colored

line, and their standard error. Our proposed action-specialized expert ensemble model is most

effective for the profit and Sortino ratio reward functions. In certain cases, the blue line—rep-

resenting the expert ensemble with profit—is higher than the red line, which represents the

ensemble model with the Sortino ratio. Regardless, our experiments indicate consistent results

with the single, common ensemble, and expert ensemble models.

Experimental results of the extended discrete action space

We examine robustness of the proposed ensemble system with the extension of the discrete

action space. Above all, if we analyze Table 11, the increase in rate of the 3-action to the

11-action space is 302.4–505.5%, and the average increase is 427.2%. When increased from the

3-action to the 21-action space, the rate of the increase ranged from 668.1% to 985.8%, with an

Table 10. Average profit and increasing rate with common and expert ensemble.

Average profit and increasing rate, S&P500

# of action Reward function and Ensemble

Profit PE EPE Sortino SE ESE

3 Avg 3.516 ±0.131 3.951 ±0.112 4.247 ±0.113 3.153 ±0.063 3.801 ±0.177 4.465 ±0.028

% - 12.4 20.8 - 20.5 41.6

11 Avg 8.958 ±0.584 9.923 ±0.132 16.378 ±0.402 10.351 ±0.057 12.368 ±0.387 15.943 ±0.328

% - 10.8 82.8 - 19.5 54.0

21 Avg 20.71 ±0.424 24.158 ±0.363 27.037 ±0.673 20.223 ±0.613 22.381 ±0.817 26.438 ±0.282

% - 16.6 30.5 - 10.7 30.7

Average profit and increasing rate, HSI

3 Avg 3.22 ±0.032 3.72 ±0.065 4.59 ±0.089 3.432 ±0.082 3.875 ±0.079 4.323 ±0.102

% - 15.5 42.6 - 12.9 25.9

11 Avg 10.952 ±0.167 13.902 ±0.110 16.566 ±0.808 11.319 ±0.251 14.212 ±0.222 17.172 ±0.357

% - 26.9 51.3 - 25.6 51.7

21 Avg 21.436 ±1.164 23.388 ±0.952 24.989 ±1.501 23.29 ±0.362 25.675 ±0.442 30.399 ±0.767

% - 9.1 16.6 - 10.2 30.5

Average profit and increasing rate, Eurostoxx50

3 Avg 3.379 ±0.093 3.69 ±0.070 4.268 ±0.049 3.314 ±0.052 3.629 ±0.081 4.089 ±0.042

% - 9.2 26.3 - 9.5 23.4

11 Avg 9.068 ±0.127 9.753 ±0.168 15.713 ±0.396 12.412 ±0.167 14.293 ±0.378 16.033 ±0.539

% - 7.6 73.3 - 15.2 29.2

21 Avg 22.99 ±0.740 25.03 ±1.110 32.525 ±1.178 22.117 ±0.383 26.92 ±0.303 29.082 ±0.747

% - 8.9 41.5 - 21.7 31.5

https://doi.org/10.1371/journal.pone.0236178.t010
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average of 856.7%. We calculate these numbers only for increasing rate from the base amount

of investment 1.0 because of the different number of shares. For example, “302.4%” is calcu-

lated by the profit rate of PE of 11-action divide by profit rate of PE of 3-action (e.g., (9.923

−1.0)/(3.351−1.0) = 3.024). In simple comparison, the number of multiple shares of a stock

increased 5-fold when increasing from the existing 3-action to the 11-action space. In addition,

upon the increase from the 3-action to the 21-action space, the quantity increases by 10 times.

However, as the number of actions increases, it is possible to select under 5 or 10 actions and

experimentally obtain a mean value smaller than the maximum expected value. Unlike select-

ing the quantity for minimum 0 or maximum 1 in the 3-action space in network learning, the

model will choose the quantity in a flexible way, like 1 to 5 or 1 to 10 in the 11-action and

21-action space, respectively.

Further, we perform an extra test to compare the extended discrete actions in the 11-action

and 21-action spaces with multiple shares of a stock in the 3-action space. Fig 11 displays aver-

age performance of extended discrete actions and multi shares on each index. First, to explain

the x-axis, the 3-action space is for buy, hold, and sell with 1 share. Next, the 3-action space

with 5 shares is for buy, hold, and sell with 5 shares. The following 11-action space is for 5

actions for buy from 1 to 5 shares, 5 actions for sell from 1 to 5 shares, and 1 hold action. The

following 3-action space with 10 shares is for buy, hold, and sell with 10 shares. The next

21-action space is for 10 actions for buy from 1 to 10 shares, 10 actions for sell from 1 to 10

shares, and 1 hold action. The two graphs on the top of Fig 11 show the entire performance of

our experimental results with two reward functions on S&P500. The two graphs in the middle

are on HSI, and last two graphs are for Eurostoxx50. These graphs show that multiple shares

make more profit and the discrete action space model performs almost 29.3% better on an

average than the three action space model with multiple shares in all of the cases. As a result,

the result of the extended discrete action space is better than the case of multiple shares of a

stock in the 3-action space.

