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Abstract: The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative
and xenobiotic stress. Its regulatory mechanisms, e.g., stress-sensing mechanism, proteasome-based
regulation of Nrf2 activity and selection of target genes, have been elucidated mainly in mammals.
In addition, emerging model animals, such as zebrafish, fruit fly and Caenorhabditis elegans, have been
shown to have similar anti-stress systems to mammals, suggesting that analogous defense systems are
widely conserved throughout the animal kingdom. Experimental evidence in lower animals provides
important information beyond mere laboratory-confined utility, such as regarding how these systems
transformed during evolution, which may help characterize the mammalian system in greater detail.
Recent advances in genome projects of both model and non-model animals have provided a great
deal of useful information toward this end. We herein review the research on Keap1-Nrf2 and its
analogous systems in both mammals and lower model animals. In addition, by comparing the amino
acid sequences of Nrf2 and Keap1 proteins from various species, we can deduce the evolutionary
history of the anti-stress system. This combinatorial approach using both experimental and genetic
data will suggest perspectives of approach for researchers studying the stress response.

Keywords: anti-stress system; Drosophila Cnc; evolutionary history; Hydra Nrf; Keapl; mouse; Nrf2;
C. elegans Skn-1; yeast Yapl; zebrafish

1. Introduction

From birth, animals are destined to fight against a variety of stressors that disrupt their
homeostasis. All animal species must cope with oxidative stress generated by their own metabolism.
They were also forced to evolve detoxifying systems in case of accidental encounters with toxic
chemicals in the environment. Animals could not have prospered without the anti-stress mechanisms
evolved by their ancestral species.

Mammals inherited from their ancestors the Kelch-like ECH-associated protein 1
(Keap1)-NF-E2-related factor 2 (Nrf2) system, which is a defense system that confers protection against
a wide spectrum of stressors, including oxidative and chemical stress. Recent advances have revealed
that the system is related to a number of human diseases, such as cancer, neurodegenerative diseases
and diabetes mellitus [1-3], and many researchers are investigating potential medical applications.
Although the Keap1-Nrf2 system has mainly been studied using mice and human cells, increasing
evidence suggests that orthologous systems exist in lower vertebrates, such as zebrafish [4], and even
in Drosophila [5], which will be promising tools for accelerating the study of Nrf2.
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The advantages of lower-model animals are not limited to their usefulness in the laboratory and
few ethical problems. Recent improvements in genome projects have provided high-quality genomic
sequences, facilitating the development of lower-model organisms and enabling us to assess specific
biological functions from an evolutionary point of view. In addition to classic model animals, genomic
information from non-model animal species has been increasingly accumulated. This information
prompted us to track the evolutionary path of proteins of interest.

In the present review, we will highlight the evolution of the Keap1-Nrf2 system and attempt
to identify the unique characteristics of the mammalian Nrf2 system by reviewing the evolutionary
history of the conserved anti-stress mechanism.

2. Overview of the Keap1-Nrf2 System

2.1. Transcription Factor Nrf2 and Its Function

Nrf2 was discovered as a homolog of nuclear factor-erythroid 2 p45 (NF-E2), which plays an
essential role in the transcriptional regulation of the (3-globin gene [6,7]. Unlike NF-E2, the function
of this newly-discovered transcription factor was not related to hematopoiesis; Nrf2-knockout mice
did not show any obvious phenotype and were normally grown and fertile with no anemia [8-10],
suggesting that Nrf2 regulates a different battery of genes from NF-E2.

The function of Nrf2 was first reported by Itoh et al. [11], who noticed the similarity between
the NF-E2 binding sequence and antioxidant responsive element (ARE). This regulatory sequence
is usually found upstream of genes encoding phase II detoxifying enzymes and had been known
to regulate the induction of these genes [12,13]. The down-regulation of the expression of phase II
enzymes in Nrf2-knockout mice indicated that Nrf2 regulated the global transcription of phase II
enzymes through ARE-dependent signals [11].

The main function of phase II enzymes is to detoxify the highly reactive intermediate metabolites
generated by phase I reactions and accelerate the excretion of toxic xenobiotics [14]. Benzo[a]pyrene is
a well-studied pro-carcinogen that forms a highly reactive intermediate after phase I metabolism
and is detoxified by phase II reactions. The loss of Nrf2 was suspected to potentially weaken
phase II metabolism and enhance the carcinogenicity of benzo[a]pyrene. This was experimentally
demonstrated by showing the high susceptibility of Nrf2-deficient mice to benzo[a]pyrene-induced
tumor formation, suggesting that Nrf2 is indispensable for intact phase II metabolism [15-17]. Later
studies revealed that the Nrf2 system also regulates phase III xenobiotic transporters [18,19] as well
as phase I-related genes [20,21], suggesting that Nrf2 is involved in the entire process of xenobiotic
metabolism. In addition, as ARE sequences were also found upstream of antioxidative genes, such as
heme oxygenase 1, Nrf2 was shown to be the master regulator of the oxidative stress response [22]. The
mode of action of many toxic chemical stressors is the generation of reactive oxygen species; therefore,
Nrf2 plays an important role in the defense against various chemical-derived stresses, such as diesel
exhaust, peroxide, heavy metals and other electrophilic compounds [23-25]. The Nrf2-dependent
induction of xenobiotic metabolism and antioxidant system likely contributed greatly to animal
evolution in a rapidly changing environment.

