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Abstract: Chile is in the extreme southwestern part of America, and it has an extreme length, of
approximately 4300 km that increases to 8000 km considering the Chilean Antarctic Territory. Despite
the large extent of its coastal territory and the diversity of geographic environments and climates
associated with Chilean coasts, the research on marine resources in Chile has been rather scarce.
From marine organisms found in Chilean coastal waters, algae have been the most studied, since
they contain a wide range of interesting secondary metabolites that have some structural traits
that make them unique and uncharacteristic. Thus, a wide structural variety of natural products
including terpenoids (monoterpenes, sesquiterpenes, diterpenes, and meroterpenoids), furanones,
and C15-acetogenins have been isolated and identified. This review describes the existing literature
on bioprospecting and exploration of secondary metabolites from Chilean coasts.

Keywords: marine natural products; secondary metabolites; Chilean algae; biological activities;
biosynthesis; structure elucidation

1. Introduction

Marine natural products have served as a rich source of new bioactive agents [1–3].
The diversity of marine habitats and unique sea environmental conditions have enabled
marine organisms to develop mostly untapped sources of potential drugs with superior
chemical novelty [4]. During the last decades, much effort has been dedicated to isolating
and identifying new compounds from marine organisms, with the interesting outcome that
many of these derivatives exhibited biological activities [5–10]. Algae are one of the simplest
organisms containing chlorophyll, and, therefore, are found in almost every place where
there is light to perform photosynthesis, namely in seas, lakes, rivers, animals and plants
(as symbiotic species) [11]. They can be found as colonies of single-celled or multicellular
organisms, and in some cases collaborating as simple tissues. Consequently, their size
varies from 3–10 µm (unicellular algae) to 70 m long, i.e., giant kelp species growing up
to 50 cm per day. Algae are classified into two major groups: microalgae, found both in
benthic environments (littoral) and in the ocean (phytoplankton), and macroalgae (marine
algae) red, brown and green algae, established in the littoral zone [12]. Phytoplankton
comprise organisms such as diatoms (Bacillariophyta), dinoflagellates (Dinophyta), green
and yellow-brown flagellates (Chlorophyta; Prasinophyta; Prymnesiophyta, Cryptophyta,
and Rhaphidiophyta) and blue-green algae (Cyanophyta). These photosynthetic organisms
play an important role in the productivity of oceans and are at the base of the food chain [11].
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Marine macroalgae have been used in a number of important areas including the food
industry [13], agriculture [14] and as raw materials on third-generation bioplastics [15].
However, despite their extended use for decades in traditional medicinal therapies, and the
huge number of bioactive compounds that have been extracted and identified, algae are still
underrepresented in the pharmaceutical industry. For example, compounds isolated from
seaweeds showed interesting biological activities such as: antiprotozoal [16], antimicro-
bial [17–19], antifouling [20,21], anticancer [22], antileishmanial [23] and anti-inflammatory
properties [24]. Between these compounds are: terpenoids, sterols, phenols, peptides,
polysaccharides, acrylic acid, vitamins, proteins, heterocyclic compounds, chlorophyllides,
halogenated ketones and alkanes as well as cyclic polysulfides [25]. From the large variety
of metabolites isolated from algae, the most abundant compounds are terpenes, including
monoterpenes, sesquiterpenes and diterpenes. These compounds, which are formed by
different numbers of isoprene units (2-methylbuta-1,3-diene), have been found in volatile
oils of terrestrial plants as well as in seaweed [26,27]. All of them possess great potential
for further development in pharmacological applications [28].

The biological importance of marine terpenes, as illustrated by their ecological role,
may also be exploited in terms of their pharmacology. From this point of view, several
biologically active terpenoids have been reported with biomedical potential, and some of
them are already in preclinical or clinical development [29]. Eleutherobin (1) (Figure 1) orig-
inates from a soft coral of the genus Eleutherobia collected from Australian waters [30] and
has been re-isolated along with congeners from another octocoral from the Caribbean [31],
which can be maintained by aquaculture [32]. In preclinical experiments, eleutherobin has
been employed as stabilizer of microtubuline, and it competes for the paclitaxel binding site
on the microtubule polymer [33]. The anti-inflammatory pseudopterosins A–E (2) (Figure 1)
are diterpene glycosides characterized by the presence of an amphilectane type skeleton.
They were obtained from the gorgonian coral Pseuodopterogorgia elisabethae by Fenical’s
group in the late 1980s [4,34]. Marine organisms, mainly sponges, contain unusual sterols
such as contignasterol (3) (Figure 1), isolated from Petrosia contignata [35–39]. Contignas-
terol and its derivatives exhibit anti-inflammatory effects. Squalamine (4) (Figure 1) is a
water-soluble cationic amino sterol occurring in the liver and stomach tissues of Squalus
acanthias. The structure was published in 1993 and initially, it was reported as a potent
antimicrobial agent with antibacterial, antifungal and anti-protozoic properties [40,41].
Subsequent studies demonstrated that this compound inhibits angiogenesis and tumor
growth in various models [42], making it a good candidate for drug development as an
innovative anticancer agent. Thus, a large quantity of terpenic compounds with important
biological activity, isolated from different marine organisms, have been described in the
literature [43].

