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Based on the importance of relative disparity between objects for accurate hand-eye coordination, this paper presents a biological
approach inspired by the cortical neural architecture. So, the motor information is coded in egocentric coordinates obtained
from the allocentric representation of the space (in terms of disparity) generated from the egocentric representation of the visual
information (image coordinates). In that way, the different aspects of the visuomotor coordination are integrated: an active vision
system, composed of two vergent cameras; a module for the 2D binocular disparity estimation based on a local estimation of phase
differences performed through a bank of Gabor filters; and a robotic actuator to perform the corresponding tasks (visually-guided
reaching). The approach’s performance is evaluated through experiments on both simulated and real data.

1. Introduction

A long-term goal of Robotics research is that of building
robots which behave and even look like human beings. So,
aimed at working with and for people, human abilities should
be modelled and replicated in a robotic system. In that way,
robots should be able to complete their tasks by properly
interacting with their environment [1]. As in the case of
human beings, those interactions in space should be explicit,
(e.g., pointing, reaching, or grasping things) as well as implicit
(in the sense of achieving an awareness of where and what
things are around them).

In this regard, visual information has been extensively
used to control a robot system by increasing its flexibility and
accuracy (e.g., [2–10]). However, this approach, commonly
known as visual servoing, keeps separate the vision and
motion control processes, so that image processing simply
provides the error signals required by the actual control
schemes. As a matter of fact, all these techniques are based
on separate or mildly interacting modules. In addition, a key
restriction of this approach is the image processing of natural

views, that is, the extraction of robust features for visual
servoing. On the contrary, the concept beyond this paper is
to investigate if visual processing and ocular movements, as
well as more general robot motions, could be integrated at
different levels to improve the interaction capability in the
robot peripersonal space by properly modelling the observed
scene.

As a solution, we have taken advantage of the concept
of active vision [11, 12] since it is exploratory and predictive.
Actually, in that way, a robot can evolve from a status of
passive observer overawed by information to amore selective
agent able to control and adapt its own perception according
to the task to be performed. As an example, Coombs and
Brown [13] demonstrated how dynamic vergence control
could cleverly interact with image processing for tracking
moving targets over cluttered backgrounds. Note that the
vergence movements adjust the eyes for viewing objects at
varying depth. So, while the recovery of absolute depth can-
not be strictly necessary, the relative disparity between objects
is critical for tasks such as accurate hand-eye coordination,
figure-ground discrimination, and/or collision detection.
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Furthermore, disparity provides some cues for planning and
controlling goal-directed behaviours.

So, our research is aimed at exploiting the interaction
existing between vision and motion control to achieve a
knowledge of the surrounding space when reaching a visual
object is the task. For that, it is necessary to design and
implement a space representational scheme that supports
a natural behaviour flexible enough to deal with how the
robot’s actions influence the world. In other words, this paper
presents a biological strategy endowing a robotic system with
basic visuomotor behaviours, perceptual abilities, andmanip-
ulative abilities (i.e., reaching for a visual target). Therefore,
the designed robotic system could robustly perform visuo-
motor tasks in complex, natural environments without any a
priori knowledge.

1.1. The Biology of Spatial Coding. From a biological point of
view, the interaction strategy apparently adopted by all the
superior vertebrates consists of separating the recognition
of an object (the what problem) from finding its position
(the where problem). So, the temporal regions of the cerebral
cortex are involved in the what pathway, while the parietal
regions try to find where the interest objects are [14–16]. The
parietal system can be then regarded as an acting strategy to
focus the system’s attention on a particular zone of the percep-
tive field. This approach leads to a from-action-to-perception
scheme [17–19]. That is, action and perception are linked
such that actions can modify perceptions externally and
internally. In other words, performing an action externally
influences the perception by changing the scene and/or the
point of view (e.g., the movement of the eyes serves to choose
a scene for perception). At the same time, this can imply
an internal modification of the perception since different
information can be required to properly plan and execute the
next action. As a consequence, percepts and actions can be
coupled at different levels such that the proper combination
of them provides a complete and operative cognition of the
surrounding space [20, 21].

In this context, the key question is how does the brain
achieve perceptual stability despite the nature of the input
supplied by the eyes? Actually, this question has been asked
by researchers since the saccade-and-fixate strategy of the
oculomotor system was first observed [23]. Recent accounts
of the way humans encode information about objects, places,
and routes in the world around them propose that they
have two kinds of spatial representation: allocentric and
egocentric [24–26] (see Figure 1). As defined in [22], the
allocentric representation ismap-like. It is indexed to a world-
based coordinate system and, therefore, it is independent
of a person’s current location and it survives over extended
periods of time. This representation must be built up from
vision over time, but does not rely on immediate visual input.
The other kind of spatial representation, that is, the egocentric
representation, is temporary, and it is based on the object
directions relative to the current body’s position with respect
to the surrounding space.This second representational frame
allows humans to act upon their environment for the pur-
poses of locating, reaching, and/or manipulating objects.

This egocentric-allocentric division follows a well-
established neuropsychological distinction between the
dorsal and ventral visual processing streams [20, 27].
Actually, these two frames of reference have specific functions
in the vision-for-action and vision-for-perception model
such that egocentric representations would be used by the
dorsal stream to program and control the skilled movements
needed to carry out the action, whereas conscious perception
would rely on allocentric representations supported by the
ventral stream [28, 29]. However, a new question arises: how
they interact and combine [30].

Research on this topic [22, 24, 31–36] establishes that
mental processes form a hierarchy of mental representations
with maximally egocentric representations at the bottom and
maximally allocentric representations at the top, progres-
sively abstracting away from the particularities of the egocen-
tric representations. So, visual information must be initially
coded in retinotopic space, while muscular movement plans
must be ultimately coded in head-centred and/or body-
centred representations. Indeed, it is clear that, in the context
of natural behaviour, a range of different spatial coding
schemes are involved and they act in parallel (see Figure 2).
This is the case, for instance, of arm reaching plans, which
are encoded in eye-centred coordinates [37, 38]. However,
it seems likely that efficient coordination of sensory input
and motor output involves a transformation between the
various parallel reference frames for spatial coding through
the parietal cortex.

