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A B S T R A C T   

Parkinson’s disease (PD) is an age-related neurodegenerative disorder characterized by motor 
deficits, including tremor, rigidity, bradykinesia, and postural instability. According to the World 
Health Organization, about 1 % of the global population has been diagnosed with PD, and this 
figure is expected to double by 2040. Early and accurate diagnosis of PD is critical to slowing 
down the progression of the disease and reducing long-term disability. Due to the complexity of 
the disease, it is difficult to accurately diagnose it using traditional clinical tests. Therefore, it has 
become necessary to develop intelligent diagnostic models that can accurately detect PD. This 
article introduces a novel hybrid approach for accurate prediction of PD using an ANFIS with two 
optimizers, namely Adam and PSO. ANFIS is a type of fuzzy logic system used for nonlinear 
function approximation and classification, while Adam optimizer has the ability to adaptively 
adjust the learning rate of each individual parameter in an ANFIS at each training step, which 
helps the model find a better solution more quickly. PSO is a metaheuristic approach inspired by 
the behavior of social animals such as birds. Combining these two methods has potential to 
provide improved accuracy and robustness in PD diagnosis compared to existing methods. The 
proposed method utilized the advantages of both optimization techniques and applied them on 
the developed ANFIS model to maximize its prediction accuracy. This system was developed by 
using an open access clinical and demographic data. The chosen parameters for the ANFIS were 
selected through a comparative experimental analysis to optimize the model considering the 
number of fuzzy membership functions, number of epochs of ANFIS, and number of particles of 
PSO. The performance of the two ANFIS models: ANFIS (Adam) and ANFIS (PSO) focusing at 
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ANFIS parameters and various evaluation metrics are further analyzed in detail and presented, 
The experimental results showed that the proposed ANFIS (PSO) shows better results in terms of 
loss and precision, whereas, the ANFIS (Adam) showed the better results in terms of accuracy, f1- 
score and recall. Thus, this adaptive neural-fuzzy algorithm provides a promising strategy for the 
diagnosis of PD, and show that the proposed models show their suitability for many other 
practical applications.   

1. Introduction 

Parkinson’s disease (PD) is a chronic and progressive neurological disorder affecting motor skills, such as mobility, balance and 
coordination in about 10 million people around the world. It is the second most common neurodegenerative disorder after Alzheimer’s 
disease (AD) [1]. It affects an estimated seven to 10 million people worldwide, and its economic burden on society amounts to more 
than $25 billion each year in the United States alone. PD is a chronic, progressive neurodegenerative disorder with motor and 
non-motor symptoms, characterized by the progressive loss of dopamine-producing neurons in the brain - mainly the substantia nigra 
pars compacta (SNpc) [2]. As PD is an age-related disorder, its prevalence increases with age, usually affecting people over the age of 
65. Diagnosis of PD is mainly based on clinical trials, with physicians rating patients based on the severity of their symptoms, such as 
tremor, rigidity, and gait problems. However, it is difficult to accurately diagnose PD based solely on clinical trials. Hence, accurate 
and early prediction of PD can help improve treatments, reduce morbidity and mortality, as well as save healthcare costs. Thus, ac
curate diagnosis and timely treatment are critical for alleviating some of the symptoms of PD [3]. To aid in the accurate diagnosis of 
PD, research has focused on leveraging of machine learning algorithms and different signal processing techniques, such as electro
encephalography (EEG), electromyography (EMG) and sound recordings to accurately identify PD-related brain activity. 

Over the years, several techniques have been used to diagnose PD, including anatomical imaging, electrophysiological studies, 
neuropsychological tests, genetic screenings, proteomic analysis, laboratory tests, and ultrasound [4–6]. However, these methods of 
diagnosis are expensive, time-consuming, and/or technically challenging. Furthermore, due to the complexity of PD, no single method 
can provide a complete view of the various signs and symptoms associated with the disease [7]. In the medical domain, Artificial 
Intelligence (AI) has been widely used for diagnosis and treatment purposes. In particular, Machine Learning (ML) techniques such as 
Neural Networks (NNs), Support Vector Machines (SVMs) and Fuzzy Logic (FL) are commonly employed for the diagnosis of PD 
[8–10]. While ML based systems have proven to deliver promising results for PD detection, certain limitations in accuracy and speed 
still persist. For example, NNs cannot effectively utilize the available prior knowledge through rule-based systems and require a long 
training period when dealing with large datasets. On the other hand, FL based systems are limited by their hand-crafted fuzzy rules, 
which may lead to inaccurate diagnosis. 

Recently, Machine Learning (ML) approaches have been used to aid in the diagnosis of PD. ML has the potential to identify patterns 
and relationships in large datasets, providing a means of accurately diagnosing and monitoring the progress of PD [11]. However, ML 
algorithms require significant amounts of data, which is often unavailable or difficult to collect. To address this problem, researchers 
have proposed the use of hybrid ML models, combining multiple algorithms to take advantage of the strengths of each approach [12]. 
Recently, the combination of ANFIS and PSO have become increasingly popular for solving complex machine learning problems. 
ANFIS is a type of artificial neural network that combines the strengths of fuzzy logic and learning of neural networks. It is particularly 
suitable for modeling nonlinear systems, as it can take into account uncertain, incomplete, or imprecise input-output relationships. 
PSO is a computational process that mimics the behavior of social animals, such as birds and fish, in order to find the optimum solution 
to a problem. It has been used in many applications, including pattern recognition, optimization and feature selection. 

To overcome these limitations, the current study propose the use of ANFIS, a combination of NN and FL, to accurately predict PD. 
However, the term ’predict’ here, specifically pertains to the model’s capability to diagnose or classify individuals as affected by PD 
based on learned patterns from input data. It focuses on the developed predictive model leveraging ANFIS integrated with Adam and 
PSO optimizers, aiming to accurately identify PD cases. The study emphasizes that ’predict’ does not encompass forecasting disease 
progression, therapy responses, or developmental aspects of PD, but, the developed model aims to diagnose PD, discriminating be
tween affected and unaffected individuals by analyzing a comprehensive set of features. The features that are employed in the study 
encompass both motor and non-motor aspects associated with PD, aiming for a holistic representation of the disease spectrum. 
Furthermore, while the major focus remains on PD diagnosis, the differentiation between PD and Parkinsonism, and distinguishing 
various forms of Parkinsonism, represents significant avenues for future research endeavors. 