The Nrf2 system is also activated by endogenous cues, such as endoplasmic reticulum (ER)
stress, and confers defense against such stress [26,27]. This protection may be partly due to
the Nrf2-dependent induction of proteasome subunits [28,29], which destroy unfolded proteins
accumulated in the cell. Another endogenous Nrf2-activating signal is the disruption of autophagy [30],
which implies that the Nrf2 system can be activated by disorders of protein turnover. Numerous
studies have shown that these internal stresses are related to various diseases; as such, Nrf2 has
attracted attention as a potential therapeutic target.

By contrast to these beneficial effects on human health, adverse effects of the Nrf2 system have
also been reported: Nrf2 is constitutively activated in cancer cells and confers resistance against
chemotherapy [31-34]. Surprisingly, Nrf2 activates the pentose phosphate pathway and remodels
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cellular metabolism, which enhances cancer cell proliferation [35,36]. These findings may support the
advent of Nrf2-blocking therapy for cancer patients.

2.2. Regulatory Mechanism of Nrf2-Dependent Gene Induction

Research on the Nrf2 activation mechanism has greatly progressed since a partner protein of
Nrf2, Keapl, was discovered (Figure 1A). Keapl was discovered as a protein that binds directly
to Nrf2 and negatively regulates the transcriptional activity of Nrf2 [37]. As Keap1 is the adaptor
protein for the ubiquitin ligase, Nrf2 is ubiquitinated in a Keapl-dependent manner and degraded
by proteasome system [38—40], which keeps the Nrf2 protein level low under unstressed conditions.
Nrf2-activating compounds inhibit the function of Keap1 by attacking highly reactive cysteine residues
and stabilize Keap1-Nrf2 binding. De novo-synthesized and accumulated Nrf2 translocates into the
nucleus and binds to ARE with its heterodimeric partner, small musculoaponeurotic fibrosarcoma
(small Mafs: MafG, MafK and MafF), to induce the target genes [7,41—44]. Since Keap1 receives the
redox information or environmental cues via its highly reactive cysteine residues, it is often called the
“sensor” molecule that determines the responsiveness of Nrf2-dependent gene induction.
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Figure 1. Regulatory mechanisms of the transcription factor-based oxidative stress response in
eukaryotes. The activation mechanism of: Keapl-Nrf2/Cnc system (A); Yapl in S. cerevisiae (B);
and Skn-1 system in C. elegans (C) are depicted.

In addition to the Keapl-dependent degradation, Nrf2 protein is also regulated in a
Keapl-independent manner. Salazar et al. [45] revealed that glycogen synthase kinase-33 (GSK-33)
inhibits Nrf2 activity by direct phosphorylation. Phosphorylated Nrf2 then interacts with -transducin
repeat-containing protein (3-TrCP), a substrate receptor for ubiquitin ligase complex, and is
ubiquitinated [46]. Although the physiological context in which this phosphorylation pathway is
modulated is unclear, Chowdhry et al. [47] reported that the inhibited GSK-3 pathway in cancer cells
activates Nrf2 and confers drug resistance by upregulating anti-stress genes.

These regulatory mechanisms of the Keapl-Nrf2 system have been identified mainly using
mammalian cells. Non-mammalian animals also have anti-stress systems analogous to the mammalian
Keap1-Nrf2 system. In the next section, we will overview these analogous systems in lower animals.
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3. Overview of the Anti-Stress Systems in Lower Model Organisms

3.1. Yap in Saccharomyces cerevisiae

Studies of budding yeast, Saccharomyces cerevisiae, have shown that the transcription-based
stress response stems from single-cell eukaryotes. Yap family proteins are a well-studied group
of transcription factors that confer protection against oxidative and chemical stress [48]. The Yap family
consists of eight paralogs of basic leucine zipper (bZip)-type transcription factors, Yap1-8. Of these
members, Yap1 is the major isoform that confers protection against oxidative stress (Figure 1B) [49].
Unlike Nrf2 in mammals, Yapl forms homodimers that bind to specific sequences of DNA, Yap
response element (YRE), and activate the transcription of target genes. The stress-sensing system is
also unique. Yap1 has cysteine residues in its C-terminus that function as sensors. Under unstressed
(reduced) conditions, Yap1 localizes in the cytosol by the action of exportin chromosomal maintenance 1
(Crm1), and the transcriptional activation is inhibited. When exposed to oxidative stress, the cysteine
residues of Yap1, however, are oxidized with the assistance of glutathione peroxidase 3 (Gpx3), a thiol
peroxidase, and an intramolecular disulfide bond is formed [50-53]. In this structure, Crm1 cannot
approach the nuclear export signal (NES) region of Yap1, resulting in the nuclear retention of Yap1 and
its target gene activation. Regarding this unique activation mechanism, the Yap1l system might stem
from a different evolutionary origin from the Keap1-Nrf2 system.

3.2. Cnc in Drosophila

The fruit fly, Drosophila melanogaster, is a classic model animal with substantial advantages in the
tields of developmental biology and genetics. The fly homolog of Nrf2 was discovered as an important
protein in the development of the cranial portion (labral and mandibular structure) of larvae [54].
Because of its unique expression pattern, this gene was named Cap’n’collar (CNC) [55]. Despite highly
conserved amino acid sequences with Nrf2, the anti-stress function of Cnc was not described until
the discovery of the transcript variant, CncC, which contains N-terminal domains homologous to
Nrf2 [56,57]. CncC was demonstrated to have an anti-stress function in adult flies [58]. In addition, the
activity of CncC was regulated at the protein level by the direct interaction with Keap1 [58,59], and
heterodimerization with Drosophila small Maf protein, Maf-S, was also demonstrated [60]. The target
genes of fly CncC are similar to those of Nrf2 in mammals. Phase I and II enzymes, antioxidant proteins
and proteasome subunits are shown to be under the regulation of CncC [58,61-63]. These analogies
suggest that the Keap1-CncC system in Drosophila evolved from a common ancestral system with the
mammalian Keap1-Nrf2 system.