1.2. Contributions. In this paper, we propose a biological
approach following the neural architecture such that the
motor information to perform the task in hand is coded in
egocentric coordinates (motor coordinates) obtained from
the allocentric representation of the space (in terms of
disparity) generated from the egocentric representation of the
visual information (image coordinates). With that purpose,
an active vision paradigm is used: the behaviour-dependent
processing of visual data for attentive visual scrutiny based
on shifting the fixation point of different targets (active
foveation). So, the different aspects of the visuo-motor coor-
dination are integrated: an active vision system, composed
of two vergent cameras, a module for the estimation of
2D binocular disparity, and a robotic actuator to perform
reaching tasks. Thus, the main contribution of this paper can
be summarized in two points.

(i) Design and implementation of an algorithm (PBBDE)
for disparity estimation that does not require precise
calibration information (in terms of the relative ori-
entation of the cameras).

(ii) Design and implementation of a virtual reality tool
to evaluate the performance of this method and to
study the adaptation of robots behaviour in reaching
tasks triggered by 3D perception in an unstructured
environment.

These goals have been achieved by carrying out the
following.
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Spatial coding systems

Allocentric (object-to-object) Egocentric (self-to-object)

Encodes information about the location
of one object or its parts with respect to
other objects. The location of one object
is defined relative to the location of
other objects

Represents the location of objects in
space relative to the body axes of the
self (left-right, front-back, up-down)

Figure 1: Allocentric versus egocentric spatial processing. Allocentric spatial transformations involve an object-to-object representational
system and encode information about the location of one object or its parts with respect to other objects, while egocentric perspective
transformations involve a self-object representational system.

Body
Head

Eye

Target

Arm

Figure 2: Frames of reference for visuomotor tasks. The required
movement to grasp the mug is the angle from arm to target. This
is the angle from body-to-arm minus the sum of the angles from
target-to-fovea, eye-in-head, and head-on-body. In practice, eye,
head, and body are often aligned before such a grasp movement, but
such alignment is not essential (courtesy of Tatler and Land [22]).

(a) A design and implementation of an architecture
inspired by the cortical neural architecture aimed at a
more natural robot interaction with the environment.

(b) An integration of different aspects of the visuo-motor
coordination: an active vision system, a module for
2D binocular disparity and depth estimation, and a
robotic actuator to perform reaching tasks.

(c) Robustly performing visuo-motor tasks in complex,
natural environmentswithout any a priori knowledge.

(d) A design and implementation of robotic perceptual
and manipulative abilities (i.e., reaching for a visual
target) by integrating visual processing, ocular move-
ments, and robot motions at different levels without
separating vision and motion control processes as in
visual servoing.

(e) A design and implementation of visual targets depth.

(f) A design and implementation of a virtual reality tool
that allows us to study robot behaviour adaptation on
reaching task from 3D perception in an unstructured
environment.
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(g) An analysis of parameters thatmake the disparitymap
conditional to accuracy.

(h) A study of the computational cost of the proposed
approach based on image size.

With that aim, this paper is organized as follows. In
Section 2 we introduce the phase-based approach used for
stereo processing in its generalized form to compute 2D
disparity for vergent vision systems. A virtual reality tool
implementing robotic reaching tasks from stereo visual cues
is described in Section 3, while the experimental results,
under different conditions, are presented in Section 4 and
discussed in Section 5.

2. Stereo Processing

As mentioned above, disparity is an important cue for depth
estimation since it provides an allocentric spatial representa-
tion allowing us to determine absolute distanceswhen camera
orientations are known.

Focusing on obtaining a disparity map, the first issue
to be solved is the correspondence problem. Basically, it
refers to the problem ofmatching corresponding image points
in a stereo pair of images. Despite the large number of
proposed algorithms (see [39–42] for an overview), they can
be classified into two main groups, as pointed out in [40].

(i) Area-basedmatching algorithms. Image domain sim-
ilarity metrics are used for dense point to point
correspondence. Therefore, the resulting disparity
map can be very dense what makes this kind of
methods an interestingway to quantify and solve early
vision problems.

(ii) Feature-basedmatching algorithms.They concern the
two following steps.

(a) Feature extraction. Features such as colour,
edges, and so forth are extracted from the
images. The localization of these features is
important, since disparities will be determined
according to differences in position after the fol-
lowing step (i.e., the correspondence problem)
has been solved.

(b) Solving the correspondence problem. A corre-
spondence between image elements is chosen
from the many conceivable ones. Various types
of knowledge, constraints, and plausibility con-
siderations are used at this stage such as

(1) search space: for an element in the left
image, a matching element is sought only
within a certain region of the right image,

(2) feature attributes: in the case of the image
elements can be distinguished from one
another, then only those of the same type
(e.g., edges, line terminations) and with the
same characteristics (e.g., colour, polarity
of contrast) are matched,

(3) ordering constraints: the plausibility of
other matches changes once a match
between two features has been established.
Consequently, constraints must be
reorganized to extract depth information.

Note that this method results in sparse disparity maps
since it only gets disparities for the extracted features

However, matching-correspondence methods usually
cannot be efficiently adapted to changing camera’s geometry
information. For that reason, nearly all the proposed stereo
vision algorithms separate the calibration and dense disparity
estimation stages. On the one hand, regarding the calibration
step, it is typically performed offline by means of feature-
based techniques. Note that the calibration information is
used for stereo rectification resulting in a simplified, faster
matching process (from two dimensions to one). On the
other hand, estimating the epipolar geometry from noisy
correspondences, possibly including many outliers, is prob-
lematic. As an improvement of the calibration accuracy,
either a special calibration object is used or the information
of multiple image pairs is combined as in [43, 44]. Moreover,
epipolar geometry estimation is usually stabilized by exploit-
ing physical restrictions on the camera configuration. Thus,
for instance, Björkman and Eklundh [45] presented a system
to externally calibrate a stereo pair by assuming fixation
and no rotations around the line of sight. On the contrary,
Papadimitriou and Dennis [46] proposed a self-rectification
method that focuses only on the removal of the vertical
displacements. They assume a convergent camera system
where only rotations around an axis parallel to the vertical
axis (pan) need to be compensated.That reduces the problem
and stabilizes the camera geometry estimation. However, as
Papadimitriou and Dennis stated [46], vertical disparity can
cause serious errors in matching process if the stereo images
are not rectified very well. Therefore, a robust rectification
must be used to obtain an accurate image matching corre-
spondence, which is performed after the calibration stage. As
an example, Gao et al. [47] proposed a real-time embedded
system combining disparity estimation and self-rectification.
As in [46], the system only corrects vertical shifts.