Subsequently, ANFIS is a supervised learning algorithm that combines NN and FL structures to capture the non-linearity of data and 
extract the relevant knowledge from it. Furthermore, to further enhance the model’s performance, Adam optimizer, and PSO is 
introduced to optimize the ANFIS model. PSO is a stochastic optimization technique inspired by the behavior of a swarm of birds 
seeking food. Both the optimizers are used to optimize parameters in the ANFIS model to achieve the best fit for data. 

Problem Statement: The objective is to design a model for accurate PD prediction. The model needs to identify the best predictive 
features from the given dataset, before training an ANFIS model with PSO as an optimization strategy. The Mathematical Formulation 
can be stated as follows: 

Let X = {x1, x2, ..xm} be the feature vector; Y = {y1, y2, ..yn} be the target variable; F = {f1, f2, ..fn} be the set of selected features; 
W = {w1,w2, ..wk} be the weight vector of the ANFIS; and let J(W) be the cost function to be optimized. 

The optimization problem can be defined as: Minimize equation (1) subject to constraints in equations (2) and (3). 
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J(W)=min
[∑

((Yn − f (X,W)))
]

(1)  

F=ExtraTreeClassifier(X, Y) (2)  

W =PSO(J(W)) (3)  

In equation (1), f(X,W) is the optimized ANFIS model with weights W obtained from PSO. 
The aim of this study is to investigate the use of an ANFIS combined with the optimizers: Adam and PSO, for accurate PD prediction. 

Thereby, this research explores the potential of leveraging ANFIS with Adam and PSO for accurate PD prediction. These hybrid models 
will be evaluated using a well-known dataset containing clinical and demographic information related to PD patients. More specif
ically, this study aims to perform the performance analysis of ANFIS (Adam) and ANFIS (PSO) in predicting PD. The results of this study 
should provide insights into the effectiveness of the hybrid approach for PD diagnosis and help guide further development of ML-based 
PD diagnostic tools. 

The main contributions of this paper are:  

• Identifying the top ranked features of PD using ensemble learning.  
• Developing the hybrid classification models by combining ANFIS with Adam and PSO optimizers for accurate PD diagnosis.  
• Finding the optimal configuration of the ANFIS parameters that will yield the highest classification accuracy.  
• Conducting the comprehensive comparative performance analysis of ANFIS (Adam) and ANFIS (PSO).  
• The results demonstrate that the proposed models demonstrate their suitability in predicting PD. 

The rest of the paper is organized as follows. Section 2 covers the related works in PD detection using various ML approaches. 
Section 3 introduces ANFIS based classification of PD and discusses the two models’ components. Section 4 presents the detailed 
evaluation of the two models predicting PD based on series of evaluation metrics. Finally, the conclusion and future work are provided 
in Section 5. 

2. Related work 

This chapter presents the review of the literature on the use of ANFIS with PSO as a solution domain for solving any prediction 
problem clubbed with optimization through nature-inspired algorithms. It presents the current state of the art, summarize the results of 
recent studies, and explore the potential of ANFIS (PSO) for future PD diagnosis. The review is performed systematically to evaluate the 
current evidence on the use of ANFIS (PSO) for PD prediction. The relevant articles in scientific databases such as Google Scholar, 
PubMed, SciELO, EMBASE, and Web of Science were searched. The search terms used were "Adaptive Neuro-Fuzzy Inference Systems" 
OR "ANFIS" AND "Particle Swarm Optimization" OR "PSO" AND "Parkinson’s Disease" OR "PD". Studies published in English between 
2013 and 2023 were included in the review. 

ANFIS is a supervised machine learning approach that combines the power of fuzzy logic and ANNs. PSO is a population-based 
optimization algorithm based on the concept of social behavior of birds, fish, bees and other animals, to identify optimal solutions 
for complex problems. PSO is used in the field of machine learning to optimize the choice of model parameters, which leads to 
improved accuracy in predictions. The combination of ANFIS tuned with PSO has been successfully used for various classification tasks 
in the past. 

A combination of hybrid approaches using GA, PSO, and ANFIS was incorporated in the work of [13] to identify critical input 
variables that have a substantial impact on the amount of power a PV generation plant can produce. And, eventually to build the PV 
power forecasting model for the plant. Similar combination of hybrid approaches were employed in the works of [14,15], to perform 
landslide spatial modelling and its zonation, and to predict the stress intensity factor, respectively. However, in the works of [16,17], 
the authors incorporated many probabilistic and hybrid non-linear machine learning algorithms to classify PD. The authors in the work 
of [17] performed the GA and PSO based dimensionality reduction to find the most optimal features of the PD data set to further train 
many variety of ML algorithms to predict PD. 

In addition to the use of GA with PSO to optimize ANFIS few of the works employed other optimization algorithms to optimize the 
parameters of the ANFIS. One such work is reported in Ref. [18], wherein, the authors perform the comparative study of the two 
optimization algorithms: PSO and Brain Storm Optimization; to determine the weight of neurons in the ANFIS technique, which is used 
to forecast when a bus would arrive at a bus stop. In their research, the authors report that the ANFIS with PSO algorithm produced 
superior results in terms of predicting bus arrival time than ANFIS BSO. The authors of [19] used the integration of ANFIS and PSO to 
forecast Iran’s inflation rate. The authors trained the ANFIS by PSO to construct the model forecasting the inflation rate using time 
series data from the Central Bank of the Islamic Republic of Iran. The wavelet transform, ANFIS, and hybrid firefly and PSO method are 
combined in the forecasting model the authors created, known as WT-ANFIS-HFPSO (HFPSO). By quantifying carbon dioxide (CO2) 
dissolution in oil, the authors of [20] made an effort to address the issue of estimating the prospective and long-term behavior of CO2 in 
reservoir during secondary and tertiary oil recovery. In this study, a model built on ANFIS is created for precise CO2 diffusivity 
prediction in oils at high temperatures and pressures. To find the ideal ANFIS model parameters, PSO, a population-based stochastic 
search algorithm, was used. The authors of [21] suggested a hybrid evolutionary-adaptive methodology that successfully combined 
mutual information, wavelet transform, ANFIS, and PSO for short-term wind power forecasting. To forecast the ferrofluid’s heat 
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transfer coefficient in laminar and turbulent flows, the authors of [22] used a computational fluid dynamics simulation and an ANFIS 
optimized with PSO. 