It is worth noting that the reason why seaweeds produce such a vast spectrum of
secondary metabolites is because they live in nonfriendly environments, and, therefore, they
are forced to synthesize protective compounds and to develop protective mechanisms [44].
Abiotic stresses to which algae are exposed include rapid fluctuations in light intensity,
temperature, osmotic stress and desiccation, which induce the formation of free radicals
and oxidizing agents leading to photodynamic damage [45].

The benthic habitat maps of continental Chile show special topographic characteristics
that have joined with coastal currents and winds to enhance the spread of algae, and
consequently, around 440 species have been identified [46]. Therefore, the study of Chilean
algae is a challenging task, and they are probably a unique source of new compounds
with interesting biological activities [47]. Thus, in this work we present a review of the
literature on terpenes, C15-acetogenins, and furanones as secondary metabolites isolated
from Chilean marine algae. Scifinder databases as well as the repositories of the Pontificia
Universidad Católica de Chile and Universidad Técnica Federico Santa María were used
to search reports published from 1967 to the present. Regarding the search methods,
these involved filtering by authors, e.g., Blunt, J.W.; San-Martín, A.; Darias, J.; Silva, M.;
Norte, M., as well as by keywords, e.g., secondary metabolites, brown algae, and red
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algae, to name a few. The search criteria focused on algae obtained from Chilean coasts
and the South Shetland Islands and reports of novel marine natural products. The latter
were spectroscopically characterized and present interesting biological and pharmaceutical
properties. Reports involving vegetable extracts or primary metabolites were omitted. If
some contributions (works or results) were omitted, it was due to an unintended error that
we deeply regret.
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2. Secondary Metabolites Isolated from Chilean Algae
2.1. Terpenoids

Chilean waters and coasts have turned out to be a fertile source of a variety of marine
organisms from which new terpenes have been obtained. For instance, the terpenes shown
in Figure 2 were isolated and identified from Trimusculus peruvianus, a marine mollusk
collected near Antofagasta coast, Chile. Compound 5, identified as a new terpene, and
previously reported compounds, 6 and 7 were assayed for their toxicity against Artemia
saline [1,48–50].
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2.1.1. Structural Features of Marine Terpenes

Some marine terpenes are known to have unique structural features. For instance,
chamigrene [51], amphilectane [52], and cembrane [53] (Figure 3) exhibit unusual structures
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as well as uncommon functionalities, such as dichloroimine, isonitrile, isocyanate, isothio-
cyanate, and halogenated functions that are predominantly found in marine organisms.
However, these functional groups are not exclusively marine [43].
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Algae are frequently found in marine habitats, where they are exposed to environmen-
tal microorganisms. However, algae survive in these hostile environments, probably due
to an inherently available chemical defense mechanisms. Therefore, many novel terpenes,
such as monoterpenes [54], sesquiterpenes [55,56], diterpenes [57,58], meroterpenoids [59],
and steroids [60,61], have been normally isolated from different seaweeds [62]. Hence, this
review will be focused on terpenes isolated from marine algae collected in Chilean coasts,
classified according to the number of carbon atoms present in their structural nuclei, and
on their biological activities.

2.1.2. Monoterpenes

Monoterpenes with multiple halogen substitution and uncommon carbon ring struc-
tures have been obtained mainly from red algae (Rhodophyta), and from green and brown
algae, as well. They can be linear or cyclic (even heterocyclic) compounds [62].

Linear Polyhydroxylated Monoterpenes

Linear polyhalogenated monoterpene (8) and three plocamenols A–C (9–11) (Figure 4),
are new compounds that were isolated from P. cartilagineum [63,64].
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Figure 4. Linear polyhydroxylated monoterpenes isolated from Chilean algae.

