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Abstract

Computational pharmacokinetic (PK) modeling gives access to drug concentration vs. time profiles in target organs
and allows better interpretation of clinical observations of therapeutic or toxic effects. Physiologically-based PK
(PBPK) models in particular, based on mechanistic descriptions of the body anatomy and physiology, may also help
to extrapolate in vitro or animal data to human.
Once in the systemic circulation, a chemical has access to the microvasculature of every organ or tissue. However,
its penetration in the brain, retina, thymus, spinal cord, testis, placenta,… may be limited or even fully prevented by
dynamic physiological blood-tissue barriers. Those barriers are both physical (involving tight junctions between
adjacent cells) and biochemical (involving metabolizing enzymes and transporters).
On those cases, correct mechanistic characterization of the passage (or not) of molecules through the barrier can
be crucial for improved PBPK modeling and prediction.
In parallel, attempts to understand and quantitatively characterize the processes involved in drug penetration of
physiological barriers have led to the development of several in vitro experimental models. Data from such assays
are very useful to calibrate PBPK models.
We review here those in vitro and computational models, highlighting the challenges and perspectives for in vitro
and computational models to better assess drug availability to target tissues.
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Review
Computational tools permit to go beyond the frontiers of
feasible experiments (McLanahan et al. 2012). They allow
the generation and validation of mechanistic hypotheses
and the number of results from simulations is virtually
infinite. Pharmacokinetics (PK) models, and by extension
physiologically-based PK (PBPK) models, aim at simulating
quickly and at low cost the time course of the absorption,
distribution, metabolism, and excretion (ADME) of a given
drug in the body (Rostami-Hodjegan 2012). In doing so,
they can provide predictions of a drug concentration in
any organ or tissue (defined as a compartment) at any
point in time. Access to drug concentration at the target
cell level is important for understanding and predicting
therapeutic or toxic effects; PBPK models are thus both

important at the early stage of drug development and when
assessing potential toxicity targets (Benjamin et al. 2010).
PBPK model equations and parameters characterize

the various ADME processes and their interactions.
Some of the absorption and distribution parameters may
be estimated on the basis of tissue composition data
and of the drug’s physicochemical properties via quan-
titative structure-properties models (Schmitt 2008).
However, for estimating many of the PBPK parameters,
in vitro experimental models have been developed and
are essential (Cai et al. 2006).
There are many options when designing a PBPK

model: the number of compartments is not limited,
and many refinements are possible (Lee et al. 2009).
Among them, the mechanistic description of passage
through biological blood-tissue barriers appears very
promising for both drug discovery and toxicity assess-
ment. The challenges there are to characterize and
predict permeation across the barriers, to design mol-
ecules which cross (or not) those barriers, and to have
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access to the effective chemical concentration in the
target tissue.
In this review, we first recall the physiological basis for

chemical distribution in tissues protected by biological
barriers. We then describe the in vitro and computa-
tional tools to assess and predict barrier permeability.
Finally, we provide an overview of challenges and per-
spectives in this area.

Chemical distribution and physiological barriers
ADME processes
After entering the body, a drug follows an ADME
scheme (Willmann et al. 2005; Leahy 2003). Absorption
corresponds to the process by which the compound
enters the systemic circulation. This process crucially
varies according to the administration route, dose, and
form. For example, the rate-limiting step for absorption
following oral administration may be either the dissol-
ution rate (function of drug physicochemical charac-
teristics and the physiological environment), or the
transport rate (permeability) across the intestinal epithe-
lium (Lennernas 2007). Distribution involves mechanisms
of drug dispersion and transport throughout the fluids
and tissues of the body. Distribution can be limited by
either perfusion (when the tissues present no barrier to
diffusion), or permeability across vascular/tissue barrier or
across cell membranes inside tissues (Geldof et al. 2008).
Metabolism deals with the biotransformation of parent
drugs into metabolites, by metabolic enzymes such as
cytochromes P450, dehydrogenases, transferases… (Emoto
et al. 2010; Yengi et al. 2007). Finally, excretion is the
removal of the drugs (or their metabolites) from the body
(Aimone 2005).
According to these ADME processes, the free con-

