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Although abscopal tumor regression remains a rare phenomenon, interest in exploiting
how radiation stimulates the immune system to induce systemic abscopal response is
increasing. Here, we tested the hypothesis that tumor immunogenicity determined the
ability of radiotherapy to induce abscopal effects. We established highly (MC-38 and
E.G7-OVA) or poorly (LL/2 and B16-F10) immunogenic tumor models in this study and
treated them with sham radiation, a single dose of 15 Gy, or three fractions of 5 Gy on
three consecutive days. Alterations in the tumor microenvironment after radiation were
examined by flow cytometry and RNA sequencing. Our results demonstrated the positive
correlation between tumor immunogenicity and the abscopal effect of radiotherapy. The
single dose of 15 Gy radiation was an effective regimen for inducing abscopal effects in
highly immunogenic tumors. Local radiation reshaped the tumor microenvironment of
irradiated and non-irradiated distant tumors by increasing CD8 T-cell infiltration and
reducing suppressive immune cell accumulation. However, radiation alone was insufficient
to elicit abscopal effects in poorly immunogenic tumors. No significant alterations were
detected in the non-irradiated distant tumor microenvironment after radiation of poorly
immunogenic tumors. In addition, tumor immunogenic subtypes were associated with the
radiological response and clinical outcome of patients receiving radiotherapy. These
findings indicated that tumor immunogenicity was the dominant characteristic that could
predict the abscopal effect of radiotherapy. Our study provides an in-depth understanding
of the immunological mechanisms involved in abscopal effects and highlights the impact of
tumor heterogeneity on the therapeutic efficacy of radiotherapy and their combination with
immunotherapy in clinical trials.
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INTRODUCTION

Radiotherapy is the standard-of-care treatment for localised cancers and palliative treatment in
metastatic disease (1). The abscopal effect is a phenomenon in which local radiotherapy is associated
with the regression of metastatic cancer outside of the irradiated field (2). Currently, most
researchers believe that radiation induces oxidative stress or injury in tumors, thus leading to the
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liberation of neoantigens and cellular damage-associated
molecular patterns (DAMPs), such as tumor-associated
antigens, necrotic tumor cells and debris. A significant increase
in the diversity and number of neoantigens can activate a tumor-
specific immune response, with tumor-associated antigens
recognised by antigen presenting cells (APCs) and then
presented to effector T cells. Effector T cells can then recognise
and eliminate both irradiated tumors and metastatic tumors (3).
Although the abscopal effect is a rare event in metastatic tumor
patients receiving radiotherapy alone, the growing consensus is
that radiotherapy combined with immunotherapy provides an
opportunity to boost the abscopal effect in some clinical trials (4–
6). To date, the biological mechanisms underlying the abscopal
effect in different tumor types are not yet fully understood.

The goals of our study were to explore the cellular and
molecular mechanisms by which radiotherapy reshaped the
tumor microenvironment and induced abscopal effects in
murine models. Our study strongly indicated that the
radiation-induced abscopal effect was positively correlated
with tumor immunogenicity, which is the ability of cancer
cells to induce adaptive immune responses (7). Cancer cells that
can elicit a protective immune response to inhibit tumor
growth are considered to have high immunogenicity.
Conversely, cancer cells that only stimulate a weak immune
response and fail to control tumor growth are classified as
having poor immunogenicity (8). In this study, we observed the
efficacy of radiotherapy in both highly and poorly
immunogenic tumor models and found that single high-dose
radiation was optimal for stimulating a localised antitumor
immune response and provided an opportunity to boost
abscopal response rates in highly immunogenic tumors.
Nevertheless, radiation alone was insufficient to elicit
abscopal effects in poorly immunogenic tumors. Therefore,
the abscopal effect of radiation appears to be correlated with
tumor immunogenicity.
MATERIALS AND METHODS

Mouse Strains and Cell Lines
Female C57BL/6 mice (age, 6–8 weeks) were purchased from
Beijing Vital River (Beijing, China) and housed in pathogen-free
facilities in the Experimental Animal Centre of Fujian
Medical University.

Most mouse tumor cell lines were purchased from ATCC
(Manassas, USA), including B16-F10 melanoma cells, LL/2 Lewis
lung carcinoma cells (LLC1) and E.G7-OVA OVA-expressing
EL4 thymic lymphoma cells. MC38 colorectal carcinoma cells
were obtained from the laboratory of Dr. Lieping Chen (Yale
University). All tumor cell lines were tested to be free of
mycoplasma before use.