Compound 10 contains a terminal bromohydrin, whereas 11 is the corresponding keto
derivative. To verify the correct HMBC correlations, 11 was acetylated using acetic anhy-
dride in pyridine, leading to compound 12 [64]. Compounds 9 and 10, along with costatol,
are the first reported metabolites having a double bond conjugate bromohydrin [64]. Ad-
ditionally, empirical rules based on 13C and 1H NMR spectroscopic analysis have been
proposed to determine the regiochemistry and geometry of the 1,2-bromochloro vinyl
portion. This is extremely relevant since it can be applied to any compound of natural or
synthetic origin containing this functionality [65].
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This structural feature was also found in two novel monoterpenes, 13 and 14, (Figure 4),
isolated from P. cartilagineum. The effect of γ-substituents on chemical shifts of C-1 and
H-1 of the 1,2-dihalo vinylic portion was observed and used to validate the previously
reported empirical rules for determining regio- and stereochemistry of substituted vicinal
vinyl dihalide [66].

Prefuroplocamioid (15) (Figure 4) was isolated from P. cartilagineum, collected along
the coast of Chile. This compound has been considered as a precursor of furoplocamioids
(see below, compounds 34 and 35) [65], suggesting that biosynthesis of the 1,2-bromochloro
vinyl system occurs previously to oxetane ring formation of furoplocamioids.

Several known compounds, including fucoxanthin (16), α and β-carotene (17 and 18),
cholesterol (19) and plocamenone (20) (Figure 5) were isolated from the red algae, Ceramium
rubrum, and spectroscopically characterized. The halogenated monoterpene 20 had been
previously isolated and identified from the red algae Plocamium sp. [67].
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Cyclohexane Polyhalogenated Monocyclic Monoterpenes

Polyhalogenated monocyclic monoterpenes, 21–28 (see Figure 6), were identified from
red algae Plocamium cartilagineum collected at different points on the central Chilean coast
(La Herradura (IV Region), Montemar and El Tabo (V Region), La Boca and Punta de Perros
(VI Region), and Pumillahue (Chiloé, X Region)). Mertensene (27) and violacene (28), two
brominated compounds, were identified spectroscopically by comparison with authentic
samples [68].
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ing results. The plant materials, divided into carposporophyte, tetraspomphyte and
gametophyte-bearing plants, exhibited the same qualitative chemical composition but
important quantitative differences for these three reproductive phases. Depending on their
capacity to incorporate bromine, the collections were classified as α chemotype, terpenes
with no bromine, and β chemotype, brominated monoterpenes. Compounds 21, 22 and 26
were identified only in La Boca samples, whereas compounds 27 and 28 were characteristic
of Quintay samples, and compounds 23–25 (Figure 6) were common to both collections [69].
The fungicide and insecticide/acaricide activities of several isolated derivates were de-
termined; 28 showed the most potent insecticide activity among the compounds tested,
mainly against Macrosteles facifrons [70].

Halogenated monoterpenes, 21–25 (Figure 6), were also isolated from Shottera nicaen-
sis, which was collected intertidally at La Boca (VI Region), Chile. The total amount of
compounds isolated from S. nicaensis was one order of magnitude lower than that obtained
from P. cartilagineum, i.e., 0.04% and 0.5% dry weight, respectively. Even though for both
algae the mixture composition turned out to be identical, small changes in the relative
composition were observed. Both algae grow together, but their morphology and taxonomy
are so different that it is almost impossible to mix them up. Even more unlikely is the
idea that algae belonging to two different families have a common enzymatic system that
allows the elaboration of identical compounds of almost the same composition. These facts
seem to agree with Crew’s hypothesis about the algae Microcladia and Shottera growing
in association with Plocamium, i.e., Microcladia and Shottera are able to concentrate the
halogenated metabolites produced by Plocamium algae [71].

Finally, compound 29 (Figure 7) was isolated from the endemic Antarctic species
Pantoneura plocamioides and P. cartilaginuem L. (Dixon), marine algae with a wide geographic
distribution [72].
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Compound 28 exhibited the greatest insecticidal activity, while 27 showed a moderate
activity against Aphis fabae [73].