Table 11. Increasing rate of profit by extended action on each index.

Increasing rate of profit by extended action on S&P500

# of action Reward function and Ensemble

Profit PE EPE Sortino SE ESE

3 Avg 3.516 ±0.131 3.951 ±0.112 4.247 ±0.113 3.153 ±0.063 3.801 ±0.177 4.465 ±0.028

11 Avg 8.958 ±0.584 9.923 ±0.132 16.378 ±0.402 10.351 ±0.057 12.368 ±0.387 15.943 ±0.328

% 316.3 302.4 473.6 434.3 405.9 431.3

21 Avg 20.71 ±0.424 24.158 ±0.363 27.037 ±0.673 20.223 ±0.613 22.381 ±0.817 26.438 ±0.282

% 783.4 784.8 801.9 892.8 763.4 734.2

Increasing rate of profit by extended action on HSI

3 Avg 3.22 ±0.032 3.72 ±0.065 4.59 ±0.089 3.432 ±0.082 3.875 ±0.079 4.323 ±0.102

11 Avg 10.952 ±0.167 13.902 ±0.110 16.566 ±0.808 11.319 ±0.251 14.212 ±0.222 17.172 ±0.357

% 448.3 474.4 433.6 424.2 459.5 486.7

21 Avg 21.436 ±1.164 23.388 ±0.952 24.989 ±1.501 23.29 ±0.362 25.675 ±0.442 30.399 ±0.767

% 920.5 823.2 668.1 916.3 858.2 884.8

Increasing rate of profit by extended action on Eurostoxx50

3 Avg 3.379 ±0.093 3.69 ±0.070 4.268 ±0.049 3.314 ±0.052 3.629 ±0.081 4.089 ±0.042

11 Avg 9.068 ±0.127 9.753 ±0.168 15.713 ±0.396 12.412 ±0.167 14.293 ±0.378 16.033 ±0.539

% 339.1 325.4 450.2 493.1 505.5 486.7

21 Avg 22.99 ±0.740 25.03 ±1.110 32.525 ±1.178 22.117 ±0.383 26.92 ±0.303 29.082 ±0.747

% 924.2 893.4 964.7 912.5 985.8 909.2

https://doi.org/10.1371/journal.pone.0236178.t011
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Fig 11. Average performance of extended action and multi shares on three stock indices.

https://doi.org/10.1371/journal.pone.0236178.g011
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Figs 12–14 indicate detail actions of the best result of the action-specialized expert ensemble

model on each index in this study. We have only displayed the case of profit reward function

because the case of Sortino reward function is similar. Each action space consists of two pic-

tures. The first graph is the movement of each index during the actual test period and we mark

each action on it. We can compare the actual movement trend with decisions of model. The

second graph is the spread marking of actions to check a different number of actions. As seen

in Figs 12–14, the actions decision of our proposed model closely-resembles the real price

movement. We also can see the spread of actions, and it is evident that the network applies var-

ious actions according to the market situation and the extended discrete action space of the

experiment. In detail analysis by each index, our model on S&P500 learns the upward trends

and shows the result of continuously representing the buy action. The price movement of the

other two indices is more volatile than S&P500, and these results show various action decisions

depending on the strength of these signals.

Analytic results of our whole experiments

Analyzing our results in connection with Table 4, results of Eurostoxx50’s test period, which

actually decreased by -16%, were generally higher profit than those of the other two indices.

We think this is because the distribution characteristics of training data set and test set are sim-

ilar. The kurtosis of two data sets of Eurostoxx50 is almost the same, and the gap of skewness is

relatively small compared to S&P500 and HSI. For this reason, it seems to be able to learn rela-

tively better than the other two index environments. In addition, S&P500 shows a relatively

low volatility and upward trend during the train and test periods. This index pattern appears

to be too simple to learn various patterns. As a result, in contrast to the environment of the

other two indices that can learn a variety of information, the profit of trained model for

S&P500 was lowest, even though the real index was highest in the same test period. Lastly, the

HSI environment shows good results because the train and test data set movements are rela-

tively enough to learn various patterns.

Computational complexity

In the DRL approach, the computational complexity of the DRL model is important to under-

stand the burden of the architecture. Thus, we analyze this in two ways; time & space complex-

ity, and trade-off between training costs and performance.