Animal Experiments
A total of 0.5 × 106 MC-38, E.G7-OVA, LL/2 or B16-F10 cells
were injected subcutaneously into the right flank (irradiated
tumors) and left flank (non-irradiated tumors) of C57BL/6
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mice. The perpendicular tumor diameters were calculated
using the equation (l + w)/2, where l and w refer to the larger
and smaller dimensions, respectively. Mice were randomised into
different treatment groups when the irradiated tumor diameters
reached 5–6 mm. In the irradiation group, mice were
anaesthetised with isoflurane and placed under lead shielding
with a 15 mm diameter aperture aligned over the tumor. Only
the irradiated tumor in the right flank was exposed to irradiation
while the rest of the body was kept outside the radiation field.
Radiation was performed using an RS-2000 Biological Irradiator
(RadSource, Canada) at 160 kV, 10 mA and a dose rate of 1.05
Gy/min. Depletion of CD8 T cells was achieved by
intraperitoneal injection of 200 µg of CD8-depleting antibody
(anti-mouse CD8a, clone 53.6.7) once a week three consecutive
times. All the mice were regarded as dead from humane
treatment after the irradiated or non-irradiated tumors reached
20 mm in size for each dimension.

Flow Cytometry
Single-cell populations were isolated from fresh tumor tissue
using a Gentle MACS mechanical dissociator in the presence of
lysis buffers (Miltenyi Biotec, Germany). Cells were blocked with
anti-mouse CD16/32 (TruStain fcX, USA) and then stained with
antibodies against mouse CD3e, CD4, CD8a, CD45.2, CD11b,
F4/80, Gr-1, CD25, PD-1 (programmed cell death protein-1),
TIM-3 (T cell immunoglobulin domain and mucin domain-3),
Foxp3 (forkhead box P3), IFN-g, TNF-a, death marker and
matched isotype controls depending on the experiment. For
cytokine staining, the cells were restimulated with ionomycin
and PMA (phorbol 12-myristate 13-acetate) for 4 h in the
presence of GolgiPlug (BD Biosciences, USA) before
intracellular staining. The gating strategy is shown in
Supplementary Figure 1A. These antibodies and staining
agents were obtained from Thermo Scientific and BD
Biosciences. Samples were run on a BD FACSVerse system
and analysed using FlowJo software version 10 (BD
Biosciences, USA).

RNA Isolation and Sequencing
RNA sequencing was performed on samples isolated 8 days after
the first dose of radiation. Total RNA from the irradiated tumors,
non-irradiated tumors and sham-irradiated tumors was
extracted using TRIzol (Sangon, China) according to the
manufacturer’s instructions. To construct Illumina sequencing
libraries, a total amount of 2 mg RNA per sample was used as the
input material for the RNA sample preparations. Sequencing
libraries were generated using the VAHTSTM mRNA-seq V2
Library Prep Kit for Illumina® following the manufacturer’s
recommendations, and index codes were added to attribute
sequences to each sample. The libraries were subsequently
quantified and pooled. Paired-end sequencing of the libraries
was performed on HiSeq XTen sequencers (Illumina, USA).
Normalised and log2-transformed TPM values from RNA-Seq
based on the expectation maximisation data, which reflect
relative mRNA expression, were analysed using the Mann–
Whitney test.
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Immune Cell Analysis and Gene Functional
Enrichment Analysis
The Immune Cell Abundance Identifier (ImmuCellAI-mouse,
http://bioinfo.life.hust.edu.cn/ImmuCellAI-mouse/#!/) has been
recently developed to estimate the abundance of 36 immune cell
types, including 11 T-cell subsets, from mouse gene expression
data (9). For each queried sample, the enrichment score of the
total expression deviation of the signal gene sets was calculated
and assigned to each immune cell type by the Single-sample
Gene Set Enrichment Analysis (ssGSEA) algorithm. GSEA
(https://software.broadinstitute.org/gsea/index.jsp) was applied
to analyse signalling pathway enrichment in non-irradiated
and control tumors using the KEGG database in MSigDB
(version 7.3). The enriched pathways were arranged in the
order of their normalised enrichment scores (NESs), and
p <0.05 and FDR <0.25 were considered statistically significant
in the GSEA analyses.

Bioinformatics Data Analysis
The following three independent datasets were downloaded from
the Gene Expression Omnibus (GEO) database: GSE35452
(rectal cancer), GSE116918 (prostate cancer), and GSE7696
(glioblastoma). We first quantified the enrichment levels of the
29 immune signatures in each sample by the single-sample gene-
set enrichment analysis (ssGSEA) score (10). Next, the ssGSEA
scores for each immune cell type were standardised and tumors
were divided into a predominant immune group (PI) and a low
immune group (LI) using Ward’s hierarchical clustering method.
Kaplan–Meier survival curve analysis was used to analyse
survival between the PI and LI groups.