Tetrahydropyran Monoterpenes

Four new tetrahydropyran monoterpenes, 30–33 (Figure 8), have been isolated, and
their structures and relative stereochemistry were determined using spectroscopic evi-
dence [74]. Compounds 30 and 31 were obtained from P. cartilagineum, collected in El Yeco
(V Region, Chile), whereas 32 and 33 were isolated from P. plocamioides, collected off King
George Island (South Shetland, Antarctic).
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Tetrahydrofuran Monoterpenes

Tetrahydrofuran monoterpenes carrying non-common functional substituents, i.e.,
chloro or bromo vinyl groups, were identified in samples of P. cartilagineum collected off
the central coast (V Region) of Chile. These compounds, 34–36 (Figure 9), are closely
related to pantofuranoids obtained from the endemic Antarctic algae P. plocamioides, which
indicates a close relationship between these species. The relative stereochemistry of these
compounds was determined by spectroscopic experiments and molecular mechanics (MM2)
calculations [75].
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Two new related tetrahydrofuran halogenated monoterpenes, 37 and 38 (Figure 9),
were isolated from P. cartilagenium, collected at El Quisco, in the V Region of Chile. Struc-
tural elucidation of these compounds has been reported [63] and indicates the presence of
unusual vicinal vinyl dihalide, like that observed in furoplocamioids (A–C) (34–36).

Antifeedant activities of halogenated monoterpenes, i.e., 21, 22, 24, 27, 28, 31, 32–34,
36, 37, and 39, were tested against Myzus persicae, Leptinotarsa decemlineata and Ropalosiphum
padi. It is worth noting that none of these derivatives showed phytotoxic effects [72].

In the same line, compounds 21, 22, 24, 27, 28, 31, and 34 have been tested for their cy-
totoxic activity on tumor cell lines CT26, SW480, HeLa and SkMel28 with several multidrug
resistance mechanisms, and on mammalian non-tumor cell line CHO (Chinese hamster
ovary cells). Results showed that compound 31 presents selective activity against SW480
and HeLa cells. An analysis of cellular extracts posterior to incubation with the assayed
compounds and rotenone (positive uptake control) showed intracellular accumulation of
22, 27, 31 and 34 [76].

On the other hand, the effect of photon flux density (PFD) and temperature on the rela-
tive growth rate (RGR) of P. cartilagineum and formation of three halogenated monoterpenes,
22, 27 and 28, has been assessed [77].

2.1.3. Sesquiterpenes

Sesquiterpenes isolated from seaweeds can be classified, according to their carbon
skeletons, into the following groups: laurene, chamigrane, brasilane, bisabolene, cuparane,
and others [62]. Additionally, sesquiterpenes isolated from red algae are characterized by
an elevated number of halogenated substitutions. These compounds play important roles,
such as to defend algae against predators, fouling organisms and pathogens, as well as
reproduction and protection against UV radiation, and serve as allelopathic agents.

Laurencia (Rhodophyceae) is the marine macroalgae genus that represents the most
important source of sesquiterpenes. The reasons for this are, in the first place, that algae
belonging to this genus are extremely widespread in the world, mainly from tropical and
subtropical regions; second, they present a notable ability to biosynthesize a diversity of
structurally different sesquiterpenes with new skeletons, such as (seco)- or (9,10-friedo)-
chamigrane, (cyclo) perforane, guimarane, and poitane. Brown algae and green algae
also partly contribute to marine sesquiterpenes. However, the presence of halogenated
compounds is very unusual.

Chamigrene Sesquiterpenes

Claviol (39) and sesquiterpenes with the chamigrene skeleton, namely pacifenol (40),
prepacifenol (41), deoxy-prepacifenol (42), 9-hydroxy-4,10-dibromo-3-chloro-α-chamigrene
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(43), and 4,10-dibromo-3-chloro-α-chamigrene (44), have been isolated from the red alga
Laurencia claviformis, an endemic Easter Island species (see Figure 10) [78].
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All of these compounds were assayed for inhibition of cytokinesis in the sea urchin
Tetrapygus niger embryos, and 43 was identified as the most active compound. However, its
activity could be considered mild as compared to that shown by stypoldione, another active
marine compound with ED50 = 1.1 µg/mL. Nevertheless, this test seems to be a reason-
able prescreen to determine which substances merit further evaluation for antineoplastic
properties [78].

Finally, microbial transformation of pacifenol (40), and two semisynthetic derivatives,
45 and 46 (Figure 10), by Aspergillus níger, Gibberella fujikuroi and Mucor plumbeus, yielded
new hydroxylated derivatives, 47–52 (Figure 10) [79].