Further, there have been number of studies reported in the direction of solving optimization problems in the Power Distribution 
domain. For example, PSO and ANFIS were combined in the study of [23] to address the issue of reducing the imbalanced voltage sag 
with phase jumps by unified power-quality conditioner with little real power injection. PSO was primarily used in their study to reduce 
the real power infusion of UPQC as well as the restrictions. Using the PSO-based data for various voltage sag circumstances, ANFIS was 
then employed for minimum real power injection with UPQC. To accurately anticipate the electrical power generation depending on 
meteorological parameters, the authors of [24] used ANFIS with PSO to create a novel electrical power prediction model. In order to 
improve the performance of green energy, the authors of [25] used PSO and ANFIS to maximize the output power of photovoltaic 
systems while minimizing the energy payback time. In an effort to ensure the grid integration of renewable energy, the problem of solar 
power forecasting has been attempted to be solved in the work of [26] using ANFIS and PSO. The authors of [27] used machine 
learning to solve the challenge of predicting the voltage stability margin of power systems via the critical boundary index approach. On 
the basis of an ANFIS, prediction models were created, and its improved model was developed with PSO. 

However, there have also been a few studies reported that employed ANFIS tuned with PSO in other variety of problem domains 
including the healthcare. For example, in agriculture domain, the authors of [28] used ANFIS and PSO to calculate the saffron yield 
based on the terrain characteristics in the Siminehrood catchment, which is located south of Urmia Lake, Iran. In the area of human 
resource management, the study conducted in Ref. [29], an algorithm based on the fusion of PSO with random weight and ANFIS is 
used to solve the problem of properly predicting the human resource structure. The authors of [30] used ANFIS optimized with PSO to 
identify Benzene, a carcinogen, using the hardware sensors to do so with only moderate operational efficiency. According to the 
authors of [31], a hybrid intelligent system that combined ensemble learning methods with ANFIS has the potential to help medical 
professionals in the practice of early diabetic retinopathy identification. 

Most studies used ANFIS (PSO) as a tool for multi-class classification, while some used it for binary classification. Therefore, it is 
evident from the literature that there have been numerous studies that utilize ANFIS for developing the predictive models. In 
particular, ANFIS has the potential to detect PD from clinical data gathered from voice analysis, speech synthesis, gait analysis, and 
electroencephalography. The main advantage of ANFIS is that it can produce accurate predictions even when limited input data is 
available. 

The evidence reviewed in the current article suggests that ANFIS (PSO) is a highly effective tool for accurately predicting PD. 
Furthermore, ANFIS (PSO) has the advantage of being easily interpretable, which makes it a suitable choice for medical diagnosis. The 
findings of this review provide valuable insights into the potential of ANFIS (PSO) for PD prediction. This paper leverages the ca
pabilities of both ANFIS with Adam and PSO to predict PD through a process of optimizing the parameters of an ANFIS model. As this is 
a novel approach, the previous literature reviewed was mainly used for establishing the foundations for the proposed methodology. 

Research Gap. The literature review shows that each study published is typically based on one or more of the following criteria: 
selection of the data sets, selection of the data set groups, and selection of the various parameter settings for the ANFIS and a variety of 
hybrid algorithms used for optimization, and finally, the evaluation techniques employed for the performance analysis. It is evident 
from the literature review that there is still significant scope for enhancing the prediction of PD through novel intelligent algorithms. 
As a result, the ANFIS Classification models tuned using Adam and PSO are developed and examined in the current study by using the 
PD data set. The materials and methods utilized to accomplish the study’s main goal are discussed in the section that follows. 

3. Materials and methods 

3.1. Proposed system 

ANFIS (Adam) and ANFIS (PSO) have been used as the predictive models to classify the PD dataset. ANFIS is a type of artificial 
neural network that is designed to combine the fuzzy logic and adaptive learning ability of backpropagation algorithms for better 
prediction accuracy. While Adam Optimizer helps to reduce the amount of time needed to find an optimal solution, the PSO is an 

Fig. 1. Framework of the proposed system.  
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evolutionary optimization algorithm which can be used to tune the parameters of the ANFIS model. PSO was used to identify the 
optimal parameters of the ANFIS model and to improve the model’s accuracy. The methodology employed in this research included 
analyzing empirical data and training the ANFIS model via Adam and PSO to determine the most appropriate parameters to represent 
the PD data. The proposed methodology adopted in this study is illustrated as in Fig. 1 in the most generic sense. The rest of the chapter 
gives the details of the proposed system. 

3.1.1. PD data set description 
Many research studies published in the domain of applications of ML algorithms have used the publicly available datasets. The PD 

data set used in this research study was collected from the UCI ML Repository [32]. Overall, there are 756 instances in the data set, each 
containing 755 floating-point features, and only one decision variable includes binary values. This data collection has been used in 
many research studies published with the aim of accurately identifying PD [17]. 

Table 1 briefly describes each of the attributes in this data collection [17]. The data was obtained from 252 patients, of which 188 
(107 men and 81 women) had PD and 64 (23 men and 41 women) had no symptoms of the disease and were between the ages of 41 and 
82. The entire data collection procedure was carried out in accordance with the qualified clinical expert’s instructions. Three repeats of 
the sustained phonation of an "a" vowel were used to target each of the PD traits during the data gathering phase. The measurements 
were taken with a microphone tuned to 44.1 KHz. Then, from the patient’s voice recordings, the various speech signal processing 
measurements, such as Time-Frequency, Mel Frequency Cepstral Coefficients (MFCC), Wavelet Transforms, Vocal Folds, and Tunable 
Q-factor Wavelet Transforms (TWQT), were taken. The total PD data set consists of 755 characteristics and 756 recorded observations, 
or rows and columns, respectively. One feature has values between 0 and 2, one feature has values between 0 and 2, and two features 
contain binary values out of a total of 755 features or columns. This data set’s last feature’s binary value denotes a choice or a class 
variable. An ML classifier can use the class variable to clinically extract the necessary data about a PD patient. 

3.1.2. Data pre-processing 
For training and testing purposes, the data was divided into 70:30 ratio respectively. The data pre-processing step involved feature 

scaling of the attributes present in the dataset. The main objective of the feature scaling step was to ensure that the trainable weights 
remain within the same range for all input attributes. This was achieved by bringing the values of each attribute between 0 and 1, 
which was done by using the Min-Max normalization technique. Normalizing is the process of rescaling a set of values so they fall 
within a specified range, usually 0 to 1 or -1 to +1. This is done by subtracting the minimum value of the data set from each value in the 
dataset, and then dividing each value by the difference between the maximum and minimum values of the dataset. Normalizing adjusts 
the data so all values are in the same range. 