Statistical Analysis
Statistical analyses were performed using Prism 8 (GraphPad,
Canada). All data are shown as the mean ± SD unless otherwise
stated, and significant differences were determined using a two-
tailed Student’s t-test or one-way ANOVA with Tukey’s multiple
comparison test. The survival difference was analysed by
Wilcoxon and log-rank tests. p <0.05 was considered
statistically significant. The results represent at least two
experiments unless otherwise stated.
RESULTS

Tumors Were Stratified as Highly or Poorly
Immunogenic According to the Number of
Infiltrating Immune Cells and Expression
of MHC-I Molecules
Tumor immunogenicity is defined as the ability of a tumor to
stimulate an immune response that can inhibit tumor growth (7).
Here, we assessed the immunogenicity of four murine tumor
models (MC-38, E.G7-OVA, LL/2, and B16-F10). The
percentages of tumor-infiltrating immune cells (gating on live
cells) were higher in the MC-38 and E.G7-OVA tumors than the
LL/2 and B16-F10 tumors (Figure 1A). The absolute numbers of
CD8 and CD4 T cells were significantly increased in the MC-38
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and E.G7-OVA tumor tissues. In addition, CD8 T cells displayed
higher levels of PD-1, TIM-3 and IFN-g in theMC-38 tumors than
the LL/2 tumors (Figure 1B and Supplementary Figure 1B).
Higher infiltration of CD3 T cells was also observed in the MC-38
tumors than the LL/2 tumors by immunofluorescence staining
(Figure 1C). Previous studies have identified a significant
correlation between MHC-I expression in tumor cells and
immunogenicity (11). Our data showed that MHC-I (H-2Kb)
expression was high in the MC-38 and E.G7-OVA cells but not
observed in the LL/2 and B16-F10 cells (Figure 1D). In addition,
the RNA-seq analysis revealed that the expression of multiple
immune-related genes was upregulated in the MC-38 tumors but
not the LL/2 tumors (Supplementary Figure 1C). Altogether, our
results indicated that MC-38 and E.G7-OVA cells were highly
immunogenic tumor cells while LL/2 and B16-F10 cells were
poorly immunogenic tumor cells.

Radiation-Induced Abscopal Effect Was
Associated With Tumor Immunogenicity
and the Radiotherapy Regimen
Highly immunogenic tumors (MC-38 and E.G7-OVA) and
poorly immunogenic tumors (LL/2 and B16-F10) were used to
establish bilateral tumor models (Figure 2A). We observed that
radiotherapy (15 Gy or 3 × 5 Gy) significantly inhibited
irradiated tumor growth and induced abscopal effects in both
the MC-38 and E.G7-OVA tumor models (Figures 2B, C, left
and middle panels). Furthermore, the percentages of both
irradiated and non-irradiated tumors with complete regression
were higher with a single dose of 15 Gy radiation than with three
doses of 5 Gy radiation (Supplementary Figures 2A, B).
Moreover, we also found that 15 Gy radiation prolonged
mouse survival in the MC-38 and E.G7-OVA models
(Figures 2B, C, right panel). In the LL/2 and B16-F10 tumor
models, although radiotherapy with 15 Gy or 3 × 5 Gy was
effective at controlling the growth of the irradiated tumors, both
regimens failed to trigger abscopal effects in the non-irradiated
tumors (Figures 2D, E and Supplementary Figures 2C, D).
Radiation did not lead to prolonged mouse survival in the LL/2
and B16-F10 tumor models (Figures 2D, E, right panel).