centration of a drug in a specific tissue usually depends
on its plasma free concentration, the plasma/tissue bar-
rier permeability, its tissue binding, cellular membrane
permeability, and metabolic modifications by cellular en-
zymes. Physiological barriers may be encountered at all
absorption, distribution, and excretion steps (Kitamura
et al. 2008), from the skin and the intestinal barriers
regulating absorption, to distribution at the level of sev-
eral target tissues like brain or testis, and to excretion in
kidney, intestine,… An exhaustive review of all those
biological barriers is out of the scope of this work and
we will focus on blood-tissue barriers limiting distribu-
tion, for which details are given next.

Blood-tissue barriers
The key role of blood-tissue barriers is to modulate and
restrain permeability (Alexis et al. 2008). They are both
physical and biochemical. Physical barriers consist in a
layer of cells with closely associated membranes between
adjacent cells. Membrane occlusion is mediated by protein

complexes, like occludins and claudins for the tight junc-
tions, cadherins for adherens junctions, and connexins for
gap junctions. Biochemical barriers involve the metabol-
ism of chemicals by metabolizing enzymes like cyto-
chromes P450, the influx or efflux of chemicals by
carrier protein like ATP-Binding cassette transporters
such as P-glycoprotein (P-gp). A complex and dynamic
multi-pathways process is involved in passage of mole-
cules across biological compartments (Figure 1).
The transcellular pathway corresponds to the passage of

molecules through cells (Cheung and Brace 2008). Passive
diffusion through cell membranes is the preferential route
for small lipophilic molecules (< 400 Da) (Levin 1980).
Passage can also be carrier-mediation via facilitated diffu-
sion or an active (or secondary active) process (Lockman
et al. 2008). Facilitated diffusion corresponds to the trans-
port of a molecule following its concentration gradient.
Active processes involve energy to move a molecule
against its electrochemical gradient. This energy can be
provided 1) directly by the transporter itself which is able
to hydrolyze ATP, or 2) secondary following the use of an
ion concentration gradient. The compounds using those
specific transporter systems are mostly hydrophilic.
The paracellular pathway permits the passage of small

hydrophilic molecules through gaps existing between
cells, despites cell junctions (Vandenbroucke et al. 2008).
This kind of transport is considered to be passive (driven
by diffusion). However, charge selectivity often occurs,
notably for modulating the passage of molecules via
pores between junctional proteins. Tight junctions be-
tween cells are most of the time organized in complexes:
tight and adherens junctions for brain (Stamatovic et al.
2008); tight, adherens, and gap junctions for testes
(Wong et al. 2004). Tight junctions fuse membranes of
two adjacent cells. Adherens junctions physically con-
nect the cytosquelettons of neighboring cells. Gap junc-
tions connect two adjacent cells and form pores
allowing small molecules to pass between the cytoplasm
of neighboring cells (Li et al. 2012).
Another process involved in limitating the passage of

molecules is efflux transport, by active transporters such
as P-gp, which extrude back molecules after they have
entered the cells (Edwards et al. 2005).
The presence of metabolizing enzymes in the layer of

cells forming the barrier may also modulate chemical
availability at the tissue level (Miksys and Tyndale 2009).
For example, chemicals can eventually be metabolized
into a more active compound, a fact exploited by pro-
drugs (Cucullo et al. 2012).
The presence of barriers between blood and tissues is

a challenge for PBPK modeling, because of their relative
complexity. Fortunately, in vitro and computational
methods intending to predict permeability have been
developed and can be put to use.
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In vitro methods to evaluate chemical permeability
through physiological barriers
In vitro models have been extensively used as alternative
methodologies to in vivo models for evaluating the bio-
availability at the level of organs protected by physio-
logical barriers. Even if it is impossible to reproduce the
complexity of in vivo systems, in vitro models can be
designed with sufficient relevant features (Cucullo et al.
2011). An exhaustive review of all the available in vitro
methods for assessing chemical permeability is out of the
scope of this article (several reviews exist, see for example
Sarmento et al. (2012)), and we chose to describe the main
kinds of in vitro models, focusing on the endpoints mea-
sured and their relevance to PBPK model inputs.