3.1.3. Feature selection using ensemble learning 
Feature selection using ensemble learning is a powerful technique for reducing the number of features in a dataset while main

taining the accuracy of a predictive model. This technique can be applied to datasets with a large number of features, such as PD data. 
Ensemble learning combines predictions from multiple base learners (models) to create a more accurate and robust prediction than any 
single model can provide. In the case of feature selection, ensemble learning can be used to identify which of the many potential input 
features should be included in a predictive model. The Extra Tree Classifier class from the scikit-learn [33] python package is one way 
to perform feature selection using an ensemble approach. The Extra Trees Classifier uses an ensemble of decision trees to evaluate the 
importance of each feature in the dataset. Each tree is grown using a random set of the features, and then evaluated using some 
measure of performance; a feature that consistently performs well across multiple trees is considered "important". The Extra Tree 
Classifier then ranks the features according to importance and selects only the best performing ones. This method has several ad
vantages over traditional feature selection techniques such as filter or wrapper methods. It is computationally efficient, and it can 
handle large numbers of features without becoming computationally intractable. Additionally, extra trees are easy to interpret, so it is 
possible to understand why certain features have been selected or excluded. Overall, feature selection using ensemble learning is a 
powerful tool for selecting the best features from PD data. It is efficient, robust, and interpretable, making it an ideal choice in this 
study having the PD dataset. 

Table 1 
Description of PD data set [17].  

Attribute Name Number of Columns, Type of Data 

ID 1, Col_1 (Decimal) 
Gender 1, Col_2 (Binary) 
Baseline features 21, Col_3 to Col_23 (Real) 
Intensity parameters 3, Col_24 to Col_26 (Real) 
Formant frequencies 4, Col_27 to Col_30 (Real) 
Bandwidth parameters 4, Col_31 to Col_34 (Real) 
Vocal fold features 22, Col_35 to Col_56 (Real) 
Mel frequency cepstral coefficients (MFCCs) features 84, Col_57 to Col_140 (Real) 
Wavelet transform-based features 182, Col_141 to Col_322 (Real) 
Tunable Q-factor wavelet transform (TQWT) features 432, Col_323 to Col_754 (Real) 
Status (decision variable) 1, Col_755 (Binary)  
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3.2. ANFIS based classification of PD 

This section provides a brief overview of ANFIS, which is a hybrid system that integrates Artificial Neural Network (ANN) and 
Fuzzy Inference System (FIS). It is a nonlinear prediction model, which is used in the current study to predict PD from patient data. 
ANFIS has two distinct stages where in the first stage, based on user-defined membership functions and input data, the fuzzy rules are 
generated. In the second stage, an iterative learning process is applied to tune up the parameters of the membership functions and 
optimizes the fuzzy rules. It is built to identify nonlinear relationships between input and output, and it is widely used for various 
practical applications such as prediction and control tasks. 

The ANFIS model consists of five main layers:  

• Input Layer. This layer collects input data, and has as many neurons as the number of inputs.  
• Fuzzification Layer. This layer contains neurons that map the inputs from the input layer to their corresponding membership 

functions in the rule base.  
• Rule Base. This layer contains a set of linguistic rules which describe the relationship between the inputs and outputs.  
• Inference Layer. This layer evaluates the output of the rule base by combining the individual outputs of each rule.  
• Output Layer. This layer performs the final mapping of the layer’s inputs to the corresponding output variables. 

The primary components of the ANFIS are the rulebase, the input membership functions (MFs), and output MFs. The rulebase 
contains information about the PD condition, including all relevant symptoms and diagnostic metrics. This rulebase is then used to 
determine the input MFs, which are defined as the fuzzy sets of data points corresponding to each symptom or diagnostic metric. The 
MFs act as the weights or importance associated with each data point in the rulebase. Finally, the output MFs are determined by the 
ANFIS, based on the inputs and the rulebase. These output MFs are then used to construct a prediction model for PD. This model is then 
used to make predictions about the likelihood of PD in a given patient. 

The ANFIS model is a widely used machine learning model for classification and regression tasks. It is a combination of a traditional 
neural network and a fuzzy logic system, which can be used for tasks such as pattern recognition, data classification, and prediction. 
The best 5 input features are extracted using ensemble learning, and one output feature is used for training the ANFIS. First, the model 
takes the five features and converts them into fuzzy membership functions. These are sets of fuzzy numbers, which represent the degree 
to which each feature falls within a certain range. Next, the input membership functions are combined with a set of fuzzy rules to 
generate an output function that describes the likelihood of a given record being in either the PD or healthy class. Finally, an adaptive 
network is used to “tune” the model using the two optimizers: Adam and PSO, separately, so it accurately fits the data and makes 
accurate predictions. This includes adjusting the weights of the parameters and membership functions. Once trained, the ANFIS model 
is then used to classify unseen data points as either PD or healthy, depending on the fuzzy set membership functions and rules. 

Premise functions are inputs of an ANFIS network that are used to define the fuzzy set membership function. A Gaussian mem
bership function, which is used as a premise function in this research, is a bell-shaped curve that is used to represent the degree of 
membership on a scale from 0 to 1. Consequent functions are outputs of an ANFIS network and they are used to determine how the 
network will react when it receives certain inputs. An example of a consequent function is a linear rule, which determines how the 
output will respond when certain levels of input are received. Therefore, in the current study, experimentation is done to determine the 
optimum number of premise and consequent functions to be used for ANFIS. As the number of functions increases, the performance of 
the model can be monitored and compared, allowing for the selection of the best configuration. The results section of this article 
presents the results of experimentation conducted on determining the optimum number of premise and consequent functions. 

In this current research, the Backpropagation is used for ANFIS (Adam) and Gradient Descent is used for ANFIS (PSO). Back
propagation is an optimization algorithm used to efficiently adjust the weights of a model according to the error gradient of a given cost 

Fig. 2. ANFIS architecture.  
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function. When training ANFIS (Adam), backpropagation is used to update the weights of the model at each step in order to minimize 
the cost of the model and improve its accuracy. This approach is more efficient than simply using gradient descent, as the Adam 
Optimizer helps to reduce the amount of time needed to find an optimal solution. Whereas, Gradient descent is used to optimize a cost 
function by incrementally updating weights and parameter values in the model so that the cost of the model is minimized. ANFIS (PSO) 
is a data classification technique which uses the gradient descent algorithm to optimize various parameters in order to minimize the 
cost associated with misclassifications. This approach can be especially useful when dealing with large datasets and complex 
classifications. 