Abscopal Effect of Radiotherapy Was
Dependent on CD8 T Cell Activation and
Infiltration Into Non-irradiated Tumors
The abscopal effect induced by a single high dose of radiation in
highly immunogenic tumors prompted us to investigate
alterations in the tumor immune microenvironment after
radiation (Figure 3A). We observed that the percentages and
absolute numbers of CD8 T cells in the irradiated and non-
irradiated tumors were higher in the 15 Gy radiation group than
the control group (Figure 3B and Supplementary Figure 3A).
Correspondingly, CD8 T cells showed more intense IFN-g
production in the irradiated and non-irradiated tumors that
received 15 Gy radiation (Figure 3C and Supplementary
Figure 3C). Meanwhile, the percentages of tumor-associated
macrophages (TAMs) and myeloid-derived suppressor cells
(MDSCs) were reduced in irradiated and non-irradiated
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tumors after 15 Gy radiation (Figures 3E, F). Unexpectedly, the
percentages of regulatory T cells (Tregs) were increased in
irradiated and non-irradiated tumors of mice receiving 15 Gy
or 3 × 5 Gy radiation (Figure 3D). In addition, the percentages of
CD8 T cells, CD4 T cells and Tregs were all increased in the MC-
38-irradiated and non-irradiated tumor-draining lymph nodes
(TDLNs) (Supplementary Figure 4A). However, for the poorly
immunogenic LL/2 tumors, upregulation of the absolute
numbers of CD8 T cells, increased the percentages of
CD8+IFN-g+ T cells and downregulation of immune cells
(MDSCs and TAMs cells) was only observed in the irradiated
Frontiers in Oncology | www.frontiersin.org 4
tumors receiving 15 Gy radiation. No significant change in these
immune cells was detected in the non-irradiated tumors
(Figures 3G–K and Supplementary Figures 3B, D). Similar
results were obtained in the B16-F10 tumor model
(Supplementary Figure 4C). Moreover, the percentages of
CD8 T and CD4 T cells were also increased in the TDLNs of
the irradiated tumors but not in the TDLNs of the non-irradiated
tumors (Supplementary Figures 4A, B). Furthermore, to
elucidate the role of effector T cells in the abscopal effect of
local radiation therapy, we depleted CD8 T cells via the systemic
administration of an anti-CD8 antibody in MC-38 tumor
A

B

D

C

FIGURE 1 | Tumor immunogenic levels of four murine tumors. Mice were inoculated with MC-38, E.G7-OVA, LL/2 and B16-F10 tumors, and then tumor infiltrating
cells were isolated for cytometry analysis when the tumor lengths reached approximately 5–6 mm (on days 7–9). (A) Percentages of CD45-positive lymphocytes in
four types of tumor tissues are shown in representative FACS plots (left graph) and pooled from two independent experiments. (B) Absolute numbers of CD8 T and
CD4 T cells in four types of tumor tissues were counted, and percentages of CD8+IFN-g+ and CD8+PD-1+TIM-3+ cells were analysed in MC-38 and LL/2 tumor
tissues. (C) Infiltrating T cells in MC-38 and LL/2 tumors were stained with anti-CD3 (purple) and DAPI (blue, nuclei staining) and detected by immunofluorescence.
Scale bars, 200 mm. (D) Histograms of MHC-I molecule expression on MC-38, E.G7-OVA, LL/2 and B16-F10 cells in vitro. Representative results from one of at
least three independent experiments are shown. *p < 0.05, **p < 0.01, ***p < 0.001.
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models. The data showed that depletion of CD8 T cells
completely abolished the distant antitumor effect induced by
15 Gy radiation, which was demonstrated by tumor growth
(Supplementary Figure 5).
Single High Dose Radiation Reshaped
Immune Microenvironment of
Non-Irradiated Tumors in Highly
Immunogenic Tumors
To further explore the immunomodulatory mechanisms of
radiation in highly or poorly immunogenic tumors, we
Frontiers in Oncology | www.frontiersin.org 5
harvested the irradiated tumors, non-irradiated tumors and
control tumors of MC-38 and LL/2 cells and performed
mRNA sequencing (RNA-seq) on day 8 after irradiation.
Volcano plots were used to visualise differential immune gene
expression between the non-irradiated tumors and control
tumors. The results showed that 29 and 58 immune genes
were upregulated and downregulated in the MC-38 tumors,
respectively, while only three and two genes were upregulated
and downregulated in the LL/2 tumors, respectively (Figure 4A).
The hierarchical cluster analysis showed that the dissimilarity
of immune gene expression between the non-irradiated tumors
and control tumors was most similar in the LL/2 model while a
A