3.3. Skn-1 in Caenorhabditis elegans

The laboratory worm Caenorhabditis elegans is also a strong model in developmental biology, and
skinhead-1 (Skn-1), an ortholog of Nrf2 in mammals, was discovered as a protein that is important
for normal pharyngeal development [64]. Skn-1 has a similar inducible defense function to Nrf2,
namely protection against chemical stresses [65]. Uniquely, Skn-1 binds to specific DNA sequences
as a monomer due to the loss of leucine zipper domain, which is important for dimerization with
small Mafs in mammals (Figure 1C) [66]. Although the transcriptional activity of Skn-1 seems to be
regulated at the protein level, C. elegans does not have an authentic ortholog of Keap1 [67]. Instead, in
C. elegans, the WD40 repeat protein-23 (WDR-23)/damaged DNA binding protein 1 (DDB1) complex
is involved in the ubiquitination of Skn-1 under basal conditions [68]. However, it remains unclear
how Skn-1 escapes this negative regulation in stressed situations. Phosphorylation-based regulation
has also been described in the Skn-1 system, and three kinases—AKT, PMK-1 (p38) and GSK-3—were
shown to target the serine residues on Skn-1 [69-71]. Of these kinases, phosphorylation by PMK-1
activates Skn-1, while the others negatively regulate the Skn-1 function. Mammalian Gsk-3 and p38 are
also known to be involved in Nrf2 regulation [45,72]; therefore, this phosphorylation-based regulation
may be conserved from an ancestral system.
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Although the regulatory mechanism differs from that of the mammal Nrf2 system, the target
genes of Skn-1 are similar to those of mammalian Nrf2. The gene expressions of phase I, II and III
detoxifying enzymes, antioxidant proteins and proteasome subunits are regulated in a Skn-1-dependent
manner [65,68,73]. This implies that Keap1-Nrf2/CncC and Skn-1 stem from the same ancestral system,
while in C. elegans, a unique regulatory mechanism was evolved.

3.4. Nrf2 in Zebrafish

In zebrafish (Danio rerio), an emerging model animal in medical research, the Keap1-Nrf2 system
is highly conserved with that of the mammalian system. Zebrafish Nrf2 and Keap1 were first cloned
in 2002 and found to be structurally similar proteins to their mammalian counterparts [57]. Dimeric
partners of zebrafish Nrf2 have also been identified and revealed to have conserved small Mafs, MafG
(co-ortholog MafG1 and MafG2) and MafK, along with fish-specific MafT (a possible ortholog of
mammalian MafF). All of these homologs can function as binding partners of zebrafish Nrf2 [74].
The function of the upstream ARE sequence was shown to be necessary for the Nrf2-dependent
induction of a gene encoding phase Il enzyme, gstp1 [75]. The defense function against xenobiotics and
oxidative stress was also demonstrated in vivo using Nrf2 mutant zebrafish strain [76,77]. Lineups
of Nrf2 target genes are also conserved in zebrafish. Proteins involved in the detoxification pathway,
antioxidant proteins, proteasome subunits and pentose phosphate pathway enzymes are also regulated
by the Nrf2 system in zebrafish [77-80]. This experimental evidence clearly shows that vertebrates
have an evolutionarily conserved Keap1-Nrf2 system.

4. Evolution of Nrf Protein

4.1. Comparison of Nrf Protein Structures

The existence of an analogous Keap1-Nrf2 system in Drosophila suggests that this system is
conserved among a wide range of species throughout the animal kingdom. We attempted to trace
the evolutionary path of the Keapl-Nrf2 system using genomic information from various animal
species (Table 1). In addition to laboratory animals, including mice, zebrafish, Drosophila and C. elegans,
the predicted protein sequences of Nrf were obtained from ascidians (Ciona intestinalis) [81], sea urchin
(Strongylocentrotus purpuratus) [82], octopus (Octopus bimaculoides) [83] and the diploblastic metazoan
Hydra magnipapillata [84].

Table 1. Summary of Nrf proteins.

Mm Nrf2 ENSMUSP00000099733
Gg Nrf2 ENSGALP00000032649
Nrf2 Xt Nrf2 ENSXETP00000003783
Dr Nrf2a ENSDARP00000062853
Dr Nrf2b ENSDARP00000106581
Mm Nrfl ENSMUSP00000080467
Gg Nrfl ENSGALP00000035379
Nrfl Xt Nrfl ENSXETP00000047513
Dr Nrfla ENSDARP00000094757
Dr Nrflb ENSDARP00000127352
Mm Nrf3 ENSMUSP00000005103
Nrf3 Xt Nrf3 ENSXETP00000026569
Dr Nrf3 ENSDARP00000015027
Mm Nfe2 ENSMUSP00000122476
Nfe2 Xt Nfe2 ENSXETP00000057159
Dr Nfe2 ENSDARP00000002745
Ci Nrf ENSCINP00000024999
Sp Nrf XP_011683763
Invertebrate Nif Ob Nrf XP_014784776
Dm CncC, Cncl NP_732833.1, NP_001247258.1
Hm Nrf XP_002160548.1