On the other hand, biological studies have revealed that
the response of visual cortex is turned to the band-limited
portion of the frequency domain.This fact gives evidence that
the brain decomposes the spectra into perceptual channels
that are bands in spatial frequency [48]. So, images can be
seen as sinusoidal functions moved in depth and disparity
can be extracted bymeans of frequency filters. In this context,
Gabor functions have been extensively used due to their sim-
ilarity with the receptive field of cells in the virtual cortex [49,
50]. Actually, they have been particularly successful in many
computer vision and image processing applications [51–55].
However, a fundamental problem with these methods is
the inherently large memory and computational overheads
required for training and testing in the over-complete Gabor
domain.

As an alternative, different band-pass filters based on
specific properties of the basis functions [56–62], or accord-
ing to theoretical and practical considerations of the whole
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space-frequency transform [63–72], have been proposed.
Nevertheless, these techniques are very time consuming
and hardly suitable for real-time applications. Furthermore,
with Cartesian images, if the object of interest is small,
the background disparity can lead to erroneous estimates.
Alternatively, with space variant images, the target region
becomes dominant [73].

Consequently, in this paper, we present an algorithm
for disparity estimation that does not require precise cali-
bration information (in terms of the relative transformation
(position and orientation) between the two cameras). That
is, the proposed approach does not use the external camera
parameters. Consequently, cameras are only calibrated at
the beginning of the experiment to obtain internal camera
parameters, and no more calibration procedure is performed
although the cameras shift their fixation point. For that,
an active vision paradigm is used: the behaviour-dependent
processing of visual data based on shifting the fixation point
of different targets (active foveation) for attentive visual
scrutiny. Selective attention and foveation imply the ability
to control the mechanical and optical degrees of freedom
during image acquisition process [74]. In such systems, the
camera movements bring the object of interest in the centre
of the image pair (by performing camera rotations), and these
vergence movements generate both horizontal and vertical
disparity [75–77].

2.1. Phase-Based Binocular Disparity Estimation (PBBDE)
Approach. Thedifference in target’s position in the two stereo
images defines a disparity shift.That difference can be used to
shift the left (or right) image to align both of them at the same
coordinate location.

Assuming that an image is a sinusoidal gray value func-
tion moved in depth, the same gray value function appears
in both images of a stereo pair at different phase angles. So,
if the wavelength of the sinusoidal pattern is known, the
phase difference corresponds to the disparity. Actually, this
kind of approache can be used with any gray value functions,
by filtering out all but one frequency band from the image
[65, 78–85]. It has been shown that phase-based methods are
robust to changes in contrast, scale and orientation [78]. The
robustness to orientation is very important in the context
of disparity estimation since textures or features on slanted
surfaces have a different orientation in the left and right
images.

To obtain the corresponding phase difference at a point 𝑥,
a symmetrical and an antisymmetrical filter kernel are used,
performing local estimations of the phase difference. So, for
instance, the two filter outputs for the left image 𝐼𝑙 would be

𝐼𝑙,sin,𝜎 (𝑥, 𝑤) = ∫𝑤(
𝑥 − 𝑥


𝜎

) 𝐼𝑙 (𝑥

) sin (𝑤 (𝑥 − 𝑥)) 𝑑𝑥,

𝐼𝑙,cos,𝜎 (𝑥, 𝑤) = ∫𝑤(
𝑥 − 𝑥


𝜎

) 𝐼𝑙 (𝑥

) cos (𝑤 (𝑥 − 𝑥)) 𝑑𝑥,

(1)

where 𝑤 refers to the frequency of the kernel filter and 𝜎
corresponds to its spatial expansion. If the window function

is the Gaussian bell curve and the ratio between 𝜔 and 𝜎
is a constant, then (1) describes a convolution with Gabor
functions. In particular, the proposed method extracts phase
using a bank of oriented Gabor filters by using a coarse-
to-fine approach. Note that the proposed method takes into
account the 𝑥-𝑦 image dimensionality by using a bank of
two-dimensional oriented filters. In this way, an accuracy
improvement has been obtained, as will be shown in Sec-
tion 4.1.

The different orientations, 𝜃𝑞, are evenly distributed and
equal to (𝑞𝜋)/𝐾. Let 𝑞 be the range from 0 to 𝐾 − 1,
while a total of 𝐾 = 8 orientations are considered in our
implementation.Thus, for a specific orientation 𝜃𝑞, the spatial
phase at pixel location x = (𝑥, 𝑦)

𝑇 is extracted using 2D
complex Gabor filters:

𝑓𝑞 (x) = 𝑒
−(𝑥
2
+𝑦
2
)/2𝜎
2

𝑒
𝑗𝜔
0
(𝑥 cos 𝜃

𝑞
+𝑦 sin 𝜃

𝑞
) (2)

with peak frequency 𝜔0 and spatial extension 𝜎. The filter
bank has been designed with efficiency in mind and relies
on 11 × 11 separable spatial filter kernels that are applied to
an image pyramid [83, 86]. The filter responses, obtained by
convolving the image, 𝐼(x), with the oriented filter from (2),
can be written as

𝑄𝑞 (x) = (𝐼 ∗ 𝑓𝑞) (x) = 𝜌𝑞 (x) 𝑒
𝑗𝜙
𝑞
(x)
= 𝐶𝑞 (x) + 𝑗𝑆𝑞 (x) , (3)

where 𝜌𝑞(x) = √𝐶𝑞(x)
2
+ 𝑆𝑞(x)

2 and 𝜙𝑞(x) =

arctan(𝑆𝑞(x), 𝐶𝑞(x)) are the amplitude and the phase
components, respectively, and 𝐶𝑞(x) and 𝑆𝑞(x) are the
responses of the quadrature filter pair. The ∗ operator
corresponds to convolution.