3.2.1. Architecture 
The generic architecture of an ANFIS system for the two inputs first order Takagi-Sugeno fuzzy model with two rules is as shown in 

Fig. 2. The ANFIS employed in the current study consists of an input layer, an output layer, three fuzzy layers, and two learning layers. 
The input layer is composed of membership functions for each input variable and the output layer is composed of the resulting output 
of the fuzzy system. The first two fuzzy layers are membership function layers, consisting of triangular membership functions to 
represent each input variable. These membership functions are used to define the range of input values and its corresponding decision 
values. The third fuzzy layer is a rule layer, which provides the “firing strength” of the rules. This layer is responsible for comparing the 
values of the input variables and deciding which rule to fire. The learning layers are composed of a network of neurons connected to the 
input, output, and fuzzy layers. The learning layers use training algorithms such as backpropagation to adjust the weighting of the 
neurons so that the error between the desired output and the fuzzy output is minimized. 

After being trained, the ANFIS system can be used to make predictions using new input data. The performance of an ANFIS system is 
measured using many evaluation metrics such as loss, accuracy, f1-score, precision and recall. 

3.2.2. Training 
In this research article, the two ANFIS models are implemented to classify PD data. To train the two models, the two different 

optimization techniques: Adam Optimizer and PSO are employed separately. For Adam Optimizer, Tensor Flow library is used, and the 
model is optimized on a PD dataset by adjusting various parameters such as learning rate, batch size and number of iterations. For PSO, 
PySwarm [35] library is used, and the model is tuned by optimizing the particle movement parameters such as inertia factor, ac
celeration coefficients and neighbourhood size. Both models were then tested using the test set of the PD data set to evaluate their 
performance. The ANFIS (Adam) achieved higher classification accuracy than the ANFIS (PSO). This indicates that careful parameter 
selection is the key to achieving accurate results. However, further tuning of the parameters with different optimization techniques, 
such as ensemble and multi-objective optimization, can further improve the performance of these models. 

3.2.3. Parameter estimation 
The objective of both Adam Optimizer and PSO when they are used to tune an ANFIS model is to find the optimal configuration of 

the parameters that will yield the highest classification accuracy. This is done by calculating the gradients of the loss function with 
respect to each parameter of the model, and then updating the parameters accordingly. Adam Optimizer utilizes a momentum term 
which helps it avoid local minima and allows it to find better values for the parameters. Whereas, PSO uses a swarm intelligence 
technique to optimize the parameters of the model by adjusting the particle movement parameters such as inertia factor, acceleration 
coefficients, and neighbourhood size. Both Adam Optimizer and PSO are effective optimization algorithms for tuning an ANFIS model 
and can help it achieve higher classification accuracy. However, Adam Optimizer is considered to be computationally efficient and has 
a faster training time than PSO, while PSO is preferred when we need better generalizability to new data than Adam Optimizer. Adam 
optimizer is a gradient-based optimization algorithm used to efficiently train ANN. It works by calculating the gradients of the loss 
function with respect to each parameter of the model, and then updating the parameters accordingly. Both algorithms are effective at 
tuning an ANFIS model for classifying the PD data set and can help the model achieve higher classification accuracy. 

3.2.4. PSO 
PSO is an evolutionary optimization technique developed by Kennedy and Eberhart in 1995 [34]. It is based on the behavior of 

swarms and has been used to solve many difficult optimization problems. It has several advantages over other evolutionary algorithms 
such as genetic algorithms, simulated annealing and tabu search. Some of these advantages are that it requires fewer parameters, is 
computationally efficient, and easy to implement. The PSO algorithm updates the position (vector of the estimated parameters) of each 
particle in the swarm according to its own best position, the current global best position and the random velocity vector. The global 
best position of the swarm is updated for every iteration. PSO takes inspiration from the natural process of swarming behavior of 
animals in their search for food. In PSO, each particle is a point in the search space and modifies its position according to the combined 
effects of its own and others’ experiences as it searches for an optimum solution. 

PSO Algorithm. The basic step-by-step algorithm for PSO is described as follows: 

Step 1. Initialize the particle positions randomly. 

Step 2. For each particle calculate its fitness value. 

Step 3. For each particle update the velocity and position based on equations (4) and (5). 

vt+1
i = vti +C1 . r1 .

(
pbesti − xti

)
+ C2 . r2 .

(
gbesti − xti

)
(4) 
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xt+1
i = xti + vt+1

i (5)  

in equations (4) and (5).  

• vt
i is the current velocity of particle i at time t  

• w is the inertia weight  
• C1 and C2 are the cognitive and social parameters respectively  
• r1 and r2 are random numbers between 0 and 1  
• pbesti is the personal best position for particle i.  
• gbesti is the global best position for particle i.  
• xt

i is the current position of particle i at time t. 

Step 4. If the maximum number of iterations has been reached, then terminate the process, else go back to Step 2. 
PSO Parameters. In PSO, each particle represents a candidate solution to the problem and is composed of position and velocity 

vectors. The position vector represents the values of the decision variables and the velocity vector determines the direction and 
magnitude of the movement of each particle. The objective of PSO is to minimize or maximize an objective function. 

The following parameters are used by PSO in order to achieve this goal: 
Swarm size. This parameter is used to define the number of particles present in the swarm. A larger swarm size leads to better 

exploration of the search space. 
Inertia weight. This parameter is used to define how quickly the particle velocity should be changed. If the inertia weight is too 

large, then particles will maintain their current velocity and will not explore the search space efficiently. On the other hand, if the 
inertia weight is too small, particles may be stuck in local minima and not converge to the global optimum. 

Velocity limits. These parameters are used to constrain the maximum and minimum velocities at which the particles can move. 
Cognitive acceleration ( C1 ). This parameter governs the influence of a particle’s own experience on its movement. 
Social acceleration ( C2 ). This parameter governs the influence of a particle’s neighbor’s experience on its movement. 
Neighbourhood size. This parameter is used to define the number of neighbors a particle interacts with in the swarm. 

3.3. Mathematical formulation of the proposed system 

The mathematical formulation for leveraging ANFIS (PSO) for accurate PD prediction is formulated as an optimization problem. 
The objective function is comprised of two terms: the first term is an ANFIS performance metric which measures the quality of the 
model, and the second term is a cost function which measures the accuracy of the prediction. The optimization problem is then solved 
using PSO, which searches for the optimal parameters such that the objective function is minimized. 