Ce Skn-1a, Skn-1c NP_741404.1, NP_741405
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Vertebrates have 4 Nrf genes—Nrfl, Nrf2, Nrf3 and NF-E2 (Figure 2A)—while lower animals
(ascidians, sea urchin, octopus, fly and Hydra) seem to have only 1 Nrf gene locus, implying the
diversification of this protein family in vertebrate evolution. Of the Nrf family proteins in mammals,
Nrfl has the most similar domain structure to Nrf2 and is known to regulate the transcription of
antioxidant and phase II enzymes through binding to ARE, forming heterodimers with small Mafs.
Despite this similarity to Nrf2, the regulatory mechanism of Nrfl differs substantially from that of
the Nrf2 system, largely due to the localization to the ER membrane by its ER binding region in the
N-terminal domain, while Nrf2 stays in the cytosol under unstressed conditions. In addition, activity
of Nrfl is regulated by the glycosylation/deglycosylation, not by a Keap1l-dependent ubiquitination
mechanism [85]. Similarly, Nrf3 is tethered to the ER membrane by its N-terminal region, and
heterodimerization with small Mafs is needed for DNA binding [86,87]. Studies of the Nrf3 function
are still in progress [88]. NF-E2 is specifically expressed in hematopoietic tissue and also need to
make heterodimer with small Mafs for the transcriptional regulation of target genes [89,90]. Genetic
studies have shown that NF-E2-knockout mice scarcely survived after the neonatal stage because of the
absence of platelets and severe hemorrhaging [91], and genetic ablation of Nrfl resulted in embryonic
lethality [92,93]. In contrast, mice with Nrf2 and Nrf3 knockout were viable and fertile [8,11,94],
suggesting that the functions of these four Nrf proteins have significantly diverged during vertebrate
evolution. Below, we compared the amino acid sequences of the Nrf proteins from various species
and four Nrf family proteins in mice (Figure 2B). Based on the alignment, the specific features of each
protein were extracted.

The Nehl domain, also known as the CNC-bZip domain, is an essential region for DNA
binding (CNC domain and basic region) and dimerization with small Maf proteins (leucine zipper
region). The amino acid sequence of this region, especially the basic region in the middle of this
domain, is highly conserved among a wide range of species, suggesting that all these proteins were
derived from the same origin, and that the DNA binding ability has been inherited from ancestral
species. Interestingly, Skn-1 was observed to have lost the leucine zipper, an essential region for the
dimerization, which may therefore explain why Skn-1 binds to DNA as a monomer.

The Neh2 domain is characterized by its interaction with Keap1, making it an essential domain
for the proteasome-dependent degradation of Nrf2 [37]. Direct interactions of two motifs (DLG at
the N-terminus and ETGE at the C-terminus) with Keap1 are necessary for the normal turnover of
Nrf2 protein [57,95-97]. The Neh2 domain was not found in the Hydra Nrf protein, but Nrf of other
triploblastic animals all have this domain. Nrfl also possess these two motifs, while NF-E2 and Nrf3
have lost the Neh2 regions. Another important point is the conservation of lysine residues between
the DLG and ETGE motifs, as seven lysine residues in this region of mouse Nrf2 were shown to be
ubiquitinated, which promotes proteasomal degradation [98]. Although the number of lysine residues
varies among species, all Nrf2 proteins possess at least two in this area, suggesting the conservation of
Nrf2 degradation through the ubiquitin proteasome system. Another important amino acid is Ser-40,
which is phosphorylated by protein kinase C. Phosphorylation of this serine has been suggested to
promote dissociation from Keap1 [99]. This site has only been observed in vertebrates, except for some
animals such as Xenopus tropicalis, fugu, medaka fish and platypus, suggesting that the regulation of
the Keap1 binding affinity by phosphorylation evolved after the appearance of vertebrates, but it was
subsequently lost in some species.

The C-terminal Neh3 domain was shown to be crucial for the transactivation of target genes.
Mutant Nrf2 proteins with an incomplete Neh3 domain cannot activate ARE-dependent gene
expression [100]. In particular, the VFLVPK motif in this region interacts with chromodomain helicase
DNA binding protein 6 (CHD6), which may be indispensable for the full activity of Nrf2. The amino
acid sequence of this motif was also highly conserved among all of the animals investigated.
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Figure 2. Comparison of Nrf family proteins. (A) The domain structures of four Nrf proteins in

mammals were compared based on the six Neh domains of Nrf2. Striped color denotes the region
that is partially conserved with the Neh4 domain. The ER binding domain (NHB1) that is specific to
Nrfl and -3 is also indicated; (B) Amino acid sequences of Nrf/Cnc transcription factors from mouse
(Mm), chicken (Gg), clawed frog (Xt), zebrafish (Dr), ascidian (Ci), sea urchin (Sp), octopus (Ob), fruit
fly (Dm), C. elegans (Ce) and Hydra (Hm). The amino acids identical to mouse Nrf2 are shaded in

gray. Leucine residues comprising the zipper structure in Nehl, the DLG and ETGE motifs in Neh2,
the VFLVPK motif in Neh3, the FxD/ExxxLLxE/D sequence in Neh4, the QxWXELxSxPELQ sequence
in Neh5 and the DSGIS and DSAPGS motifs in Neh6 are shaded in yellow. Basic amino acid residues
in the Neh1 basic region, lysine residues between the DLG and ETGE motif (ubiquitination sites) and

serine/threonine residues (Ser-40, phosphorylation site) in the Neh2 domain are shown in pink, blue

and orange letters, respectively.
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The Neh4 and Neh5 domains are also transcriptional activation domains, which interact with
transcriptional co-activator CREB binding protein (CBP). Transcriptional adapter motif (TRAM)
(FxD/ExxxL) in Neh4 is considered to be an essential motif for this interaction [101]. No homologous
region of the Neh4 or Neh5 domains was found in Hydra or in protostomes, Drosophila or octopus Nrf,
implying that these domains evolved only in deuterostomes. In sea urchins and ascidians, conserved
Neh4 and -5 domains were found. Teleost Nrf2 proteins (amazon molly, cavefish, cod, fugu, medaka,
platyfish, spotted gar, stickleback, tetraodon, tilapia and zebrafish) have complete TRAM as well
as a conserved Neh5 domain, although Nrf2a in cavefish does not have a conserved Neh5 domain
(http:www.ensembl.org). Regarding other Nrf family proteins in mice, TRAM was incomplete in Nrf3
and was not found in Nrfl or NF-E2. The Neh5 domain was conserved in Nrfl and NF-E2 but not
in Nrf3.