Overview of the most commonly used in vitro models
According to the endpoint investigated, several in vitro
models have been developed, ranging from the deter-
mination of partition coefficients to more mechanistic
experiments (Table 1).
Cell-based assays consist of biological material from

different levels of organization (from subcellular frac-
tions to tissue fragments) and characterization (from
well-described cellular transport processes to general
information as used when determining partition coeffi-
cients). Tissue homogenates or slices can be used to esti-
mate a drug’s partition coefficient between tissues and
an extracellular medium (Friden et al. 2007). Cell mem-
brane preparations are used to investigate particular
pathways, transporters or receptors (Miller et al. 2011).
Some endothelial and epithelial cell cultures, when

grown on permeable supports, spontaneously form mo-
nolayers and express functional junctions. Different levels
of refinement are possible, from simple monolayers
(Artursson et al. 2001; Trickler et al. 2010) to co-cultures
(Antunes et al. 2013) to dynamic systems (Cucullo et al.

2011). These models allow dynamic permeability meas-
urement through the monolayer. They also permit de-
tailed characterization of biochemical mechanisms, such
as receptor binding and uptake, or identification of rele-
vant signaling pathways with mRNA and protein expres-
sion data (Seki et al. 2006).
Cell-based assays, however, are expensive and labor-

intensive. In order to provide rapid, low-cost and
automation-friendly tools to measure passive permea-
bility, methods mimicking biological barriers with mix-
tures of lipids and organic solvents have been developed
(Kv et al. 2008). For example, the immobilized artificial
membranes (IAM) with HPLC (high-performance liquid
chromatography) columns (Carrara et al. 2007) or the par-
allel artificial membrane permeability assay (PAMPA) give
passive permeation estimates which correlate well with
cell-based assays (Masungi et al. 2008).
Most of these tools can be automated for high throughput

applications (Garberg et al. 1999). Because it is very difficult
to develop a single in vitro system that can simulate the hu-
man in vivo setting, various in vitro assays are usually
performed to investigate specific mechanisms (Abbott et al.
2008). Here, the key is to have a good knowledge of the bar-
rier organization in vivo, both in terms of presence/absence
of pathways and components, and in terms of their relative
quantities.

Limitations of in vitro models and challenges for
computational models
In vitro models have been optimized, becoming more
and more complex in order to mimic as closely as
possible biological barriers, and to permit investigation
of several permeation mechanisms (Wuest et al. 2012;
Hilgendorf et al. 2000).
Yet, in vitro systems remain quite simple and homo-

geneous, compared to the in vivo reality which involves

Figure 1 Dynamics at the level of physiological barriers. Epithelial and endothelial cell layers may form selectively permeable barriers, by
which molecules pass either between the cells (paracellular route), or through the cells (transcellular route). The paracellular route is restricted by
tight junction complexes, composed of communicating junctions, adherens junctions, and tight junctions. Influx mechanisms include carrier-
mediated influx, receptor transcytosis, and absorptive-mediated transcytosis. The most known carrier efflux mechanism is mediated
by P-glycoprotein.
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several cell types, numerous processes, complex spatial
structures, and much variability. It is difficult to obtain
all the needed information in a given in vitro model, and
computational tools allowing some representation of the
complexity (i.e., membrane transport systems, metabol-
ism pathways, cell polarity, and extracellular compos-
ition) would be very useful.
A universal issue with in vitro systems is the relevance

of their results to in vivo settings, and the conditions for
validity of their extrapolation to in vivo. Physiological
barriers are most of time complexes of junction proteins
and involve both physical and biochemical mechanisms.