Time & space complexity

In the reinforcement learning, the time complexity is sublinear in the length of state period,

and the space complexity is sublinear in the number of state space, action space, and steps per

episode. These can be expressed as big O notation, time complexity requires O(nT) space,

where nT = nenh is the total number of steps, ne is the number of episode, and nh is the number

of steps per episode. Space complexity requires O(nsnanh) space, where ns is the number of

states and na is the number of actions [50]. In addition, the computational complexity of

DRQN can be calculated based on the complexity of the reinforcement learning and LSTM.

The time and space complexity of an LSTM per time step is estimated as O(nw), where the nw
is the number of weights of network [51]. Thus, the time complexity of DRQN is O(nwnT) and

the spatial complexity is O(nwnsnanh). Since the common ensemble method combines three

single model of DQN, the time complexity is linear in the number of DQNs. However, it does

not affect the space complexity of ensemble method. Therefore, the time complexity of ensem-

ble method is estimated as O(nmnT), where the nm is the number of base models, and the space

complexity of ensemble method is estimated as O(nsnanh), which is the same as the spatial
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Fig 12. The detail actions of the best expert ensemble models of each action on S&P500.

https://doi.org/10.1371/journal.pone.0236178.g012
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Fig 13. The detail actions of the best expert ensemble models of each action on Hang Seng Index.

https://doi.org/10.1371/journal.pone.0236178.g013
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Fig 14. The detail actions of the best expert ensemble models of each action on Eurostoxx50.

https://doi.org/10.1371/journal.pone.0236178.g014
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complexity of DQN. Last, as the design of our proposed approach is the same as the common

ensemble method, our proposed method has the same complexity of time and space as with

the common ensemble method. We summarize the comparison of complexities in Table 12

below.

The inference time of the ensemble method takes almost 1.5ms longer than that of a single

model in our experimental environment (Experimental Server Specifications: CPU: Xeon E5-

2620, Ram: 64GB, GPU: GTX 1080 8-ways). Moreover, expert single models take almost 70s

longer to learn than common models. The reason for the longer duration is a result of judging

the range of profit and calculating reward values in the action-specialized expert model. Thus,

in training, our proposed expert ensemble model takes about 3.5 times longer than a common

single model and takes longer than the common ensemble model; however, its performance is

better than the single and common ensemble model. When we tested our proposed models,

since we focused on their performance, we did not train our proposed method simultaneously

in an advanced parallel system. Thus, if we conduct our proposed method with parallel or dis-

tributed system, we can reduce the learning time of experiments better. The computational

load is also a challenge to be solved in the reinforcement learning task. There are a number of

studies on synchronous parallel systems, asynchronous parallel learning, and distributed rein-

forcement learning systems [52–56].

Trade-off between training costs and performance

The trade-off between training costs and the performance were analyzed. First, we compared

the performance of our proposed model with S&P500 by reducing the duration of training

data to various lengths to discuss the trade-off between the different time period of training

data set and performance. In more detail, the period of our training data set of the original

experiment is 20 years (Jan 2, 1987–Dec 29, 2006) as seen in Table 3, however, we make 3

more training data sets which are different time periods of 5 years (Jan 2, 2002–Dec 29, 2006),

10 years (Jan 2, 1997–Dec 29, 2006), and 15 years (Jan 2, 1992–Dec 29, 2006) with same test

data set period of 11-years. Fig 15(A)–15(C) show the performances of different training data

sets and different actions, and Fig 15(D) displays the boxplot. In the boxplot, the red line is

mean value and the green line is median. As seen in Fig 15, the longer training data set makes

the better performance for all three discrete action spaces. In the more detailed explanation as

seen in Fig 16(A), the performances of 10 years, 15 years, and 20 years are 1.6, 2.1, and 2.7

times better than the performance of 5 years.

In addition, we investigate the trade-off between training time cost and performance by

measuring the training time of each different training data set and different action. We aver-

aged the top five cumulative profits for each category and displayed it in Fig 16. The left scatter

plot depicts the relative performance between the length of training data set. The training time

and performance of five-year training data are based on 1, and results of remaining data sets

are expressed as a ratio. The right scatter plot depicts the relative performance between differ-

ent discrete action spaces. The training time and performance of the three-actions are based

Table 12. The time and space complexity comparisons for our proposed algorithm and previous methods.

Method Time complexity Space complexity

DQN O(nT) O(nsnanh)

DRQN O(nwnT) O(nwnsnanh)

Common Ensemble O(nmnT) O(nsnanh)

Proposed method O(nmnT) O(nsnanh)

https://doi.org/10.1371/journal.pone.0236178.t012
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on 1, and results of the remaining data sets are expressed as a ratio. The training times of 10

years, 15 years, and 20 years are 1.1, 1.23, and 1.42 times longer than the training times of five-

years.