The ANFIS model is represented by equation (6), where, m is the number of fuzzy sets and N is the number of memberships, Aj and 
Hj are the output function and membership function parameters respectively which need to be optimized. The optimization of the 
model parameters (Aj and Hj) is done using PSO. 

Y =
∑N

j=1
m
(
Aj ∗ Hj

)
(6) 

The cost function used for training the model is given by equation (7), where, N is the total number of training samples and Yi and Ti 

are the predicted and actual class labels respectively. 

J=
∑N

i=1
‖(Yi − Ti)‖

2 (7) 

Extra Tree Classifier extracts the best 5 features from the dataset which are then used to train the ANFIS model. This method is 
particularly useful in identifying complex nonlinear relationships among a large number of features such as the PD data set. Subse
quently, the parameters of the ANFIS model (Aj and Hj) are optimized using PSO, which is a population-based search algorithm 
inspired by the social behaviors of animals. The velocity and position of the particle (p) are updated according to the simple rules as 
defined in equations (4) and (5). After training, the model is tested on the test dataset to evaluate the performance of the model using 
metrics such as loss, accuracy, f1 score, precision and recall,. 

The overall objective of the problem is to optimize the parameters of an ANFIS model in order to produce a model with the 
maximum performance while minimizing the cost of the model. To do this, the ANFIS performance metric is used to measure the 
quality of the model, while the cost function is used to measure the accuracy of the prediction. The ANFIS performance metric is 
formulated as the MSE, shown in equation (8), between the model output and the actual output of the PD patient data set. 

MSE=

∑n∗p
i=1‖(yi − ŷ)‖2

n ∗ p
(8)  

In equation (9), n = number of data points, p = number of features. The cost function is then used to evaluate the accuracy of the 
prediction by penalizing the MSE with a parameter W, which represents the importance of accuracy over model performance using 
equation (9). 
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Cost=W ∗ MSE (9) 

The optimization problem is then formulated as a multi-objective optimization problem, where the objective function is defined as 
the combination of the ANFIS performance metric and the cost function as shown in equation (10). 

Objective Function=MSE + Cost (10) 

This problem is then solved by PSO, which searches the parameter space to find the parameter values that minimize the objective 
function. The parameters are optimized using a swarm of particles, where each particle is assigned a position, velocity and fitness value 
and is updated iteratively through the PSO algorithm using equations (4) and (5). The particles of the swarm used in PSO correspond to 
solutions in the search space and act as an optimization heuristic. The particles move through the search space and update their 
positions according to a few simple rules. At each iteration, the particle moves towards the position in the search space for which it 
holds the highest fitness value. 

3.4. Evaluation metrics 

The loss, accuracy, f1-score, precision and recall are the main evaluation metrics used to assess the performance of the proposed 
models. Accuracy shown in equation (11) measures how many times a model correctly predicts the class of a piece of data. It is 
measured by the number of correct predictions divided by the total number of predictions made. Precision shown in equation (12) 
measures the proportion of correctly identified positive results in a dataset, while recall shown in equation (13) measures the pro
portion of actual positive cases that were identified correctly. A perfect classifier would have both high precision and high recall. F1 
score shown in equation (14) is the harmonic mean of precision and recall. It combines both accuracy and completeness in one measure 
and is generally considered a better measure than any of the individual metrics. Additionally, the f1-score is the best metric to evaluate 
the performance of a classifier used for medical data sets. It makes it easier to get an understanding of how well the classifier is 
performing overall. F1-score has been found to be better suited for imbalanced datasets such as medical data sets due to its ability to 
assign different weights to different classes. In equations 11–14, TP stands for True Positive, TN stands for True Negative, FP stands for 
False Positive and FN stands for False Negative. 

Accuracy=
(TP+ TN)

(TP+ FP+ FN + TN)
(11)  

Precision=TP / (TP+FP) (12)  

Recall=
TP

(TP+ FN)
(13)  

F1 − Score= 2 ∗
(Precision ∗ Recall)
(Precision+ Recall)

(14) 

The results obtained show that the proposed approach is able to predict the PD based on the above evaluation metrics. The sub
sequent chapter discusses the details of the experimental results of the study. 

4. Results and discussion 

In the first part of this section, the results of the feature selection performed using an Extra Tree Classifier is discussed. In the second 
part, the performance of ANFIS (Adam) is presented, followed by the presentation of the results of ANFIS (PSO). In the last part, the 
comparative performance analysis of ANFIS (Adam) and ANFIS (PSO) is presented. 

Fig. 3. Feature importance (all features (total = (755–1(Patient id)) = 754).  
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4.1. Feature selection using ensemble learning 

Fig. 3 presents the Feature Importance generated using an Extra Tree Classifier after fitting a model to the PD data having all 754 
features. The figure illustrates the relative importance of each feature when predicting the target, represented by a percentage. In this 
case, the features are ranked in order of importance, with the most influential feature at the top. The Feature Importance obtained 
offers insight into the predictive power of each feature and helps identify the most important predictors for more accurate results. 
Furthermore, it can be used to evaluate which features have the highest relevance for model performance and, if necessary, to 
eliminate those that are not significant. Overall, the Feature Importance is an essential part of any machine learning workflow and can 
help to improve model accuracy and performance. 

Table 2 lists the best 10 features reflecting the results of an Extra Tree Classifier applied to a dataset. These features can be used to 
build a more reliable model for predicting outcomes. Furthermore, the extra tree classification result can serve as a useful tool for 
feature selection when creating predictive models. 

Fig. 4 shows the feature importance of the five best features that were identified using the Extra Tree Classifier to analyze a PD 
dataset. These are the five most influential features in predicting the target outcome. The top three features, according to their 
importance, are 3, 0 and 2. Their importance is represented by the width of the bars in the chart. Feature 3 has been identified as the 
most important feature, followed by 0 and 2 respectively. The remaining two features, 1 and 4, have also been identified as important 
but with lesser importance. 

Table 3 lists the top 5 features of a dataset that were obtained after Extra Tree Classifier was trained with the 10 best features in 
Table 1. These features are then used in a training sessions of ANFIS. The features have been ranked in order of importance, with the 
first listed feature being the most important. These features can be thought of as being the main predictors of the outcome of the model 
being trained. Understanding which variables are the most important can help optimize the selection of input variables and inform the 
design of the model. This can lead to more accurate results and better decision making. 

Overall, the feature importance chart generated from the Extra Tree Classifier analysis serves to highlight the key features which 
can be utilized for predicting the target outcome and optimizing the ANFIS model accordingly. 