In this context, for calibrated parallel-axis setups, the
disparity estimation can be obtained from each oriented filter
response (at orientation 𝜃𝑞) by projecting the phase difference
along the direction of the (horizontal) epipolar lines. That
is, the disparity is defined as the one-dimensional (1D) shift
necessary to align, along the direction of the horizontal
epipolar lines, the phase values,𝜙𝐿(x) and𝜙𝑅(x), of band-pass
filtered versions,𝑄𝐿(x) and𝑄𝑅(x), of a stereo image pair 𝐼𝑅(x)
and 𝐼𝐿 = 𝐼𝑅[𝑥 + 𝛿(x)] [84]. That is, in a more formal way,

𝛿 (x) =
[𝜙
𝐿
(x) − 𝜙𝑅 (x)]

2𝜋

𝜔 (x)
=

[Δ𝜙 (x)]
2𝜋

𝜔 (x)
,

(4)

where 𝜔(x) is the average instantaneous frequency of the
band-pass signal at point x and, under a linear phase model,
it can be approximated by 𝜔0 [65]. However, it is possible
to directly obtain the disparity from the main part of phase
difference in the complex plane without explicit estimation
of the left and right phase. In this way, the wrapping effects
on the resulting disparity map are avoided [87]. For that, the
following identities are used:

[Δ𝜙 (x)]
2𝜋
= [arg (𝑄𝐿𝑄∗𝑅)]

2𝜋
(5)

such that 𝑄∗ denotes complex conjugate of 𝑄. Note that, due
to the fact that a bank of oriented Gabor filters is used, the
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estimation of disparity for each of them should be projected
on the horizontal epipolar line. In this way, the detectable
disparity range becomes

−

𝜋

𝑘0 sin 𝜃
< 𝑑𝑥 <

𝜋

𝑘0 sin 𝜃
, (6)

where 𝜃 represents the rotation angle of the Gabor filter and
𝑑𝑥 is the horizontal disparity obtained as follows:

𝑑𝑥 =

Δ𝜙

𝑘0 sin 𝜃
. (7)

Nevertheless, it is necessary to handle horizontal and
vertical disparities in order to go towards a more generalized
architecture suitable for active stereo vision systems. In this
case, disparity is defined as the vector difference in positions
of identified corresponding points in the left and right images,
each one measured with respect to the fixation point as the
origin.

In order to estimate the 2D disparity, 𝛿(x), it is possible to
combine the estimates 𝛿𝑐,𝜃 of the bank of filters, oriented by
an angle 𝜃, by the following formula [77]:

𝛿
∗
(x) = argmin

𝛿(x)
∑

𝜃

(




𝛿𝑐,𝜃 (x)





− 𝛿(x)𝑇

𝛿𝑐,𝜃 (x)




𝛿𝑐,𝜃 (x)






)

2

, (8)

where 𝛿𝑐,𝜃 denotes the computed disparity along the peak
frequency vector of a filter oriented by an angle 𝜃 and 𝛿∗(x)
is the estimated disparity (see Figure 3).

The equation for handling both horizontal and vertical
disparities can be obtained by differentiation of (8), that is

𝛿
∗
(x) = [∑
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+ 𝑑
2
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]

]

]

]

]

]

]

]

,

(9)

where 𝑑𝑥,𝜃 and 𝑑𝑦,𝜃 are the projection of 𝛿𝑐,𝜃 along the
horizontal and vertical axis, respectively. In this way, multiple
disparity estimates are obtained at each location. These
estimates can be integrated over the different pyramid levels.
For that, a disparity map is first computed at the coarsest
level. Then, this disparity estimation is up sampled in order
to make it compatible with the next level estimation. For
that, an expansion operator and amethod to double are used.
Although it could be thought that this sample upwould result
in round off errors and inaccurate disparity estimation, that is
not the case. The reason lies in the fact that analyzing images
at many scales arises from the nature of images themselves.
Actually, scenes in the world contain objects of many sizes,
and these objects contain features of many sizes. Moreover,
objects can be at various distances from the robot. As a
result any analysis method that is applied only at a single
scale can miss information at other scales. In addition, image
pyramids tend to enhance image features, such as edges,
which are important for accuracy in disparity estimation. So,

Left image Right image

(a)

Y

X

𝛿
𝜃𝑖
est (x)

𝛿𝜗est (x)

𝛿
𝜃𝑖
est (x)

𝛿
𝜃𝑖
est (x)

(b)

Figure 3: Graphical 2D disparity definition: the difference in the
positions of the corresponding points in the stereo image pair (a);
the longest vector whose end points lie on the cycle resulting in all
the correct estimates 𝛿est

𝜃
of the disparity component with respect to

the orientation 𝜃 through the origin (b).

computing a disparity map at the coarsest level allows us to
roughly estimate disparity which will be refined at the next
level estimation. Therefore, the disparity estimation is more
accurate when obtained from different scales. Furthermore,
the savings in computation that can be obtained through
coarse-fine search can be substantial.

After that sample up, the obtained map is used to reduce
the disparity at level 𝑛 + 1, by warping the right filter
responses before computing the phase difference

𝛿
𝑛
=

[𝜙
𝐿
(x) − 𝜙𝑅 (x)]

2𝜋

𝑘 (x)
+ (2 expand (𝛿𝑛−1)) , (10)

where x = (𝑥 + 𝑑
𝑛−1

𝑥
(x), 𝑦 + 𝑑𝑛−1

𝑦
(x))𝑇, with 𝑑

𝑛−1

𝑥
being

the horizontal disparity at level 𝑛 − 1 and 𝑑𝑛−1
𝑦

the vertical
disparity at level 𝑛−1. Consequently, the remaining disparity
is guaranteed to lie within the filter range. This procedure is
repeated until the finest level is reached.