It is rarely possible to assess the effects of all this com-
ponents on resulting permeability in a unique stand-
alone in vitro experiment. Firstly, it has been shown that
junctions are tighter in vivo than in vitro (Garberg et al.
2005); the in vitro configuration, although being im-
proved with tridimensional structures, still lacks rele-
vance. Also, barrier protein functionality is under strong
dependence of intercellular signals (like in the blood-
testis barrier (Siu et al. 2009)); the in vitro conditions
may not allow information to be shared between cells, as
well as functional proteins to be expressed (Schug et al.
2013). Finally, the link between any in vitro model and

Table 1 In vitro models for predicting barrier permeability/drug availability to protected organs

In vitro model Principle Examples Advantages Limitations

Tissue
homogenates or
slices

Measurement of partition coefficient by
two main methods:

• Rat brain
homogenates or
slices (Friden et al.
2007)

• Good conservation of tissue
organization and enzymatic
capabilities

• Variability in preparations

• Estimation of the fraction of unbound
drug in the tissue by microdialysis of
tissue homogenate against a drug-
containing buffer solution

• Measure of the distribution of
unbound drug in slices incubated in a
drug-containing buffer

• No information on the
dynamics of the process,
an equilibrium value is
obtained

Cell membrane
preparations

Mechanistic characterization of specific
target proteins (transporters in
particular)

• Human cell
membrane
preparations (Miller
et al. 2011)

• Simple, fast, cost-effective • Presence of false
positives

• Focused assay system • Lack of relevance (for
example, transcriptional
control cannot be taken
into account)

• Detailed mechanistic
measurements feasible

• No metabolism

Cell
cultures

Primary
cells

Measurement of permeability
endpoints:

• Rat primary sertoli
cells (Siu et al. 2009)

• Large number of features similar
to the in vivo phenotype

• Downregulation or
altered expression of tight
junctions, transporters,
enzymes and receptors

• Monolayer transepithelial electrical
resistance

• Good ability to form efficient
barrier in vitro

• Difficult to cultivate

Cell
lines

• Monolayer permeability to hydrophilic
paracellular markers (lucifer yellow,
sucrose, dextrans,…) between donor
and receiver compartments

• Caco-2 cells
(Inokuchi et al. 2009)

• When of human origin (most of
time), better extrapolation than
when of animal origin

• Less efficient in barrier
straightness than primary
cultures

• Easy to use and cultivate • Difficulty in obtaining the
entire phenotype

• Reproducible • Genetic modifications:
lack of relevance

Co-
cultures

Investigation of: • Caco-2/HT29
co-culture (Antunes
et al. 2013)

• Better representation of tissue
heterogeneity

• Difficult to cultivate

• Transport mechanisms

• Signaling pathways

Immobilized
artificial
membranes

Measurement of passive permeation of
compounds in a given environment
(according to membrane composition)

• Immobilized
artificial membranes
with HPLC columns
(Carrara et al. 2007)

• Ready-to-use • Only account for passive
permeability and do not
assess potential active
transport

• Cost-effective

• Composition easily modifiable to
mimic a tissue (addition of vesicles
or liposomes in suspension, single
phospholipid bilayers)

• Parallel artificial
membrane
permeability assay
(Masungi et al. 2008)
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in vivo conditions has to be clearly defined and quan-
tified, ideally with well-justified mathematical des-
criptions. Spatial organization may also be illustrated
computationally.