B

D

E

C

FIGURE 2 | Response to radiotherapy in highly and poorly immunogenic tumors. (A) Four types of murine tumor cells were subcutaneously inoculated in the
bilateral flanks of C57BL/6 mice. Irradiated (in the right flank) tumors received 3 × 5 Gy, 15 Gy or sham radiation when tumor lengths reached 5–6 mm. (B–E) Left:
Tumor growth curve of irradiated and non-irradiated tumors treated with 3 × 5 Gy, 15 Gy or sham radiation in the (B) MC-38 model (n = 12), (C) E.G7-OVA model
(n = 10), (D) LL/2 model (n = 12) and (E) B16-F10 model (n = 12); Right: Survival rate of the mice in each group for the MC-38, E.G7-OVA, LL/2 and B16-F10
models. Percent survival of mice in the different groups depicted with a Kaplan–Meier plot. One-way ANOVA was used to compare tumor sizes at the endpoint of
these three groups *p < 0.05, **p < 0.01, ***p < 0.001, ns, no significance.
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high-dimensional space of gene expression was found in the
MC-38 model (Figure 4B). Heat maps were utilised to exhibit
the expression of immune-related genes, including markers
of immune cell populations, immune activation, immune
suppression and the tumor microenvironment. We found that
the non-irradiated tumors displayed upregulated immune gene
expression compared with the control tumors in the MC-38
model. In contrast, significant differences in gene expression
between the non-irradiated tumors and control tumors were not
observed in the LL/2 model (Figure 4C).

Next, an online tool named ImmuCellAI-mouse was used to
estimate the abundance of seven immune cells, including 11 T-
cell subsets, based on the gene expression profile from the RNA-
seq data (9). Our results demonstrated that macrophages and
dendritic cells accounted for the majority of immune cell subsets
Frontiers in Oncology | www.frontiersin.org 6
in the MC-38 tumors and T cells were significantly abundant in
both the irradiated and non-irradiated tumors compared with
the control tumors (Figure 5A). Among these T-cell subsets,
CD8 T cells increased significantly in both the irradiated and
non-irradiated tumors (Figure 5C and Supplementary
Figure 6), including CD8 cytotoxic cells, CD8 central memory
cells, CD8 effector memory cells, CD8 exhausted cells and naive
CD8 T cells (Figure 5B). In addition, a GSEA of signalling
pathway enrichment in the non-irradiated tumors compared to
the control tumors in the MC-38 model was performed.
According to the KEGG enrichment results, pathways related
to immune responses, including the T cell receptor signalling
pathway, NOD-like receptor signalling pathway, antigen
processing and presentation pathway, were upregulated in the
non-irradiated tumors (Figure 5D).
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FIGURE 3 | Alteration of the tumor immune microenvironment induced by radiation in highly and poorly immunogenic tumors. (A) Tumor-infiltrating immune cells
from MC-38 and LL/2 tumors that received 3 × 5 Gy, 15 Gy or sham radiation were analysed 8 days after radiation by flow cytometry. (B) Percentages and absolute
numbers of CD8 T cells (gating CD45+ immune cells) are presented for the MC-38-irradiated and non-irradiated tumors. (C) Tumor-infiltrating T cells were stimulated
with PMA and ionomycin in vitro, and then the percentages of CD8+IFN-g+ cells were detected in irradiated and non-irradiated MC-38 tumors. (D–F) Percentages of
Tregs, MDSCs and TAMs in the irradiated and non-irradiated MC-38 tumors. (G) Percentages and absolute numbers of CD8 T cells in the LL/2-irradiated and non-
irradiated tumors. (H) Percentages of CD8+IFN-g+ cells in the LL/2 tumors. (I–K) Percentages of Tregs, MDSCs and TAMs in the LL/2-irradiated and non-irradiated
tumors. IR, irradiated sides; Non IR, contralateral non-irradiated sides. Representative results from one of at least two independent experiments are shown. *p <
0.05, **p < 0.01, ***p < 0.001, ns, no significance.
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Tumor Immunogenic Subtypes Were
Associated With the Radiological
Response and Clinical Outcome of
Patients Receiving Radiotherapy
Tumor immunogenicity varies considerably among different
types of cancer, and tumor mutation burden (TMB) was
recently proven to be positively associated with the
immunogenicity of a variety of tumors. Previous studies have
shown that rectal cancer is a highly immunogenic tumor with
high TMB and prostate cancer and glioblastoma are low
immunogenic tumors with low TMB (12–14). Here, we utilised
GEO databases to explore the association of radiotherapeutic
effects and immune infiltration between the low TMB and high
Frontiers in Oncology | www.frontiersin.org 7
TMB tumors. A total of 29 immune-related gene sets linked to
immune infiltration were applied to characterise the two major
immunogenicity subtypes in these types of cancer, namely, the
predominant immune subtype (PI) and low immune subtype
(LI). In the rectal cancer database (GSE35452), patients were
classified as “responders” when tumors were assigned a
regression grade of 2 or 3 and as “nonresponders” when
tumors were assigned a regression grade of 0 or 1 (15). Forty-
six tumor samples were divided into the PI group (17/46) and LI
group (29/46) according to the ssGSEA scores. Our analysis
clearly showed that most radiotherapy responders belonged to
the PI group (Figure 6A), suggesting a good prognosis among
high immune infiltration patients. However, differences in
A B