Thus, the implemented algorithm, which is depicted in
Figure 4, can be summarized as follows.

(1) A stereo image pair is captured.
(2) A six-level image pyramid is built such that a spatial

filter is applied to each level for noise reduction. That
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is, a sequence of copies of an original image, for which
both sample density and resolution are decreased in
regular steps, is generated. In this way, an efficient
scaled convolution can be obtained such as pointed
out in [88].

(3) Although, for the sake of clarity, only the processing
of the fourth level is depicted in Figure 4, for each level
of the generated image pyramid, from the top (the
lowest resolution image) to the bottom (the highest
resolution image), applies the following.

(a) Filtering image with a set of eight complex-
valued Gabor filters implemented as sums of
separable filters as explained in [86] and defined
in (4).

(b) Phase difference estimation between the pro-
cessed stereo pair. The spatially-localized phase
measures, obtained in the previous step through
filtering operations, can be expressed as a com-
bination of amplitude (𝜌(𝑥)) and phase (𝜙(𝑥))
components as follows:

𝑄 (x) = 𝑓𝑞 ∗ ℎ (x; 𝑘0) = 𝜌 (x) 𝑒
𝑖𝜙(x)

= 𝐶 (x) + 𝑖𝑆 (x) , (11)

where 𝐼 is the processed intensity pattern and
𝐶(x) and 𝑆(x) are the responses of the quadra-
ture filter pair.

(c) 2D disparity estimation.
(d) Disparity merging between the current estima-

tion and the one obtained at the previous scale.

Once a disparity estimation is obtained, the next step is to
infer the object’s depth. For that, two different cases have to
be considered.

(i) Parallel camera axes. In this case, there are only
horizontal disparities, but there are no points with
zero disparity.

(ii) Convergent camera axes. In this case, there are points
with horizontal and/or vertical disparities, but also
points characterized by zero disparity. One such
point, obviously, is the intersection of the visual axes,
that is, the fixation point.

In the simplest case, the camera axes are set parallel to
one another and the line which connects the cameras of
the stereo camera system, the baseline 𝑏, is at a right angle
to them. Consider the image of a point 𝑃 at a distance 𝑧
from the baseline, measured in the direction of the camera
axes, and 𝑥𝑙 and 𝑥𝑟 its position in the left and right images,
respectively. So, depth estimation can be obtained by means
of the horizontal disparity (i.e., 𝑑𝑥) in the following way:

𝑧 = 𝑓

𝑏

𝑥𝑟 − 𝑥𝑙

= 𝑓

𝑏

𝑑𝑥

. (12)

Thus, the 𝑑𝑥 is inversely proportional to the distance
of the point and increases with the focal length 𝑓 and the
baseline distance 𝑏. In camera systems, very long baselines
are sometimes used in order to improve the depth resolution.

Stereo pair

Six-level filtered image pyramid

RightLeft

RightLeft

RightLeft

RightLeft RightLeft

RightLeft

RightLeft

RightLeft

For each level of the pyramid
(from the top to the bottom)

Filtering images with a
set of 8 Gabor filters

Phase difference

Disparity estimation

HorizontalHorizontal Vertical

Horizontal Vertical

Vertical

Horizontal Vertical

Merger disparity estimations

Figure 4: Graphical description of the phase-based binocular
disparity estimation (PBBDE) approach: from a captured stereo
image pair, an 𝑛-level image pyramid is built such that a spatial filter
is applied to each level for noise reduction. Then, for each level, the
images are filtered with a set of eight complex-valued Gabor filters,
followed by a phase difference estimation and a following disparity
estimation. Finally, the obtained disparity is integrated with the
disparity map obtained in the previous level.

On the other hand, when a convergent stereo camera
system is used, the depth estimation when the fixation and
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distraction are on the 𝑌 axis (including sign) and for a given
fixate distance 𝑓𝑑 is obtained by the following formula with
interocular distance 𝑏:

𝑧 = 𝑓

4 + (𝑏/𝑓𝑑)
2

2 ((𝑏/𝑓𝑑) − 2 tan (𝛿/2))
tan(𝛿

2

) . (13)

Note that the binocular disparity is expressed in radians in
this formula. For that, camera-centred polar coordinates are
used. Moreover, depth estimation can be carried out when a
fixate distance 𝑓𝑑 exists. The value of 𝑓𝑑 could come from a
convergence cue since the convergence angle𝛼 of the cameras
is related to the fixate distance by

𝑓𝑑 =

𝑏

2 tan (𝛼/2)
(14)

so (after simplification) depth from the visual input of a
convergent stereo camera system at any time instant is

𝑧 =

𝑏

2

sin (𝛿/2)
sin (𝛼/2) sin ((𝛼 − 𝛿) /2)

. (15)

From a robotic point of view, this binocular depth
estimation can be used for motion control, since it provides
the required knowledge that allows a perceptual agent to
properly interact with its surrounding environment. In par-
ticular, we analysed the reaching behaviour of a robotic agent
when only an estimated disparity map of its peripersonal
space is provided. It is worth noting that, instead of a full
metrical 3D reconstruction of the observed scene, a relative
representation of the objects that are actively bound on time
for the task at hand (in terms of disparity) is used. The
equations (13)–(15) are reported to highlight the relationships
between disparity and depth, but we use a different approach
that uses directly the relative disparity among objects (see
Section 3 for details).