Computational methods to describe and predict drug
permeability through physiological barriers
PBPK models describe specific organs, tissues, and
subcellular localizations as a set of pre-defined com-
partments linked together by the vascular system. In
all those models, drug transport occurs at least via
blood (Pilari and Huisinga 2010). Formally, they cor-
respond to systems of differential equations for the
concentrations or quantities of a given drug in each
compartment. These compartments can be general
(blood, “highly-perfused tissues”, “poorly perfused tis-
sues”…) or very well described (Graf et al. 2012). In
flow-limited models, the derivative for the quantity XT

of a drug X in tissue T is typically defined as:

dXT

dt
¼ QT Cart−

XT

PT � VT

� �
ð1Þ

where QT is the blood flow rate, Cart the arterial blood
concentration, VT the tissue volume, and PT the
tissue-to-blood partition coefficient. The partition co-
efficient is still a meaningful parameter for an organ
protected by a passive barrier, even if the model is
quite simplistic. The rate of entry in the tissue will be
over-estimated, however, thereby over-estimating tis-
sue exposure.
A better approach for describing a permeability-

limited transport (either transcellular, paracellular, or
both) is to sub-compartmentalize the PBPK model: or-
gans get usually sub-divided into three (vascular, extra-
cellular and intracellular) compartments (Campbell
2009). Exchange rates between those compartments then
fall back on linear processes, such as Fick’s law of diffu-
sion (Kramer et al. 2009), or saturable transport if need
is. A simpler sub-division into two sub-compartments
will suffice to illustrate the model equations and intro-
duce the needed parameters. The derivative for the
quantity XTB in the tissue vascular blood compartment
of tissue T can be calculated as:

dXTB

dt
¼ QT Cart −

XTB

VTB

� �
− PST

f ubXTB

VTB
−

f utXTI

PT VTI

� �

ð2Þ
where, in addition to the parameters and variables de-
fined in eq. 1, VTB is the vascular blood volume in the
tissue, PST the apparent permeability-surface area prod-
uct, fub the unbound fraction of the compound in blood,
fut the unbound fraction of the compound in tissue, XTI

the quantity of X in the interstitial and intracellular

compartment and VTI the volume of that compartment
(VTI = VT – VTB).
For XTI, the corresponding differential equation is:

dXTI

dt
¼ PST � f ub

XTB

VTB
−

XTI

PT VTI

� �
ð3Þ

To model active transport, a transport rate term J
(nmol/min/mg protein) can be added to equation 3 and
subtracted from equation 2 (for influx, the reverse if ef-
flux is considered). J is usually based on conventional
Michaelis-Menten kinetics:

J ¼ VmaxXTB

VTBKm þ XTB
ð4Þ

where Vmax is the maximum transport capacity (nmol/
min/mg protein), and Km the half-saturation concentra-
tion. For efflux, the TB subscripts would be replaced by TI.
This leaves us with specific parameters to estimate.

Such estimates can be obtained in vitro. Partition coeffi-
cients can be obtained either by model-based predictions
according to the tissue composition (where the equation
parameters are given by in vitro experiments on drug
lipophilicity and plasma protein binding), or by in vitro
direct determination of the drug's concentrations ratio
in the buffer and tissue at steady-state (Poulin and Theil
2002b,2002a ; Rodgers et al. 2005; Rodgers and Rowland
2006). In cell monolayers or membranes in vitro, per-
meability can be evaluated using the equations for chem-
ical flux, based on Fick’s first law for passive diffusion
(Kramer et al. 2009). In that case, in vitro experiments
allow a direct determination of an apparent permeability
coefficient Papp (cm/s):

Papp ¼ dQ
dt

� 1
C0 � S

ð5Þ

where dQ/dt (mol/s) is the increase in the amount of
drug/tracer molecule in the receiver compartment after
a small time interval dt since time zero, S (cm2) the ex-
change surface, and C0 (mol/cm3) the initial drug/tracer
molecule concentration in the donor chamber.
The apparent permeability-surface area product, PST,

is simply (Koda et al. 2007):