C

FIGURE 4 | Differentially expressed genes of irradiated tumors, non-irradiated tumors and sham-radiated tumors in the MC-38 and LL/2 tumors. (A) Volcano
plots for gene expression of non-irradiated tumors and sham-radiated tumors in the MC-38 and LL/2 tumor models. The red and green dots represent up- and
downregulated DEGs (differentially expressed genes), respectively. (B) Cluster tree showing the dissimilarity and relevance within the irradiated tumors, non-irradiated
tumors and sham-radiated tumors in the MC-38 and LL/2 tumors. (C) Heat map of immune-related gene expression in the MC-38 tumors and LL/2 tumors 8 days
after radiation, including markers of immune cell populations and genes involved in immune activation, immune suppression, cell adhesion and inflammation (n = 3).
To compare the immune-related gene expression levels between the non-irradiated tumors and sham-radiated tumors, RNA-seq data were normalised and analysed
by the Mann–Whitney test. *p < 0.05, **p < 0.01,***p < 0.001, ns, no significance.
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survival were not observed between the PI group and the LI
group of prostate cancer (GSE116918) and glioblastoma
(GSE7696) (Figures 6B, C).
DISCUSSION

Abscopal effects are rare phenomena in which tumors outside of
the irradiated field regress due to the systemic antitumor effects
of local radiotherapy (2). Previous reports documented that the
majority of clinical cases of radiation-induced abscopal effects
occurred in immunogenic tumors, such as renal cell carcinoma,
melanoma and hepatocellular carcinoma (16–18), indicating that
the abscopal effect was correlated with tumor immunogenicity.
Tumor immunogenicity differs in different types of advanced
solid tumors. In this study, we stratified tumors as highly and
poorly immunogenic according to the densities of intratumoral
immune cell infiltration and the MHC-I expression of tumor
cells. We found that the abscopal effect was only induced in the
highly immunogenic tumor models (MC-38 and E.G7-OVA) but
not in the poorly immunogenic tumor models (LL/2 and B16).
Many studies have revealed that irradiation stimulates the
immune system through numerous pathways, including the
release of previously hidden tumor-associated antigens (TAAs)
and immune-stimulatory molecules from tumors, which could
activate and prime an antitumor immune response (19–21).
Considering that highly immunogenic tumors were more likely
Frontiers in Oncology | www.frontiersin.org 8
to harbour neoantigens and an associated increase in cytotoxic T
cells occurred in the tumor microenvironment, it would seem
reasonable to speculate that the abscopal effect of radiation may
be correlated with tumor immunogenicity.

Apart from the tumor microenvironment, the dosage and
fraction regimen of radiation may also have a substantial impact
on the abscopal antitumor effect. To address this question, two
different treatment regimens, namely, a single dose of 15 Gy or
fractionated dose of 3 × 5 Gy irradiation, were applied in this
study. Our results demonstrated that single high-dose radiation
(15 Gy) was optimal for eliciting a robust local immune response
and inducing an abscopal effect in highly immunogenic tumors
compared to 3 × 5 Gy radiation and radiotherapy was insufficient
to elicit an abscopal effect in poorly immunogenic tumors. Thus
far, an “optimal” radiation scheme has not been developed for
the induction of abscopal effects. Dewan et al. showed that the
abscopal effect was only induced in fractionated regimens (22).
Conversely, other groups reported that the antitumor immunity
elicited by high single-dose radiation was more potent than that
by fractionated treatments (23). However, most of these previous
studies applied single high-dose radiation or hypofractionated
regimens (≥6 Gy) to induce abscopal effects. In our opinion,
these paradoxical results are based on differences in immune-
relevant changes in the tumor microenvironment induced by
distinct radiotherapy regimens.