The Neh6 domain plays a role in the phosphorylation-based regulation of Nrf2 activity. The DSGIS
motif in the N-terminus of Neh6 is essential for the GSK-33-dependent phosphorylation and
subsequent ubiquitination by 3-TrCP [47]. This motif was found to be conserved in Hydra; therefore, the
Nrf activity might be regulated by phosphorylation-dependent degradation from common ancestors
of species investigated. This motif was also conserved in other Nrf proteins in mice, suggesting that
the activity of these isoforms is also modulated by phosphorylation. The Neh6 domain of mouse Nrf2
has another phosphorylation site in its C-terminus (DSAPGS motif) [47], but no conserved amino acid
sequence was observed in Nrf of Hydra, fly, octopus, sea urchin or ascidian. Although this motif was
found in vertebrate Nrf proteins, the conservation of the amino acid sequence was relatively weak,
and the functional importance of this region is unclear.

We next searched for homologous sequences to the N-terminal ER binding region of mouse Nrfl
and its vertebrate orthologs. N-terminal homology box1 (NHB1) was shown to be important for Nrfl
tethering to the ER [102]. Nrf3 of mouse, frog and zebrafish have a highly conserved NHB1 region to
Nrfl. The Nrf proteins of lower animals also have a homologous region, and the N-terminal half of
this region in particular tends to be highly conserved.

The conservation of each domain is summarized in Figure 3. Of the diversified Nrf proteins,
only vertebrate Nrf2 has all six Neh domains. In particular, TRAM in the Neh4 domain was well
conserved in the Nrf2 isoform, while it was unclear in Nrfl and Nrf3. Nrfl resembles Nrf2 but lacks
Neh4 and the C-terminus of the Neh6 domain. Nrf proteins in ascidians and sea urchins were found to
have a similar domain structure to Nrfl, including the NHB1 domain in their N-terminus. The Nrf
proteins of fruit fly and octopus are also characterized by ER binding NHB1, but they lack Neh4 and
Neh5 domains. Interestingly, the distance between the DLG and ETGE motifs in the Neh2 domain
is highly conserved among Nrf2 proteins in vertebrates. For Nrf2 ubiquitination, these two motifs
must be appropriately bound to Keapl homodimer as a hinge and latch that bridges the two Keapl1
molecules [97]; therefore, the distance between DLG and ETGE must be tightly controlled so that Nrf2
fits in the Keap1 homodimer structure. The distance between the two motifs was relatively short in
ascidians and sea urchins and relatively long in octopus and fly, possibly suggesting that the binding
structure of Keap1-Nrf2 varies among species.

Zebrafish have the second Nrf2 homolog, Nrf2b [103]. Although Nrf2b possesses Nehl, -2 and
-3 domains in a conserved manner, it totally lacks the transcription activation motif in Neh4, and the
homology of the phosphorylation site in Neh6 domain is low, implying that this homolog does not
have a conserved function with mammal Nrf2. Timme-Laragy et al. [103] pointed out the possibility
that Nrf2b mainly represses transcription, which corresponds to the loss of important domains in
this co-ortholog.
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Figure 3. A summary of the domain structure of the Nrf/Cnc transcription factors. Conservation of
the Neh domains was evaluated as follows: ®, highly conserved; O, relatively conserved; A, partially
conserved; x, not conserved. Specific motifs were described as “highly conserved” only when the
sequences were identical to mouse Nrf2. The amino acid lengths between DLG and ETGE motifs are
also shown.

4.2. Possible Evolutionary Path of Nrf Proteins

From the structural analysis above, we deduced the evolutionary history of the Nrf proteins
(Figure 4). Of the six domains of Nrf2 in mammals, ancestral Nrf might possess Neh1, -3 and -6 as
well as the ER binding region in the N-terminus. As the Hydra Nrf protein lacks an Neh2 domain
and possesses an ER binding domain, its activity is suspected to be regulated mainly at the binding
to the ER membrane, just like Nrfl in mammals. The rise of the Neh2 domain in triploblasts may
correspond to the appearance of Keapl-dependent regulation and probably activation in response
to various stressors. Data for sea urchins and ascidians have suggested that deuterostomes obtained
Neh4 and -5 domains, while protostomes (fly and octopus) did not. C. elegans evolved a unique protein,
Skn-1, that lacks most of the original domains, even the C-terminal half of Neh1 (leucine zipper).

At the appearance of vertebrates, the Nrf gene locus was diversified into four loci, which vary
in domain structure. In addition to obtaining six complete functional Neh domains, Nrf2 lost the ER
binding domain, thus suggesting that Nrf2 had avoided localization to the ER. Recent advances have
shown that Drosophila generates at least 16 variants of Cnc, one of which (Cncl) has a similar structure
to Nrf2 that lacks the N-terminal ER binding domain [5]. In addition, information from the octopus
database has shown that two mRNA variants are generated from the same Nrf locus, one of which
encodes the protein with the ER binding domain and the other lacking this domain. Skn-1 was also
shown to have splicing variants with a membrane binding domain (Skn-1a) and without it (Skn-1c).
The localization of Skn-1a to the ER was also reported [104]. Furthermore, the genomic information of
Ciona intestinalis shows that the Nrf locus generates two variants: one with an ER binding domain and
the other without it.
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Figure 4. The evolution of Nrf/Cnc transcription factors deduced from amino acid sequences. Gray
bars and subscripts (s1 and s2) in Deuterostomes Nrf denote products of alternative splicing.