PST ¼ Papp � S ð6Þ

Since junctions between adjacent cells restrict para-
cellular passage, a correction factor can be used when
extrapolating from one barrier condition to another, for
example when tight junctions are affected (Kondoh et al.
2012). Experimental permeability measurements may
also correspond to the sum of transcellular, paracellular,
or carrier-mediated passages (Amasheh et al. 2009). A
specific permeability rate for paracellular passage can be
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assessed by using a tracer molecule which does not pene-
trate in cells (e.g., lucifer yellow) (Inokuchi et al. 2009).
For active transport, determination of Vmax and Km

follows simply the lines of Michaelis-Menten parameters
estimation (Weiss and Kang 2002). When both active
and passive transport are present, it is possible to fit a
mixed model to the in vitro concentration time course
data, at early times:

dQ
dt

¼ VmaxC
Km þ C

þ PST � C ð7Þ

The above parameters can also be estimated by fitting
the whole PBPK model to in vivo PK data, but that is
obviously not feasible in the absence of such data, as
when in vitro to in vivo extrapolation is sought. The
third option is to obtain those parameter estimates from
computational "sub-models". Two main kinds of sub-
models are used for that purpose: statistical models
based on quantitative structure property relationship
(QSPR), and mathematical models based on mechanistic
description of biological processes.

Quantitative structure property relationship (QSPR)-based
permeability models
One way to estimate the permeability of drugs through
a given barrier is to link their chemical structures to the
property of interest: permeability. The principle of
QSPR models is that similar chemical structures should
lead to similar properties (Sheridan et al. 2009). These
are typical empirical statistical models, calibrated on a
training dataset of chemicals of known structures and
properties. Structures have to be somehow quantified
through “descriptors” which enter the model as input
variables, and the model gives a value for the property
of interest (Neely et al. 2009). For a new drug, the
calibrated model can therefore predict permeability, for
example, simply on the basis of its chemical structure
(provided that the new drug structure is not too far away
from the structure of the drugs used in the training set).
The ability of drugs to traverse a tissue barrier is condi-

tioned by tissue blood flow and several physicochemical
properties: molecular size, lipophilicity, plasma protein
binding, efflux pump affinity, molecular charge (Giaginis
et al. 2009). QSPR modeling efforts for barrier-crossing
have notably concentrated on passive permeability, for
which enough data was available. As a further simplifica-
tion, they concentrate on the prediction of partition coeffi-
cients (Chuman 2008), and mostly use molecular size
and lipophilicity as descriptors. The impact of molecular
size on paracellular permeability makes sense intui-
tively: the larger the molecule, the lower its ability to
diffuse through the tight junctions of the tissue barrier.
Lipophilicity property, often described by the octanol/

water partition, Log P, influences the transcellular pas-
sage through lipid membranes.
Because the data necessary for predicting active or

facilitated transport processes is currently insufficient,
only a few QSPR models exist for those transport pro-
cesses (Friedrichsen et al. 2001). Attempts to develop
QSPR models for P-gp efflux have highlighted difficulties
due to the broad specificity of this transporter (Gombar
et al. 2004). Some QSPR models have also been de-
veloped for predicting enzymatic reactions like, for
example, metabolic inactivation (Ekuase et al. 2011).
In spite of their usefulness for high-throughput screen-

ing of compounds on the basis of their physicochemical
properties, QSPR models may lack predictive capacity
(Chen et al. 2007). Mechanism-based models, which
should lead to better predictions and on a time and
space scale which would not be limited to the available
information, are useful complements.

Mechanism-based permeability models
Another way to predict permeability is to describe its
mechanisms according to biochemical and physical laws.
A finer description of mechanisms, taking receptor uptake
and transfer through membrane by carriers into account,
can bring high value to PBPK models, in particular in the
high dose range used in therapeutic applications (Tanaka
et al. 1999).
There have been several efforts to develop computa-

tional ways to gain mechanistic insight in permeability
processes. For example, Garmire et al. (2007) developed
an in silico transwell device, incorporating both spatial
(tight junctions) and functional (metabolizing enzymes)
barrier features, for mimicking the in vitro passive trans-
port properties through cell monolayers. Model predic-
tions of passive transport were validated across in vitro
data, and were reasonable approximations.
Another computational development is that of Dolghih

and Jacobson (2013). They developed a computational
approach of the blood–brain barrier combining two
mechanism-based models: for passive permeation and for
active efflux by P-gp. This model is a good illustration of
the importance to combine permeability mechanisms for
obtaining meaningful predictions.