With that purpose, an integrated virtual reality envi-
ronment has been developed. It is an extension of the
tool for benchmarking active stereo systems developed in
[89] whose aim was to precisely simulate the vergence
movements of the two cameras of a stereo vision system.
From that starting point, we have developed a tool, based
on a C++/OpenGL architecture and on the Coin3D graphic
toolkit (http://www.coin3d.org/), that allows us to measure
the error in disparity estimation under different situations set
by the user (not available in the previous version). So, the
tool presented in the following section is aimed at evaluating
aspects of a robot acting in an environment. In particular,
that tool evaluates the PBBDE accuracy in depth estimation
from its 2D estimation without any knowledge of the 3D
object and their 2D projections without any knowledge of the
3D object coordinates and their 2D projections. Moreover,
those disparity computations are compared with the ground-
truth data to estimate the error, which was not done in the
previous tool [89]. In addition, some parameters such as, for
instance, the inter-ocular distance between the two cameras,
the distance between the cameras and the objects, or the
fixation points, can be set and/or changed by the user at any
time. In typical conditions, the inter-ocular distance between

Figure 5: An example of the virtual scene designed for studying the
robot behaviour adaptation on reaching tasks from a 3D perception
in an unstructured environment.

the two cameras was set to 6.5 cm, the distance between
the cameras and the objects ranges between 80 and 90 cm,
and the fixation points are randomly chosen by using the
generated depth map.

3. Virtual Robotic Agent Design

As an evaluation of our approach’s performance, a virtual
reality tool has been developed. It allows us to study the
adaptation of robots behaviour in reaching tasks triggered
by 3D perception in an unstructured environment. In this
study, a robotic agent is needed to perform the reaching task.
Concretely, it is represented by a robotic arm and a visual
system—a pair of stereoscopic vergent cameras—since we are
interested in visually controlling the end-effector when the
reaching task takes place. The designed virtual scene where
the robot acts is divided into two different areas (see Figure 5).

(i) The agent’s peripersonal space, by supposing that the
agent is not changing its position in the environment,
it was defined as a human peripersonal space, that
is, as a hemisphere with a radius of 1.5 metres.
As agent-environment interaction was required, the
peripersonal space was covered with a set of objects
on a 1.5 × 1 × 0.5-metre table. The objects should
have different features in order to better test the
accuracy of the implemented algorithm.Moreover, in
order to create benchmark sequences of appropriate
complexity, realistic and common-daily objects such
as a bin, a portrait, pens, or some pieces of paper
are used. It is important to take into account that
the different considered features also generate new
control issues for the agent when it tries to point at
any of those objects.

(ii) A background, which is needed for adding reality to
the environment as well as to the disparity map, is
composed of walls, roof, and ground, that is, a room.

Thus, the main idea is that, given a scene point, the agent
should be capable of setting that point as a fixation point and
the target to be reached from the estimated disparity map. In
order to avoid the use of a full metrical 3D reconstruction
of the observed scene, we use the following strategy both

http://www.coin3d.org/
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to fixate an object in the scene and to reach it with the
arm; given an interest object, the two cameras are moved to
bring the interest object in the centre of the foveas, obtaining
approximately zero disparity on that object. So, once a target
is given for reaching the task, the arm is moved in the
proper image position tomake the arm’s disparity equal to the
target’s. Therefore, it is important to have dense and reliable
disparity maps. In this regard, two different issues have to be
considered:

(1) the target point is set before changing the fixation
point;

(2) the target point is set after changing the fixation point.

In the first case, the computed disparity map provides
information with respect to the last fixation point. As a
consequence, it is possible to directly determine the distance
between the current fixation point and the next one from
the disparity map since depth measurement is related to
the disparity value. Once depth is estimated, displacement
along 𝑋- and 𝑌-axis is obtained from the projective camera
equations. That is,

(i) disparity estimation by using the implemented phase-
based algorithm,

(ii) depth estimation,𝑍, from the estimated disparity and
the parameters of the cameras,

(iii) estimation of the displacement along 𝑋- and 𝑌-axis
by using the projective camera equations,

(iv) reference system transformation from head-centred
coordinates to arm coordinates.

In the second case, the target point coincides with
the fixation point and a different approach follows. Depth
information can be inferred from disparity by using (13). So,
the disparity map is used to compute depth with the aim of
estimating the displacement along𝑋- and 𝑌-axis. Finally, the
3D coordinates with respect to the arm reference system are
obtained from the head-centred frame. In that way, the arm
can be properly moved to its next position.

4. Experimental Results

In this section, we evaluate the performance of the proposed
disparity estimation procedure through several experimental
results on both simulated and real environments.

4.1. Experimental Results on Simulated Data. Different sim-
ulated data are used for assessing the performance of the
proposed approach. Firstly, with the aim of evaluating the
proposed approach and comparing its accuracy in disparity
estimation with other different band-pass representations,
some experiments were carried out on image pairs from
Middlebury dataset for Stereo Evaluation [42]. Although
they only contain horizontal disparities, it provides the
disparity ground-truth for all its image sequences, allowing
a quantitative comparison between the different approaches.

With the purpose of assessing the accuracy in feature
extraction of the proposed method, we analyse and compare

Table 1: Quantitative comparison (average and standard deviation
of the absolute errors in pixels) in disparity estimation between
different band-pass representations on Middlebury images [42].

Algorithm Tsukuba Venus Sawtooth
Avg. Std. Avg. Std. Avg. Std.

Gabor 0.32 0.61 0.25 0.77 0.41 1.26
s4 0.36 0.68 0.40 1.30 0.5 1.86
s2 0.47 0.79 0.98 2.44 1.12 2.50
SQF 0.46 0.85 0.95 2.40 0.93 2.20
PBBDE

1D shift 0.28 0.64 0.99 0.74 0.74 1.10
2D shift 0.12 0.67 0.04 0.74 0.57 1.08

different band-pass representations. So, the integer-based
measures proposed in the dataset are not used. Instead of
them, we compute the mean and standard deviation of the
absolute disparity error by comparing the results with the
ground-truth. As summarized in Table 1, three classes of
filters are used for comparison: Gabor-like kernels, spherical
quadrature filters (SQF), and steerable filters (second (s2)
and fourth order (s4)). The obtained average and standard
deviation of the absolute disparity error, expressed in pixels,
highlight that our approach has better results than Gabor
filters, which are slightly better than those for the fourth-
order steerable filters (s4). The second-order filters (s2),
comparable with those obtained by the spherical quadrature
filters (SQF), yield results about twice as bad as the fourth-
order filters.