2.1.4. Diterpenes

Diterpenoids are found in higher plants, insects, fungi, and marine organisms. Several
of these compounds present antimicrobial, antitumor, cytotoxic, anti-inflammatory, anti-
fungal, molluscicide, antifeedant, and antifouling activities [43]. With more than 40 species
reported, the genus Dictyota has been presented as a powerful resource for diterpenic com-
pounds with novel chemical structures. Cyclic diterpenes are produced by many members
of this genus, just like typical diterpenes with a 6-methyl-5-hepten-2-yl side chain A. Three
types of main carbon skeletons have been reported: dolabellanes (including dolastanes),
xenicanes, and extended sesquiterpenes [62].

Perhydroazulene Diterpenes

Phytochemical study of brown algae Dictyota crenulata, collected at Vaihú, Easter
Island, allowed chromatographic isolation of five diterpenes, 53–57 and 58 (Figure 11),
whose chemical structures were determined by spectroscopic techniques [80,81].
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Compounds 53 and 55 were tested against Schizaphis graminum and Artemia salina, and
insecticidal activity against Tomato moth (Tuta absolute) was assayed as well [81].

Xenicane Diterpenes

A new diterpene with xenicane skeleton, 59 (Figure 12), has been obtained from
Glossophora kunthii, collected at Valparaiso, Chile [82].
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This new metabolite was fully characterized, including absolute stereochemistry. Other
diterpenes, such as pachydictyol A and dictyotriol A C-12 monoacetate, were identified in
this alga and their absolute configuration was determined by CD studies (exciton chirality
method). These diterpenes are frequently isolated in the Dictyota genus [83].

Crenulides Diterpenes

Two new crenulide diterpenes, 60 and 61 (Figure 13), have been obtained from the
brown alga G. kunthii, collected at Horcones Bay, V Region, Chile. Their structures have
been elucidated by spectral analysis and chemical correlation [84].
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Plastoquinone Diterpenes

Finally, two new plastoquinone diterpenes of mixed biogenesis, 62 and 63 (Figure 14),
were isolated from the brown alga Desmarestia menziesii, collected near the Antarctic Penin-
sula (Chilean Base Arturo Prat) [85].
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2.1.5. Meroterpenoids

Meroterpenoids are prenylated aromatic compounds of mixed biogenesis combining
acyclic, monocyclic, and bicyclic terpenes with aromatic or substituted aromatic groups
possessing different degrees of oxidation. Many meroterpenoids from seaweeds have inter-
esting biological activities such as antibacterial, antiviral, and antifeeding properties [62].
Plants in the genera Humulus and Cannabis produce these metabolites [86].

Seventeen meroterpenoids, 64–80 (Figure 15), were isolated from alga Stypopodium
flabelliforme, collected at Easter Island [87–92]. The epitaondiol (65) structure was fully
revised, and a meroditerpenoid containing an unusual two fused six-membered rings
forced into the twist-boat conformation was demonstrated [87].
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Structural elucidation of 67 and 68 (Figure 15) was carried out through spectroscopic
analysis and theoretical studies. Remarkably, 67 was the first metabolite isolated from the
Stypopodium genus that presents one halogen in its structure. At this point, it is worth noting
that based on published NMR data of isoepitaondiol (64) (Figure 15), it was observed that
the structure of compound 64 was wrongly assigned, and that the right structure of this
compound corresponds to 65. The relative configuration of this compound was confirmed
by single-crystal X-ray diffraction, while the absolute configuration was evidenced by
vibrational circular dichroism in combination with DFT B3LYP/DGDZVP calculations [91].

Taondiol (76) (Figure 15) has been isolated previously from this Stypopodium species.
The absolute configurations of (−)-taondiol diacetate (74) and (+)-epitaondiol diacetate (71)
isolated previously were determined using vibrational circular dichroism (VCD). For verifi-
cation, their relative stereochemistry was determined by X-ray diffraction. Additionally,
the crystal stereo structure of meroditerpenoid (79) (Figure 15) was reported [92].

Insecticidal activities of compounds 65, 66 and 71 (Figure 15) were tested, mainly
against Spodoptera frugiperda, and 71 showed the highest anti-insect activity. On the other
hand, compound 71 showed no activity towards the National Cancer Institute’s test (U.S.A.)
for agents active against HIV (killing of T lymphocytes by HIV) [88]. The inhibitory effects
of 66 (Figure 15) were studied. Additionally, the molecular action of this compound on
microtubule assembly was also analyzed [89,90].