Perspectives for quantitative predictions of bioavailability
to barriers-protected organs
Conceptualization
A well thought conceptualization is the key for develop-
ing a useful model. We have seen that there are several
ways to build a PBPK model, from description of few
global compartments to precise compartmentalization at
the tissue or even at the cell levels. The same is true for
parameters which can be estimated at whole tissue level
or at a finer level.
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One important thing in PBPK modeling is to have an
integrated view of the whole body behavior. To model
every detail is not feasible, and abstraction is essential to
understand. Hence, an approach coupling general chem-
ical behavior in the whole body and refinement through
description at lower levels in tissues of special interest
can give very useful insight about relevant mechanisms,
while being predictive at a higher level.
The success of QSPR-based models depends both on

the accuracy of algorithms and on the quality of input
data. Because of the methodological and experimental
variability present in published data, QSPR models may
be poorly predictive. This highlights the need of a bal-
ance between i) the understanding of the reality of com-
plex physiologic events to provide accurate systems
information and ii) the simplicity required for computa-
tional modeling feasibility.
Different tools detailing each step of ADME processes

are available and can be integrated into a coherent itera-
tive approach (Honorio et al. 2012; Bois et al. 2010;
Jamei et al. 2009). Yet again, the experimental evidence
is the limit in developing mechanistic models. Thus,
when designing a model, the balance has to be made be-
tween i) the available information and ii) the model
complexity to meet the objectives.

Refinement
The increasing understanding of mechanisms interven-
ing in chemical distribution allows the refinement of
predictions about a chemical availability at the site of its
effect, be it therapeutic or toxic. Another scale of com-
plexity for chemical distribution may be to work at the
level of cell organelles (Zheng et al. 2011).
As the area of systems biology is growing, investigating

barrier formation mechanisms via signaling pathways
can be of interest to predict behavior at a higher scale
and earlier (Lee et al. 2010). Furthermore, besides the
intrinsic functionality of physiological barriers, systems
biology can also describe dynamical/homeostasis barrier
mechanisms (Smallwood 2009).

Validation
As usual with computational models, usefulness and
relevance have to be carefully assessed. Indeed, in the
case of permeability models as in general, models of
biological systems are strong on assumptions and weak
on validation. A general framework for validation is
provided by Sornette et al. (Sornette et al. 2007). They
propose a formal iterative process, leading to the model
rejection or progressive refinement and validation. In the
particular case of computational models of biological
systems, robust validation techniques against biological
models have to be employed. Smallwood et al. (Smallwood
et al. 2004) describe a modeling paradigm for developing a

relevant predictive computational model of cellular
interaction. In their example, the key is to understand
the in vitro behavior. Cellular processes are stochastic,
and the generation of distributions using Monte Carlo
techniques appears to be the most relevant. Of course,
the ideal would be to have a set of in vitro experiments
and to apply a comparison metrics.

Conclusions
Time-course of a drug concentration in organs protected
by biological barriers can be obtained thanks to i) the
time-course of concentration in blood and ii) the char-
acterization of passage through those barriers. The first
kind of information can be obtained from whole-body
PBPK models, the second may come from several
methods, in vitro experiments, QSPR models, or
mechanism-based models defining a set of precise and
highly specific parameters.
Both understanding of mechanisms and estimating

model parameters in the field of barrier permeability can
be done thanks to in vitro models. Of course, the com-
plexity of the living systems and the imperfect predictive
power of computational models mean that in vitro
assays will be still used for a long time.
As long as experimental evidence come and scientific

hypotheses are validated, the mathematical models for
predicting passage across biological barriers will tend to
be increasingly complex and realistic. They should thus
lead to better extrapolation, from in vitro to in vivo, or
from animal to human.
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