4.2. ANFIS (Adam) based classification of PD 

In this section, the performance of ANFIS (Adam) is evaluated. The ANFIS model was trained on a dataset of 529 instances of PD 
patients, with the aim to accurately predict PD from clinical tests. The evaluation was conducted based on: the number of epochs: 200, 
400, 600, 800 and 1000; and, number of fuzzy rules per feature: 2, 3 and 4. The ANFIS model was designed with 5 input features shown 
in Table 3, representing the symptoms of PD. The output node of the model was configured to provide a binary classification output, 
with a value of 1 indicating PD and 0 indicating no PD. The fuzzy logic parameters of the ANFIS were optimized using the Adam 
optimizer and the training data was split into two separate sets; one for training and validation, and a second set as a testing dataset. 

Table 4 shows the overall results of the ANFIS (Adam) along with its graphical representation shown in Fig. 5. The performance of 
ANFIS (Adam) is represented in terms of the evaluation metrics: loss, accuracy, f1-score, precision, and recall. 

Fig. 6 shows the best evaluation scores achieved along with the number of epochs it required. However, the number of rules per 
feature consumed to achieve all the best scores is equal to 4 except for the Loss achieved for testing set, wherein, it required 3 rules per 
feature. 

As the f1-score achieved by the ANFIS (Adam) is higher than the accuracy achieved, it usually indicates that the model is able to 
accurately identify the minority class more often than not, even though it may not be as accurate with the majority class. This suggests 
that the model has some degree of bias towards the minority class and could benefit from further tuning or optimization. Additionally, 
the f1-score, precision, and recall scores of the models failed to improve linearly with the increasing number of epochs or the number of 
rules per feature. While the accuracy, precision, recall and f1-score varied slightly, the overall performance of the model remained 
consistent across all epochs, indicating the model was unlikely to suffer from overfitting. However, there was a slight decrease in 
accuracy, precision, recall and f1-score with increasing epochs beyond 600 and number of rules per feature equals 3, indicating that the 
model may have been over trained after this point. In conclusion, the results showed that the ANFIS (Adam) model was able to achieve 
high levels of accuracy, precision, recall and f1-score when used to predict PD with Adam optimizer. This demonstrates the potential of 

Table 2 
Best 10 features out of all features.  

Sl. No. Feature No. Feature Name Cost 

1 517 tqwt_medianValue_dec_16 0.001397 
2 576 tqwt_stdValue_dec_3 0.001385 
3 397 tqwt_entropy_log_dec_3 0.001385 
4 218 app_det_TKEO_mean_7_coef 0.001385 
5 747 tqwt_kurtosisValue_dec_30 0.001385 
6 453 tqwt_TKEO_mean_dec_22 0.001381 
7 661 tqwt_maxValue_dec_14 0.001379 
8 479 tqwt_TKEO_std_dec_12 0.001371 
9 53 IMF_SNR_TKEO 0.001371 
10 348 tqwt_energy_dec_25 0.001370  
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ANFIS (Adam) as an accurate and reliable method for predicting PD, and highlights the potential benefits of leveraging this model in 
order to further improve its performance. 

4.3. ANFIS (PSO) based classification of PD 

ANFIS (PSO) is a hybrid machine learning algorithm using both ANFIS and PSO, to accurately classify the PD data. The data set 

Fig. 4. Feature importance best five features.  

Table 3 
Feature Importance of Top 5 Features to be trained on ANFIS.  

Sl. No. Feature No. Feature Name Cost 

1 218 app_det_TKEO_mean_7_coef 0.266957 
2 517 tqwt_medianValue_dec_16 0.195777 
3 397 tqwt_entropy_log_dec_3 0.192736 
4 576 tqwt_stdValue_dec_3 0.180960 
5 747 tqwt_kurtosisValue_dec_30 0.163570  

Table 4 
Evaluation scores of ANFIS (Adam).  

Epochs Evaluation 
Scores 

No. of Rules = 10 No. of Rules = 15 No. of Rules = 20 

Train Test Train Test Train Test 

200 loss 40.89 62.57 38.87 56.06 32.12 59.67 
accuracy 82.04 73.57 85.44 38.87 88.28 77.09 
f1-score 88.86 83.61 90.71 83.57 92.51 85.56 
precision 82.75 77.66 86.64 78.95 88.45 80.63 
recall 95.95 90.53 95.19 88.76 96.96 91.12 

400 loss 36.07 63.49 37.36 56.87 28.95 66.21 
accuracy 86.96 74.45 85.82 75.33 89.60 74.01 
f1-score 91.62 83.62 90.91 84.27 93.17 83.19 
precision 88.08 80.00 87.21 80.21 91.46 80.22 
recall 95.44 87.57 94.94 88.76 94.94 86.39 

600 loss 35.63 63.71 36.94 57.85 28.62 68.52 
accuracy 86.77 74.01 85.82 74.89 89.79 74.45 
f1-score 91.48 83.38 90.89 83.94 93.23 83.43 
precision 88.06 79.57 87.38 80.11 92.31 80.66 
recall 95.19 87.57 94.68 88.17 94.18 86.39 

800 loss 34.93 66.50 36.34 61.42 28.04 71.08 
accuracy 86.77 74.01 85.63 74.45 89.98 75.77 
f1-score 91.46 83.38 90.75 83.62 93.35 84.33 
precision 88.24 79.57 87.35 80.00 92.54 81.32 
recall 94.94 87.57 94.43 87.57 94.18 87.57 

1000 loss 34.83 68.04 34.10 63.58 27.88 71.06 
accuracy 86.77 74.01 86.77 74.89 89.98 76.21 
f1-score 91.46 83.38 91.44 83.85 93.33 84.66 
precision 88.24 79.57 88.42 80.43 92.75 81.42 
recall 94.94 87.57 94.68 87.57 93.92 88.17  
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consists of numerical values of the patient’s physiological symptoms such as tremors, stiffness, gait, depression, etc. Using ANFIS 
(PSO), the input dataset is taken into account for a series of membership functions and partitioned into a fuzzy rule base. After the fuzzy 
rule base is established, PSO is applied to optimize the parameters of each rule in the fuzzy rule base, which in turn leads to the 
formation of an ANFIS. The output of the ANFIS model is then used to classify the patient’s condition (e.g., PD or no PD). 