Taken together, these findings suggest that, at the latest, the mechanism of alternative splicing
and generation of varied proteins from a single Nrf locus was already present at the appearance of
triploblastic animals. In vertebrates, at gene quadruplication, varied proteins are assigned to each
replicated locus. For the Nrf2 locus, a transcription factor regulated by a Keapl-dependent and
ER-independent mechanism is assigned.

5. Evolution of Keap1l

5.1. Comparison of Keap1 Proteins

We performed a similar phylogenetic analysis of Keapl (Table 2). In zebrafish, two Keapl
co-orthologs (Keapla and Keaplb) have been found [105]. Interestingly, teleosts, including amazon
molly, cavefish, cod, fugu, medaka, platyfish, spotted gar, stickleback, tetraodon and tilapia,
all have two Keapl co-orthologs (http:www.ensembl.org). To determine the evolutionary origin
of this duplication, we further consulted the genomic information of the African coelacanth
(Latimeria chalumnae) [106], green anole lizard (Anolis carolinensis) [107] and Xenopus tropicalis.
Two Keap1 co-orthologs were found in the coelacanth and frog but not in the lizard. The second Keap1
is suspected to have been generated at the appearance of vertebrates and lost in amniotes.

Table 2. Summary of Keap1 proteins.

Mm Keap1 ENSMUSP00000131029

Gg Keapl ENSGALP00000046666

Vertebrate Keapl Ac Keapl ENSACAP00000008820
Xt Keapl ENSXETP00000063060

Lc Keap1 ENSLACP00000008916

Dr Keaplb ENSDARP00000124228

Keaplb Ol Keaplb ENSORLP00000004762
Tn Keaplb ENSTNIP00000007190

ENSXETP00000049635, Xenbase

Xt Keapla (http:/ /www.xenbase.org/)
Keanla Lc Keapla ENSLACP00000018705
p Dr Keapla ENSDARP00000045763
Ol Keapla ENSORLP00000017543
Tn Keapla ENSTNIP00000020338
Ci Keapl ENSCINP00000017048
Sp Keapl XP_003724241.1
Invertebrate Keap1 Ob Keapl XP_014782077.1

Dm Keapl NP_788685.1
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Keapl is composed of three domains, broad complex-tramtrack-bric a brac (BTB), intervening
region (IVR) and double glycine repeat (DGR) domains (Figure 5A), all of which are important for the
inhibition of Nrf2 activity. N-terminal BTB is the essential region for the formation of the homodimer
of Keapl. Without this dimerization, Keap1 is unable to ubiquitinate Nrf2, and Ser-104 in this domain
is reported to be necessary for dimer formation [108]. Of note, this serine, including the surrounding
amino acids, is highly conserved in both vertebrates and invertebrates (Figure 5B).

A BTB IVR DGR
Keapt  [EEE mirir 1t
< = ™m0
e NQ NES  Nrf2 binding sites
wn O (6)&)
B BTB IVR Reactive cysteines
S104 NES C151 C273 C288
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Keap1 Ac Keapl  HKVVLASSSPVFKAMFT  LSKIFQDLTL GEHCVIH AVRCHSL LQKCELL

Xt Keap! HKIVLASSSPVFRAMFT ~ LSQIFODLTL  GEKCVIH AVRCHSL LORCEIL
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Figure 5. A comparison of Keapl proteins: (A) domain structures of Keapl; and (B) amino acid
sequences of Keapl proteins from mouse (Mm), chicken (Gg), anole lizard (Ac), clawed frog (Xt),
coelacanth (Lc), zebrafish (Dr), medaka (Ol), green spotted puffer (Tn), ascidian (Ci), sea urchin (Sp),
octopus (Ob) and fruit fly (Dm). The amino acids identical to mouse Nrf2 are shaded in gray. The serine
residues essential for homodimer formation in the BTB domain, NES consensus sequence in the IVR
domain and three reactive cysteine residues are shaded in yellow.

The C-terminal DGR domain is the Nrf2 binding region. A detailed structural analysis revealed
the direct binding sites in Keapl to the DLG and ETGE motifs of Nrf2 [97]. Nrf2 binding to this
domain is competitively inhibited by proteins that have ETGE-like motifs such as p62 and partner and
localizer of BRCA2 (PALB2) [30,109,110], suggesting that the interface between the DGR and Neh2
domains functions as a sensor for a certain type of cellular stress including autophagy deficiency
and DNA damage. Although some amino acids in this Nrf2 binding surface in the DGR domain
had been replaced with others with similar physicochemical traits, most of these sites were highly
conserved from flies to mice. Keap1-Nrf2 interaction might therefore already have existed at the rise of
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the ancestor of these animals (Figure 5B). Furthermore, Ser-602 is not conserved in Keapla of frogs
and fish. We previously showed that both Keapla and Keap1b in zebrafish were able to inhibit Nrf2
activity [105,111]. Ser-602 may not be important for binding with Nrf2. The IVR domain interacts with
Cul3 protein, which comprises the E3 ligase complex together with Roc1 [41,112,113]. This domain has
a consensus sequence of nuclear export signal (Lx(1_3)Lx(_4)LxL), which is important for localization
at the cytoplasm [114]. This signal sequence was also highly conserved among species, implying that
there is conserved regulation of the intracellular localization of Keapl.