Student’s T-test of our proposed model on other methods

We experiment with the results of DQN, DRQN, and common ensemble of DQN to compare

the results with previous studies and compare these three results with our action-specialized

expert ensemble model. The experimental environment is only 3-action, and the data period is

set to 20 years for training and 11 years for the test in three indices. Fig 17 shows the mean and

standard error of five results from each model, and the performance of our method is excellent

in all three indices. We conduct a student’s T-test to see if this result is statistically significant.

Fig 15. Results of trade-off between different length of training period and performance with S&P500.

https://doi.org/10.1371/journal.pone.0236178.g015
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Fig 16. Trade-off between training time costs and the performance.

https://doi.org/10.1371/journal.pone.0236178.g016

Fig 17. Comparison of our proposed model’s performance with other algorithms’ performance on each index in 3-action space.

https://doi.org/10.1371/journal.pone.0236178.g017
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Based on our model, we conducted the student’s T-test (e.g., 2-sample T-test) on DQN,

DRQN, and common ensemble models. As a result of the T-test in Table 13, all p-values are

less than 0.05, so we can explain that our proposed model is statistically different from other

models. Overall, we evinced the performance of our proposed model and the student’s T-test

and we could believe our experimental results.

Conclusion

In this study, a new ensemble approach was proposed for automated trading systems using

reinforcement learning—specifically, an action-specialized expert ensemble trading system—

to improve performance. This ensemble model consists of action-specialized expert models

specialized in buy, hold, and sell actions. Since we developed each specialized model individu-

ally, our proposed method can reflect investment behavior in each model differently and

obtain various distribution effects. We verified our approach experimentally with three differ-

ent stock indices: S&P500, HSI, and Eurostoxx50.

First, our proposed method displays better performance than the common ensemble and

single models, and is 21.6% and 39.1% more effective than the common ensemble and the sin-

gle models, respectively. Second, we compared the profits of our proposed model to common

ensemble and single models to check the effect of the extension of the discrete action space.

Briefly, results indicate an increase of 427.2% and 856.6% on the 11-action and 21-action mod-

els, respectively. Further, our extra experiments indicate that the extended action space is

more efficient than multiple shares of a stock in the 3-action space. As the action space is

extended, the training of each network becomes increasingly difficult. However, these results

imply that our proposed method is well-trained with an extended discrete action space. Third,

we analyzed the results of our proposed model with various reward functions: profit, Sharpe

ratio, and Sortino ratio. As a result, the two ratios, which jointly consider profit and volatility,

demonstrate a 9.6% better performance than the use of profit only in two-thirds of our experi-

ments. We believe that both profit and volatility information is helpful in training the

network.

In this study, we apply our proposed method to a trading system. Since our action-special-

ized expert model is developed based on actions with controlling reward function in DRL, it

can be applied to other cases of DRL in other fields. For example, it is applicable to game fields.

In the fighting game, it is possible to create expert models for an attack specialized expert

model, a defense specialized expert model, and an evasion specialized expert model. Addition-

ally, in the soccer video game, an ensemble model can be generated by making an attack spe-

cialized expert model and a defense specialized expert model. For more examples, because

Table 13. 2-sample T-test of our proposed model on DQN, DRQN, common ensemble.

# of action Index S&P500 Hang Seng Index Eurostoxx50

2-samples t p-value t p-value t p-value

3 ESE / SE [57] 11.42 7.8E–30 8.46 3.6E–17 8.68 5.3E–18

ESE / DQN [47] 40.20 2.9E–301 18.44 2.6E–73 21.01 7.2E–94

ESE / DRQN [48] 39.54 9.7E–296 20.57 3.2E–90 22.05 5.9E–103

11 ESE / SE [57] 27.48 2.1E–154 17.25 9.4E–65 14.42 3.3E–46

ESE / DQN [47] 41.00 1.2E–302 38.94 1.8E–282 25.53 7.1E–135

21 ESE / SE [57] 10.92 2.0E–27 11.70 3.3E–31 5.65 1.7E–08

ESE / DQN [47] 30.51 2.7E–185 16.44 4.9E–59 12.42 7.8E–35

ESE: expert Sortino ensemble, SE: Sortino ensemble (common ensemble)

https://doi.org/10.1371/journal.pone.0236178.t013
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autonomous driving must be realistic in many ways, action-specialized expert models can be

created, such as expert models for recognizing moving vehicles, expert models for avoiding

parking vehicles, expert models for driving well, and cornering or break expert models. In

addition, in robot fields, we can develop an expert model for balancing, an expert model for

walking, and an expert model for moving angles, and so on. Another application is to extend

this study by first training the network with a discrete action space to a continuous action

space using transfer learning. Therefore, we believe that it is possible to expand this study to

various fields and further develop its application in financial fields in the future.
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