Many mechanisms have been proposed to elucidate the
abscopal effect of radiation (24). Previous studies have revealed
A B

DC

FIGURE 5 | Single high-dose radiation triggered the immune response of non-irradiated tumors in the MC38 model. (A, B) Distributions of 7 immune cell and 11 T
cell subsets in the irradiated tumors, non-irradiated tumors and control tumors of the MC38 model were assessed by immune cell abundance identifier (immuCellAI-
mouse). (C) Enrichment scores of CD8 T cells were significantly higher in both irradiated and non-irradiated tumors than in control tumors. (D) Significantly enriched
KEGG pathways from the GSEA in non-irradiated tumors. *p < 0.05.
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that local irradiation can activate a cascade of innate and
adaptive immunity through numerous pathways, including the
release of DAMPs, activation of the STING (stimulator of
interferon genes) signalling pathway, cross-presentation of
TAAs, etc. (25–27). Our latest research study confirmed that
radiation-induced local immune responses are largely dependent
on CD8 T cells, which is consistent with other reports (28).
Considering that tumor immunogenicity was correlated with a
higher level of immune cell infiltration (Figures 1A–C and
Supplementary Figures 1B, C), immune cell infiltration in
tumors should play a crucial role in mediating the response to
radiotherapy. In this study, we found that CD8 T-cell infiltration
and IFN-g production were upregulated by 15 Gy radiation
in both the irradiated and non-irradiated tumors with
high immunogenicity, which was accompanied by the
downregulation of suppressive immune cells (MDSCs and
TAMs) at the tumor sites (Figure 3 and Supplementary
Figure 3). However, the infiltration of CD8 T cells was
decreased in the irradiated tumors receiving 3 × 5 Gy radiation
(Figure 3B). These results have several potential explanations,
including fractionated radiation-induced effector CD8 cell death,
which dampens the antitumor immune response (29), and the
Frontiers in Oncology | www.frontiersin.org 9
spatiotemporal dynamics of CD8 T cell infiltration after
radiation. Radiation-induced CD8 T cell infiltration occurred
in a narrow time window (30). Furthermore, cytotoxic T cells
displayed a radiation-sensitive phenotype that might be affected
during reirradiation (31). Interestingly, although CD8 T cells
were decreased in the irradiated tumors of the 3 × 5 Gy group,
abscopal effects were still observed in the 3 × 5 Gy group
(Figure 2B and Supplementary Figure 2A). These results
confirmed that fractionated irradiation was directly toxic to the
T cells in the irradiated tumors. Compared with the irradiated
tumors, higher concentrations of CD8 T cells were observed in
the non-irradiated tumors after radiation (3 × 5 Gy and 15 Gy)
(Figure 3B left), indicating that a systemic antitumor immune
response was triggered by the newly infiltrated CD8 T cells after
radiation treatment. In addition, upregulation of Treg infiltration
induced by radiation (3 × 5 Gy and 15 Gy) was observed in the
irradiated and non-irradiated tumors (Figure 3D). Treg cells are
an important regulator of inflammation and homeostasis of the
immune system (32). An increase in Treg cells has been widely
reported as a mechanism underlying the radiation resistance and
immunoregulatory function of irradiated tumors, and it is
preceded by the infiltration of CD8 T cells. However, the
A

B C

FIGURE 6 | Association between immune profiles of the tumor microenvironment and radiological response in three types of cancer patients. (A) Unsupervised
clustering of 46 rectal cancer patients who received radiotherapy. The tumor microenvironment was divided into predominant immune groups (PI) and low immune
(LI) groups according to single-sample gene-set enrichment analysis (ssGSEA) scores of 29 immune cell types. Patients were classified into two types of radiation
response (responder and nonresponder) based on a semiquantitative classification system. (B, C) Kaplan–Meier survival curves for the PI and LI groups of cancer
patients with (B) prostate cancer and (C) glioblastoma.
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decrease in CD8 T cells and increase in Tregs observed in the
irradiated tumors that received 3 × 5 Gy may have been related
to the decrease in CD8 T cells after fractionated irradiation
and the presence of radioresistant Treg cells inside the tumors.
Moreover, radiation can cause the release of immunosuppressive
cytokines (TGF-b and IL-10) and increase the fraction of Tregs
in the spleen and circulation (33). Therefore, one explanation for
the increase in Tregs in non-irradiated tumors was that radiation
enhanced the recruitment of circulating Tregs to abscopal
tumors. Taken together, these results indicated that high-dose
radiation alone increased CD8 T cell infiltration and reduced the
percentage of MDSCs and TAMs in non-irradiated tumors,
which induced an abscopal effect in highly immunogenic
tumors. Some barriers in the tumor microenvironment might
prevent the responding immune cells from migrating and
infiltrating into non-irradiated tumor sites of poorly
immunogenic tumors.