The meroditerpenoids stypodiol (77), isoepitaondiol (64), and epitaondiol (65) exhib-
ited gastroprotective activity in mice [93].

Compound 65 and sargaol (78) were tested on HCl/ethanol-induced gastric lesions in
mice and compared with lansoprazole. Both 65 and 78 showed gastroprotective activity
with ED50 values between 35 mg/kg and 40 mg/kg. The results suggest that 65 and 78
protect the gastric mucosa in the HCl/EtOH model in mice [94].

Pacifenol (43) (Figure 10), stypotriol triacetate (79) and epitaondiol (65) (Figure 15)
were assayed for their anti-inflammatory effects. Compound 65 showed an important
topical anti-inflammatory activity, whereas the other compounds showed a non-significant
effect. Compound 65 inhibited human recombinant synovial phospholipase A2 activity
in a concentration-dependent manner, whereas 40 effectively inhibited the degranula-
tion response, but none of these compounds affected superoxide generation by human
neutrophils [95].

Six meroditerpenoids, 65, 68, 71, 77, 79 and 80 (Figure 15), were tested for their cell
proliferation inhibitory activity in five cell lines: Caco-2, SH-SY5Y, RBL-2H3, RAW.267 and
V79. Overall, these compounds showed good activity against all cell lines, with SH-SY5Y
and RAW.267 being the most susceptible. Their antimicrobial activity was also evaluated
against Enterococcus faecalis, Staphylococcus aureus, Proteus mirabilis, Salmonella typhimurium,
Bacillus cereus, and Micrococcus luteus. Antimicrobial capacity was observed for 77, 79 and
80, with the first being the most active [96].

2.2. C15-Acetogenins

Acetogenins are compounds biosynthesized from ethyl acetate or acetyl coenzyme A.
Several halogenated C15-acetogenins, possessing acetylenes, allenes, and oxygen heterocy-
cles, have been isolated from seaweeds [62]. Both linear and cyclic C15-acetogenins have
been reported.

2.2.1. Linear Polyhalogenated C15-Acetogenins

Studies carried out on the red alga Ptilonia magellanica, collected around Fuerte Bulnes
(Punta Arenas, XII region, Chile) at 3 m depth, led to isolation and identification of fifteen
metabolites belonging to a single biosynthetic class [97,98]. Ptilonines A–F (81–86), magel-
lenediol (87), magellenone (88) and ptiloninol (89) (Figure 16) are novel linear acetogenins
that are described for the first time. Compounds 81–84 and 89 (Figure 16) were tested for
their antimicrobial activity [97]. Results show that only compound 89 exhibited antibacte-
rial activity against K. pneumoniae (MIC ≈ 100 mg/mL). It is worth noting that ptilonines
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present an unusual halogenation substitution pattern, which may confer evolutionary
advantages to P. magellanica, for which a biogenetic origin is proposed [97].
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2.2.2. Cyclic Polyhalogenated C15-Acetogenins

Previously reported γ-pyrone (94) [99] and five new cyclic polyhalogenated aceto-
genins, namely pyranosylmagellanicus A–C (91–93) and pyranosylmagellanicus D–E (95
and 96) (Figure 17), were obtained from the red alga P. magellanica [97,98]. These new
metabolites are polyhalogenated pyranosyl-like hemiacetals that represent a novel struc-
tural type of acetogenin, being the first derivatives within the genus that incorporate
chlorine in their structure [98]. These cyclic acetogenins present a common biosynthetic
precursor, the linear acetogenin 90 (Figure 16).
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The absolute configuration of the known pyranosylmagellanicus A (91), was deter-
mined by treatment of 91 with (R)- and (S)-α-methoxy-α-phenylacetic acids (MPA). Com-
pounds 91–93 were tested for their antimicrobial activity, but no activity was found [97].

2.2.3. Bromoallene C15-Acetogenins

Acetogenins that end in an enyne group are produced by algae from the genus Lauren-
cia. Thus, (3Z)-13-epipinnatifidenyne (97) (Figure 18), a new C15-acetogenin, was obtained
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from the red alga L. claviformis collected at Easter Island. The structure of 97 was determined
using 1D and 2D spectral analysis [100].
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2.3. Furanones

2-Furanone is a heterocyclic organic compound. It is also known as γ-crotonolactone
(GCL), as it is formally the lactone derived from γ-hydroxyisocrotonic acid. 4-Hydroxy-2,5-
dimethyl-3(2H)-furanone (Furaneol®, HDMF, also 4-hydroxy-2,5-dimethyl-2,3-dihydrofuran-
3-one) was identified for the first time in 1960, as a product of the Maillard reaction or
nonenzymatic browning [101]. Previously, the synthesis and quorum sensing modulating
effects of halogenated furanones isolated from the algae and their synthetic analogues have
been reported [102].