Figure 6 depicts (from top to bottom) the left images of
the stereo-pairs, the ground-truth maps, and the disparity
maps obtained with our approach in 1D and 2D by using 6
scales and an energy threshold of 10−6.

Secondly, some experiments were carried out on vergent
stereo image pairs generated by the VR simulator developed
in [89]. Figure 7 shows some of the obtained results by
coding disparity from red (positive values of disparity) to blue
(negative values). Again, an image pyramid of 6 scales with an
energy threshold of 10−6 is used.

In the first example, the two cameras are fixating the
centre of a fronto-parallel plane. So, a zero disparity is
obtained in the centre of the image in both disparity maps
and its value is getting higher as pixels move further from it,
that is, towards the borders. Something similar occurs when
the fixation point is on the keyboard, the desktop, or the toy,
as depicted in Figure 7.

Then, the approach’s accuracy is assessed when the inte-
grated virtual reality environment introduced in the previous
section is used.The software tool is composed of two different
modules:

(a) a console which the usermust initially interact with in
order to provide some information about the robotic
system configuration (e.g., intercamera distance and
head position with respect to the world coordinate
system) and,
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Tsukuba Venus Sawtooth

Figure 6: Comparison between horizontal disparity maps on
Middlebury images [42] such that the first row corresponds to the
left image of the pair; ground-truth disparity is shown in the second
row and the computed disparity maps (disparity considered as a
one-dimensional shift and amore generalized architecturewith both
horizontal and vertical disparities) appear in the last two rows,
respectively, such that disparity maps are coded from red (positive
values of disparity) to blue (negative values).

Stereo pair images Hor. disp. map Vert. disp. map

Figure 7: Disparity estimation results obtained on some vergent
stereo image pairs generated by a simulator developed in [89] by
applying the PBBDE approach. The disparity maps are coded from
red (positive values of disparity) to blue (negative values).

(b) an interactive window which consists of two different
elements: (i) a main image which is set at the begin-
ning of the experiment and does not change during
the whole experiment. It represents the virtual scene
seen from a virtual fixed camera and it allows the user
to choose, at each time, which is the next fixation
point by clicking on the desired point; (ii) a small
image, on the top left corner of the window, which

Figure 8: Snapshots of the performance of the virtual developed
environment, obtained when the interocular distance between the
two stereoscopic vergent cameras is set to 6.5 cm.

represents what is seen by the agent at each time,
presented to the user as an anaglyph image.

Each time a user clicks on an object in the virtual scene
of the main image, a disparity map is estimated by using
the PBBDE approach. Furthermore, a ground-truth disparity
is generated for quantitatively measuring the error. Both
measurement values, expressed in pixels, are shown in the
console, whereas, in the main window, the chosen point
becomes the new fixation point for the visual system and
it is reached by the agent’s arm. It is worth noting that the
point chosen as the next fixation point has to be in the
binocular field of view because a full 3D metrical map of the
environment is not built, but only a loose representation of
the objects that are actively bound on time.

Figure 8 presents some examples of the designed virtual
environment. The simulator aims at mimicking the reaching
behaviour of a robotic agent with an active vision system
with human-like features acting in the peripersonal space.
Therefore, the inter-ocular distance between the two cameras
is set to 6.5 cm. The different fixation points have been ran-
domly chosen. Moreover, other experiments with different
inter-ocular distance and/or agent distances with respect to
the objectswere also carried out, quantitativelymeasuring the
error (see Figure 9). These quantitative values are obtained
as the difference between the estimated disparity and the
ground-truth value in the two considered dimensions, that is,
the computed errors for both horizontal (error𝑋) and vertical
(error𝑌) disparities expressed in pixels. Note that the disparity
errors obtained for the tested points are always under 1.0
pixel, successfully achieving the reaching task in all the cases.

On the other hand, this tool was used to study the
parameters affecting the disparity map accuracy. Actually, it
is important to properly set those parameters in order to
obtain the most accurate disparity maps. With that purpose,
experiments on images of different sizes and features were
analysed. In all the experiments, ten different levels of the
image pyramid were considered, from 1 to 10 scales by steps
of 1 scale; and, for each number of levels, ten values were
tested for the energy threshold (from 1 to 10−10) such that the
energy threshold of the next step was obtained as one tenth
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Interocular distance = 7 cm
dist cam-obj = 10–110 cm dist cam-obj = 50–150 cm

errorX = 0.0004 px errorX = 0.2943 px
errorY = 0.0344 px errorY = 0.2004 px

dist cam-obj = 110–210 cm dist cam-obj = 150–250 cm

errorX = 0.2423 px errorX = 0.0235 px
errorY = 0.0532 px errorY = 0.1088 px

Interocular distance = 10 cm
dist cam-obj = 50–150 cm dist cam-obj = 200–300 cm

errorX = 0.1152 px errorX = 0.1823 px
errorY = 0.0082 px errorY = 0.0599 px

Figure 9: Snapshots of the performances obtained when a different
inter-ocular distance and/or the distance between the vision system
and the objects ranges is modified.

of the previous one. With the resulting disparity maps, some
conclusions could be obtained.

(i) The number of levels of the pyramid depends on the
image size. As an image is reduced to one fourth its
size in each level, the higher the number of levels is,
the less the image resolution is. In fact, it is possible to
determine the maximum number of levels to be used
from the size of the images.

(ii) The energy threshold depends on how many levels
the pyramid has because it is related to the image
resolution and, therefore, to the pyramid levels.

(iii) Low energy thresholds do not provide useful infor-
mation. At least a 10−3 energy threshold is needed to
obtain any information about disparity.

(iv) Similar results can be obtained with a less number
of image pyramid levels if the energy threshold is
increased.