Our results revealed that local irradiation induced a strong
systemic immune response and altered the gene expression
profiles of non-irradiated tumors with high immunogenicity
and showed that irradiation alone was not sufficient to change
non-irradiated tumors with poor immunogenicity. Intriguingly,
the increase in CD8 T-cell infiltration and upregulation of
immune-related genes were observed in the irradiated tumors
but not in the non-irradiated tumors with poor immunogenicity.
Collectively, these immune characterisations could at least
partially explain why radiation alone could trigger abscopal
effects in highly immunogenic tumors but not in poorly
immunogenic tumors. Our findings indicated that tumor-
mediated tolerance or barriers could be overcome by radiation-
induced systemic antitumor responses in highly immunogenic
tumors and primed CD8 T cells could recognise and attack both
local tumors and distant tumors outside the radiation field. In
contrast, low immunogenicity indicated that TAAs were
downregulated in tumors and evasion of host immunity
occurred in the tumor microenvironment, which lacked
chemokine-mediated trafficking and showed poor adaptive
immune cell activation (8, 11). The rarity of the abscopal effect
suggests that even primed antitumor CD8 T cells could not
overcome a suppressive tumor microenvironment with low
infiltration of responding immune cells. Radiation has been
reported to modulate tumor immunogenicity in various tumor
types by converting the biology of surviving tumor cells to render
them more sensitive to T cell-mediated immunity (34, 35). Here,
our data further confirmed that the immune profiles of the tumor
microenvironment played a critical role in whether an abscopal
effect occurred (36).

In clinical studies, high TMB represents genomic instability
and enriched tumor neoantigens, which is associated with
increased tumor immunogenicity. Recent evidence suggested
that TMB and immune cell infiltration were promising
biomarker for immunotherapy response in cancer patients
(37–41). Valero et al. reported that combining neutrophil-to-
lymphocyte ratio (NLR) with TMB provided more accurate
prediction for immunotherapy. They found that NLR-low/
TMB-high group had higher immunotherapy response rates
Frontiers in Oncology | www.frontiersin.org 10
and better outcome (40). The results of these studies raised the
intriguing possibility that tumor immunogenicity combined
with immune infiltration may be used as predictive biomarkers
in the context of radiotherapy. Our analysis of data from the
GEO database suggested that there was a positive correlation
between immune infiltration and radiotherapy effects
in high immunogenicity tumors. Tumor-infiltrating immune
cells represent actual conditions of the tumor immune
microenvironment. Radiotherapy promotes the release of
tumor neoantigens in highly immunogenic tumors, which is
beneficial to activate the immune cells and be able to recognize
and attack cancer cells. In addition, tumor microenvironment
and immune status are associated with peripheral blood immune
status. Immune status in peripheral blood provided a
comprehensive view of the status of the immune system and
correlated with T cell function in the tumor microenvironment
(42). Many studies have revealed that peripheral blood
immune cell subsets can be served as biomarkers to predict
immunotherapy efficacy (43). Zhou et al. reported that
peripheral blood immune cells including NKT cells
and neutrophils can be used as predictive biomarkers for
immunotherapy (44). Of note, peripheral blood can be
obtained easily and be repeated compared to tissue biopsy,
particularly during the evolving phases of therapy. However,
relationship between tumor immunogenicity and peripheral
blood immune status remains unknown. Future considerations
on the role of local/systemic immune status and tumor
immunogenicity in radiotherapy should be explored.

A l toge ther , our find ings ind ica t ed tha t tumor
immunogenicity is a critical determinant of the abscopal effect
of cancer radiotherapy and showed that the systemic antitumor
response generated by radiation may be based on differences in
the immune infiltration densities and immune activities between
highly immunogenic tumors and poorly immunogenic tumors.
Furthermore, in our study, PD-1 and TIM-3 expression was
increased in CD8 cells after radiation, thereby representing the
exhausted phenotype by failure to produce IL-2 and IFN-g (45).
The upregulation of PD-L1 has also been observed in irradiated
tumors in many reports (46, 47). This evidence provides an
opportunity for PD-1/PD-L1 blockade to normalise host
immunity against tumors. Based on these data, follow-up
studies were carried out to examine whether the combination
of radiotherapy and PD-1 blockade could induce different
antitumor immunity and abscopal effects between highly
immunogenic and poorly immunogenic tumors.
CONCLUSION

In summary, our study suggested a direct connection between
the abscopal effect and tumor immunogenicity. Although local
radiation has the ability to convert the irradiated tumor into an
immunogenic hub, it fails to induce an abscopal effect in poorly
immunogenic tumors. However, in highly immunogenic tumors,
single high-dose radiation was optimal for eliciting robust CD8
T-cell infiltration and inducing an abscopal effect. These findings
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provide valuable information to improve our understanding of
the abscopal effect and boost the application of radiotherapy for
the treatment of both local and metastatic disease in the clinic.
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