Chilenone A (98) (Figure 19) was obtained from Laurencia chilensis, collected at Hor-
cones Bay, Chile, and its structure was determined by spectroscopic and X-ray crystallo-
graphic techniques. The structure of 98 is unusual, and there are no previously reported
antecedents in this respect. The potential precursor, 2-methyl-3(2β)-furanone has been
known since 1929, but it has not been reported previously from any natural sources [103].
Chilenone B (99) (Figure 19) was obtained from a posterior collection of the same algae
and its structure was established by X-ray diffraction and spectroscopic experiments. Com-
pound 99 was identified as a trimer of 2-methyl-3(2H)-furanone [104].
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Finally, a new tetracyclic polyketal 100 (Figure 20) was identified from the marine
red alga L. chilensis, collected in Cocholgüe, Concepción Bay, VIII region, Chile. This
compound was isolated from chloroform extract, recrystallized from ethyl acetate and
finally characterized by X-ray diffraction [105].
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3. Conclusions

A first review of investigations carried out with marine algae from the Chilean coasts
was published in 1989. Herein, we have updated the information by compiling all works,
published up to mid-2019, on natural products isolated from algae collected along the
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coasts of Chile. The main species of algae that have been studied are Plocamium carti-
lagineum, Shottera nicaensis, Pantoneura plocamioides, Ceramium rubrum, Laurencia claviformis,
Laurencia chilensis, Dictyota crenulata, Glossophora kunthii, Desmarestia menziesii, Stypopodium
flabelliforme, and Ptilonia magellanica. From the total number of marine natural products
identified (92), 31 are monoterpenes (8–38), 14 sesquiterpenes (39–52), 11 diterpenes (53–63),
17 meroterpenoids (64–80), 16 acetogenins (81–89 and 91–97), and three furanones (98–100).
Among the biological activities studied in these compounds are the following: insecticidal
activity of 27 and 28 against Aphis fabae, 53 and 55 against tomato moth (Tuta absolute), 65
against Spodoptera frugiperda; cytotoxicity of 31 against colon and cervical adenocarcinoma
cells; inhibition of cytokinesis by 43 against Tetrapygus niger; toxicity against Schizaphis
graminum; gastroprotective activity of 65 and 78 in mice; topical anti-inflammatory activity
of 65 related to inhibition of leukocyte accumulation and human recombinant synovial
phospholipase A2 activity; and inhibition of degranulation response by 40. Compounds
65, 68, 71, 77, 79 and 80 were tested for their cell proliferation inhibitory activity in five cell
lines: Caco-2, SH-SY5Y, RBL-2H3, RAW.267 and V79. Antimicrobial activity by 77, 79 and
80, and antibacterial activity by 89 against K. pneumoniae were determined.

The situation observed in the genus Plocamium is striking. The characteristic metabo-
lites of this genus have been isolated from algae of the genera Microcladia, Shotera, Pantoneura
and Ceramium. All of them belong to different families. So far, no explanation has been
given for this phenomenon. On the other hand, it has been proposed that in P. violaceum,
there would be two chemotypes depending on whether the monoterpenes are cyclic or lin-
eal. An analogous situation can be described for P. cartilagineum; however, the description
of oxygenated monoterpenes suggests that a possible chemotaxonomy of this species could
become even more confusing.

Thus, from a chemical point of view, Chilean algae are characterized by the unique
structures of some of their metabolites. However, considering the great variety of Chilean
alga species, the number of works that have been published is relatively scarce. The
extensive Chilean coasts are bathed by the cold Humboldt current, resulting in very cold
waters in the extreme south and much warmer waters in the extreme north. Easter Island is
a special case because it is in the middle of the ocean, far from the influence of this current
and from any other kind of external influence. For these reasons, the marine biodiversity
of the Chilean coast can be considered as an important source of new bioactive marine
natural products that could be the basis for the development of new drugs but that have
been poorly studied and exploited to date.
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