The notable characteristic of Keapl is its richness in cysteine residues. Given their high reactivity,
cysteines can function as “sensor” amino acids [115]. When cysteines are attacked by reactive chemicals,
the function of Keap1 is hindered by structural changes, which results in Nrf2 activation [116-118].
Of the 25 cysteines in mouse Keapl, Cys-151, Cys-273 and Cys-288 were shown to have sensor
functions in vivo [119-121]. Cys-273 and its surrounding region were found to be highly conserved
among the animal species investigated, except for sea urchins. Cys-288 was also detected in all of the
species investigated, suggesting that these two cysteines are the oldest cysteines that function in stress
sensing. Of these two cysteines, Cys-273 has been lost from Keap1la in lower vertebrates, while Cys-288
has been lost from Keap1b in ray-finned fish (Actinopterygii). Cys-151 was found in Keap1 of ascidians
or higher animals, while sea urchins, octopus and fruit flies had not conserved this cysteine. These
differences provide important information for understanding the diversification of Keap1 proteins and
their function.

Regarding other cysteines, as summarized in Figure 6, Cys-77, Cys-171, Cys-196, Cys-297 and
Cys-395 are well-conserved among Kelch family proteins in mice; therefore, their evolutionary origin
may be older than the appearance of Keapl. Eight cysteines (Cys-226, Cys-241, Cys-319, Cys-368,
Cys-406, Cys-489, Cys-583, and Cys-613) are found in either flies or octopus, suggesting that these
cysteines are conserved from ancestral Keapl. Other cysteines may also have been obtained over the
course of evolution; for example, sea urchins have Cys-249 and Cys-434, and ascidians have Cys-38.

Cysteine (mouse) 23 38 77 151 171 196 226 241 249 257 273 288 297 319 368 395 406 434 489 513 518 583 613 622 624

Vertebrate Mm Keap1 OO OO0 O OO0OO0OO0OO0ODO0OO0oOOBOLODOLOLOLOLOOOL O OO OO
Keap1 GgKeapt x 000000000000 x00O0O0Txx0O0O0O0O0O0
Ac Keap1 x O OO O O0OOOO0OO0OO0OO0OO0ODCO0ODOOLOoO X OoOOoOOoOOoOOoOo o
XtKeap1 x O OO OO O0OO0OOO0OO0OO0OO0Oxx O OO0OOLOO x OO0 x x
LcKeapt x OO0 OO OO0OO0OOO0OO0OOLODOLOLOLOLOL x OO OO0 x x
Actinopterygii - DrKeap1b x O OO O O0OOOO0O x 0O x x x O OO0OO0OO0OO0O=xx OO0 OO0 O
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Tn Keap1b x O OO O OOOO0O x O x OO0 OO0OO0OO0OO0OOoO X OO0 x x
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Ob Keap1 x x O A O OO0OO0O x x OO0 O0OO0O0 x O x O x x OO0 x x
Dm Keap1 x x x A O O x x x x O O O x x x O x O x x x A x x

Figure 6. A summary of the cysteine residues of Keap1. The conservation of each cysteine is indicated
as follows O: conserved; A: not conserved but cysteine exists within three amino acids; x: not
conserved. Sensor cysteines are shaded in red, and cysteine residues conserved among Kelch family
proteins in mice are shaded in orange.

5.2. Possible Evolutionary Path of Keap1 Cysteines and Their Sensor Function

We attempted to clarify how Keapl changed during evolution (Figure 7). Of the three well-studied
“sensor” cysteines, ancestral Keapl possessed only Cys-273 and Cys-288. Cys-151 was obtained at the
appearance of chordates. In vertebrates, the Keap1 locus was duplicated, one of which lost Cys-273.
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Ray-finned fish further lost Cys-288 from another Keap1 co-ortholog, resulting in two distinct types
of Keapl: Cys-273-lost (Keapla) and Cys-288-lost (Keaplb) types. However, in lobe-finned fish
(Sarcopterygii) and tetrapods, there was no change in these cysteines, and amniotes lost the C273-lost
type Keapl, giving them only a single Keap1 locus.

Bilateria/Triploblastic animal

BTB IVR DGR
Ancestral Keap1 [l C C e
273 288
Chordates

Acquisition of Cys-151

Keap1 |[NCHN"CC’ Imaw

151

Duplication

Vertebrates
l Generation of Keapia

Keapt [GEMC C Imawm
Keapta ' [NNCHN c

Lobe-finned fish Ray-finned fish

and tetrapods Generation of Keap1b
Keapt [INCEN CC NN Keaptb WNCEN C L
Keapia | NG C NN Keapta [NCEN c' IS

Amniotes
Loss of Keapia

Keapt INCHN C C Immmw

Figure 7. The evolution of Keap1 proteins deduced from amino acid sequences.

Cys-151 has been determined to be an important cysteine for the detection of electrophiles, such
as tert-butyl hydroquinone (tBHQ), sulforaphane, diethyl maleate (DEM) and dimethyl fumarate
(DMF) [111,116,120,121]. Importantly, the sensor function of this cysteine is not determined only by
Cys-151 itself, but also by the surrounding amino acid. Kobayashi et al. [111], from the functional
difference of two zebrafish Keap1 co-orthologs, revealed that neighboring lysine, due to its positive
charge, is essential for Cys-151 to function as the sensor (see Figure 5B). In ascidians, neighboring
lysine is not conserved, so whether or not this cysteine has a sensor function is unclear. A possible
evolutionary scenario is that Cys-151 was coincidentally obtained in chordates, and positive charged
amino acids that appeared in vertebrates subsequently empowered the cysteine to be a sensor.
Although fruit flies have not conserved this cysteine, the ARE reporter gene was activated by DEM
treatment [5,122]. The mechanism for sensing electrophiles in flies is not fully elucidated, but other
Keapl1 cysteines may sense the signal, or a completely different mechanism may be involved. It was
reported that nitric oxide, an endogenous gaseous transmitter, also targets Cys-151 and activates the
Nrf2 system in mammals [121,123]. It will be interesting to examine whether or not an Nrf system
with Keap1 that has no Cys-151 responds to this internal signal.