(v) There is a direct relationship between the image
resolution and the execution time such that the higher
the image resolution is, the slower the performance
results. Actually, as shown in Figure 10, it is necessary
to work with an image resolution that allows the
system to obtain good accuracy without resulting
in a high time-consuming application. Note that
those results have been obtained by using an Intel(R)
Core(TM) Duo CPU P8700 at 2.53GHz. So, an
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Figure 10: Execution time analysis of the phase-based approach
based on the image resolution (in pixels).

increase in the computer power will provide better
performance with higher resolution images.

4.2. Experimental Results on Real Data. The PBBDE
approach has also been tested on real environments. The
approach’s performance has been assessed by means of two
laboratory setups. On the one hand, a STH-DCSG stereo head
was employed [90]. Basically, it is a synchronized digital
stereo head camera with two global shutter CMOS imagers,
capturing 640 × 480, 24-bit RGB colour images at 30 fps.

Unlike previous evaluation tests, in this case, three differ-
ent situations have been considered:

(1) only horizontal disparity exists,
(2) only vertical disparity exists,
(3) both horizontal and vertical disparities must be

obtained.

Therefore, depending on the case under study, the
obtained disparity maps will be different. So, when only
horizontal disparity is present in the images, the vertical
disparity map should consist of near zero values; that should
happen with the estimated horizontal disparity map when
the difference between the two images is just a vertical
displacement (case 2). Note that no fixation point has been
considered in this case, that is, they have a parallel line-
of-sight characteristic. A sample of each considered case
together with the estimated disparity maps is shown in
Figure 11.

Finally, a humanoid robot torso was used (see Figure 12).
It is endowedwith a pan-tilt-vergent stereo head (TO40Head
from Robosoft) and two multijoint arms (PA10 arms from
Mitsubishi) that allow it to perform reaching tasks. The head
mounts two cameras with a resolution of 1024 × 768 pixels
that can acquire colour images at 30Hz.The baseline between
cameras is 270mm.

With this experimental setup, a complete performance
analysis can be carried out. So, in this case, the depth of
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Hor. disp. map Vert. disp. mapStereo pair of images

Figure 11: Disparity estimation results obtained on an STH-DCSG
stereo head by applying the PBBDE approach when only horizontal
disparity appears (first row), only vertical disparity is present
(second row), and when both horizontal and vertical disparities
appear (last row).

(a) (b)

Figure 12: Experimental setup: external view of the used humanoid
robot (a) and a detailed view of the pan/tilt/vergence head (b).

the interest object was estimated from the obtained disparity
map and compared with the real distance between the robot
system and the interest object. Some of the obtained disparity
maps are depicted in Figure 13, whereas samples of depth
estimation are shown in Figure 14.As can be observed, in both
cases, the accuracy of the depth estimation is successful for
the task at hand and the obtained error is considerably slow.

5. Conclusions and Future Work

In this paper, we have proposed a biological approach that fol-
lows the human neural architecture: themotor information is
coded in egocentric coordinates obtained from the allocentric
representation of the space (in terms of disparity) which, at
the same time, is generated from the egocentric representa-
tion of the visual information (retinocentric representation).
So, as a first step, a binocular depth estimation is carried out.
For that, we present PBBDE, a disparity estimation approach
that does not require precise calibration information (in
terms of the relative orientation of the cameras). Basically,
from a set of Gabor filtering, the system provides a disparity
map in both 𝑋- and 𝑌-orientations. Thus, instead of a full
metrical 3D reconstruction of the observed scene, a disparity
map of the surrounding space is actively updated on time

Stereo pair Hor. disp. Vert. disp.
of images map map

Figure 13: Disparity estimation results obtained by the PBBDE
approach on the images acquired by a RoboSoft TO40 setup such
that the fixation point is at the cake box and the disparity maps
are coded from red (positive values of disparity) to blue (negative
values).

for the task at hand. That knowledge provides a complete
and operative cognition of the environment and can be
successfully used for robot motion control.

The performance of the PBBDE approach has been evalu-
ated through several experimental results on both simulated
and real environments. Firstly, with the aim of evaluating
the accuracy in disparity estimation, Middlebury dataset for
Stereo Evaluation [42] has been used. This dataset provides
the disparity ground-truth images for all its image sequences.
In that way, a quantitative comparison with other band-
pass filters could be carried out. As the experiments show,
the best results were obtained by the PBBDE approach.
In addition, some experiments were performed on vergent
stereo image pairs generated by a simulator developed in
[89]. With the purpose of testing the PBBDE’s performance
in the action-perception cycle, an interactive application has
been implemented. It evaluates the proposed phase-based
approach to estimate disparity maps, such that it allows an
agent to estimate depth of target objects to reach them in
a reliable way. The obtained results are successful since the
maximum error was less than 1.0 pixel, which means that
depth estimation will be quite accurate.

On the other hand, the PBBDE’s accuracy was also
evaluated on real data. For that, a robotic platform mounted
with a convergent stereo system was used. In this case, depth
estimation from the generated disparity maps was assessed.
As the experimental results highlight, the accuracy of the
approach was considerably small (less than 1 cm), making the
approach suitable for robotic tasks.

Therefore, we have developed a biological strategy which
provides a robotic systemwith basic visuo-motor behaviours,
perceptual abilities (depth’s perception through disparity esti-
mation), and manipulative abilities (i.e., reaching for a visual
target).Therefore, the designed robotic system could robustly
perform visuo-motor tasks in complex, natural environments
without any a priori knowledge.

As a future work, we plan to integrate a visual short-term
memory such as that presented recently Brouwer and Knill
[91], suggesting that the brain can use that visual short-term
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Figure 14: Depth estimation from the disparity maps obtained by the PBBDE approach on the images acquired by a RoboSoft TO40 set-up.

memory in a more directed, task-specific manner to help
guide reaching movements. So, rather than relying on visual
information alone when it is available and reliable, humans
appear to use both sources of information to the limits of
their reliability. In addition, we would like to investigate the
memory capacity and reference frames used for storing object
information for the use in action in a robotic platform.
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