Cys-273 and Cys-288 have been shown to be essential for repressing Nrf2 activity under basal
conditions [118,119]. However, the cysteines may not be important per se, since Keapla and Keaplb
in ray-finned fish lack Cys-273 and Cys-288, respectively, but both are able to repress Nrf2 [105,111].
Investigating the relationship between the structures around these cysteines and the Nrf2-repressing
function of Keap1 will prove useful. These cysteines have been shown to be targeted by 15d-PG]»,
an anti-inflammatory prostaglandin [117,121]. We previously demonstrated that both co-orthologs in
zebrafish, Keapla and Keap1lb, could function as sensors for 15d-PG]J,, implying that having either
Cys-273 or Cys-288 is enough for 15d-PGJ; sensing [111]. Acrolein and 4-hydroxynonenal also targets
Cys-288 [123]. Although no evidence has yet shown that the Keap1-Cnc system in fruit flies responds
to these chemicals, fly Keapl probably senses this signal by its conserved Cys-273/288. Arsenic
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compounds potently induce Nrf2 and attack all three cysteines: Cys-151, Cys-273 and Cys-288 [121].
The responsiveness of the Keap1-Nrf2/Cnc system to arsenic is well-conserved in mammals [124],
zebrafish [77] and flies [5,122], and all three of these species have at least one cysteine from among
Cys-151, -273 or -288, which explains this conserved sensing mechanism reasonably well.

Recent progress has shown that Cys-226 and Cys-613 are necessary for the sensing of hydrogen
peroxide and heavy metals such as zinc, cadmium, arsenic and selenium [123,125,126]. These cysteines
are widely conserved among species, although sea urchin Keapl does not have Cys-226, and fly
Keapl lacks both. In the zebrafish Keapl-Nrf2 system that respond to hydrogen peroxide and
cadmium [76,111], these cysteines may function as sensors in a conserved manner. However, in
fruit flies, although the Keap1-Cnc system responds to oxidative stressors, such as hydrogen peroxide
and paraquat [58], Cys-226 and Cys-613 are not found in Keap1 (see Figure 6). This indicates that there
must be different sensor mechanisms for oxidative stress and heavy metals in Drosophila.

In addition to the cysteines described above, Cys-257, Cys-297 and Cys-319 were determined
to have highly reactive thiols [115,127]. Cys-257 was only possessed by Keap1 in coelacanths, frogs,
lizards, chickens and mice, while Keapla isoforms do not have this cysteine, suggesting that this
cysteine evolved only in Keapl after the appearance of lobe-finned fish (Figure 6). Although Cys-297 is
one of the cysteines that are conserved among Kelch family proteins in mice, it was found to be highly
conserved among the species examined, except for Keap1b of zebrafish (Figure 6). The presence of
Cys-319 varied among species, and its evolutionary origin remains unclear. Cys-434 is modified by
8-nitro-cGMP, an endogenous electrophilic compound generated after nitric oxide production [128].
This cysteine is conserved in sea urchins and among vertebrates, except for anole lizards (Figure 6).
The functions of these cysteine have not be determined biologically, but whether or not these chemicals
activate Nrf, especially in species that do not have targeted cysteines in Keap1, will be of interest.

6. Future Directions

Similar to Drosophila Cnc and C. elegans Skn-1, which have been shown to be essential factors for
embryonic development, vertebrate Nrf2 may perform functions other than those related to the stress
response, even though Nrf2-knockout mice and Nrf2 mutant zebrafish develop normally [8,11,76].
Some evidence supports this notion, such as its known roles: first, Keap1-knockout mice, in which Nrf2
is constitutively active, developed hyperkeratosis in the esophagus and forestomach [129]. Second,
Mitsuishi et al. showed that an active Nrf2 system in cancer cells upregulates the anabolic pathway
through the transcriptional activation of pentose phosphate pathway enzymes, which enhances the
cell proliferation [35]. We recently found that a gene encoding the pentose phosphate pathway
enzyme phosphogluconate dehydrogenase (pgd) is also under the regulation of Nrf2 in zebrafish [80],
suggesting that there is a conserved function among vertebrates. Zebrafish, in addition to mice, will
prove a useful model for studying cell proliferation during normal development as well as under
pathological conditions.

Growing evidence shows that endogenous stressors are involved in the pathogenicity of various
diseases. Whether or not the interaction of the Keap1-Nrf system with the ER stress response and
autophagy pathway are conserved in lower animals remains unclear; however, Skn-1 is known to have
a close relationship with the ER stress response pathway [104]. Determining how the Keap1-Nrf system
evolved its sensing mechanism against endogenous stressors will prove interesting. As we showed in
this review, experimental evidence from lower model animals provides valuable information. Recently,
the CRISPR-Cas9 technique has been more and more easily applied to non-model organisms [130,131],
which will facilitate the accumulation of experimental evidence from various species. These data should
be analyzed together with phylogenetic information, which will promote not only our understanding
of the evolution of anti-stress mechanism, but also clarify its potential medical applications.
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