The following are the ANFIS (PSO) model’s hyperparameters. 
Number of Inputs. This is the number of input features used to build the model. 
Number of Membership Functions. This determines how many fuzzy membership functions are used for each input variable. 
Learning Rate. This is the rate of change that ANFIS uses to adjust its weights and biases during the learning process. 
Number of Fuzzy Rules. This is the number of rules that ANFIS uses to build its fuzzy inference system. 
Error Tolerance. This is the maximum error value allowed before the model stops training. 
Maximum Number of Epochs (Iterations). This is the maximum number of iterations the model is allowed to go through during the 

training phase. 
Inertia Weight. This is the weight of the inertia that is incorporated into the PSO algorithm in order to keep the particles away from 

local optima. 
Social Learning Weight. This is the weight of the social learning that is incorporated into the PSO algorithm in order to give 

particles a “nudge” towards attractive solutions. 
The following are the factors and their reasons that are considered to asses ANFIS (PSO) targeted to classify PD data. 
Fuzzy structure. The Fuzzy structure of ANFIS is an important factor to assess when using it on PD data. It is important to determine 

the accuracy of the model by assessing the underlying fuzzy layers, rules, and parameters. This is done by calculating the accuracy of 
the model with various combinations of these factors. For example, different membership functions or change the rules of the fuzzy 
system are used to assess the accuracy of the model. 

Fig. 5. Performance of ANFIS (Adam).  

Fig. 6. Best evaluation scores of ANFIS (Adam).  
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Training algorithm. Another important factor to consider when using ANFIS on PD data is the training algorithm chosen. Different 
algorithms may produce different results and it is important to assess which algorithm produces the most accurate results for your data. 
Therefore, if backpropagation is used for ANFIS (Adam), the gradient descent is used for ANFIS (PSO). 

Network architecture. The network architecture of ANFIS is also an important factor to consider when tuning the model for CSV 
data. The architecture is chosen in such a way that it accurately fits the data. For example, the number of input nodes, layers, and rules 
are adjusted through experimentation in order to accurately classify the data. 

The rest of the section presents the results obtained from the performance evaluation of ANFIS (PSO). The ANFIS (PSO) model was 
trained on a dataset of 529 instances of PD patients, with the aim to accurately predict PD from clinical tests. The evaluation was 
conducted based on: the number of epochs: 200, 400, 600, 800 and 1000; number of fuzzy rules per feature: 2, 3 and 4; and number of 
particles: 40 and 50. The ANFIS (PSO) model was designed with five input features shown in Table 3, representing the symptoms of PD. 
The output node of the model was configured to provide a binary classification output, with a value of 1 indicating PD and 0 indicating 
no PD. This work was carried out for the accurate prediction of PD, and consequently the results of experimentation were recorded 
based on the parameters and evaluation scores shown in Table 5 to further evaluate the performance of the model. 

Tables 6 and 7 present the performance of ANFIS (PSO). These tables show the results of running ANFIS (PSO) on PD data set for 
epochs: 200, 400, 600, 800, and 1000; number of rules per feature: 2, 3 and 4; and, with the number of PSO particles: 40 and 50. The 
results indicated that the model achieved improved predictive accuracy consistently as the number of epochs, the number of PSO 
particles, and number of rules per feature are increased. Additionally, the analysis found that the model reached its peak accuracy 
performance of 84.5 % at 1000 epochs, 50 PSO particles and, 4 rules per feature, for the training data set. These results suggest that 
ANFIS (PSO) is an effective method of achieving high accuracy predictions from large data sets such as PD dataset. 

Tables 6 and 7 also provide a comparison of the results obtained from a correlation analysis, best learners, and accuracy when 
running ANFIS (PSO) on a PD data set. These tables provide a detailed statistics of the performance of ANFIS (PSO) for varied number 
of epochs and particles of PSO. 

In all the runs of the ANFIS (PSO), the number of premise functions, number of consequent functions and the number of total 
variables were calculated based on the number of rules per feature. Tables 8 and 9 show the best scores obtained for the ANFIS pa
rameters and Evaluation Scores, along with the best configuration of ANFIS (PSO) that achieved the aforementioned best results. In 
Table 8, the best value of 0.7315 for Minimum is achieved when numbers of rules per features were 4 at 1000 epochs when number of 
PSO particles were set to 50 with 20 premise functions, 1024 consequent functions and 12348 total variables. The best correlation of 
0.26 for training set is achieved when only 2 rules per features were used at 600 epochs. The best correlation of 0.15 for testing set is 
achieved when 4 rules per features were used at 1000 epochs when only 40 PSO particles were used. Similarly, the 47 of best learners 
and 50 of closed learners were achieved for varied number of epochs as shown in the table. 

In Table 9, the least loss for the training set was achieved when 4 rules per feature at 1000 epochs and 50 particles were employed. 
Whereas, the least loss for the testing set was achieved when 2 or 3 rules per feature at different epochs and 50 particles were 
employed. The best accuracy of 84.5 % for training set is achieved with the maximum number of rules per feature, epochs and particles 
of PSO. Whereas, the best accuracy of 74.89 % for testing set is achieved when 2 or 3 rules per feature at different epochs and 50 
particles were employed. The ANFIS (PSO) outperformed ANFIS (Adam) in achieving the best precision of 96.47 % and 91.02 % for 
training and test set, respectively, which were achieved with maximum 800 epochs employing 50 particles. However, only 2 rules per 
feature were used to achieve the best precision for training set. The best recall of 85.39 % and 80.11 % for training and test set, 
respectively, were achieved with maximum 1000 epochs employing 50 particles and 4 rules per feature. Finally, the best f1-score of 
90.26 % and 84.21 % for training and test set, respectively, were achieved with maximum 1000 epochs employing 50 particles and 2 or 
3 rules per feature. Higher precision achieved by ANFIS (PSO) indicates a model’s ability to accurately identify positive cases and avoid 
false positives. Therefore, ANFIS (PSO) outperformed ANFIS (Adam) in terms of precision, though ANFIS (Adam) also produced the 
highest precision. This also indicate that the ANFIS (PSO) is more reliable than ANFIS (Adam) while classifying the PD data set. 

Table 10 shows the sample plots of membership functions for one of the top 5 features, “app_det_TKEO_mean_7_coef”, out of the 
total of 50 membership functions, that were used to train the ANFIS (PSO). The membership functions were generated for each of the 
feature for each of the number of epochs of ANFIS: 200, 400, 600, 800 and 1000; and number of particles of a PSO: 40 and 50. These 
membership functions represent the fuzzy rule base that was created using the ANFIS and help to accurately predict how input values 
influence a given output. The plots also show how the membership functions change over time as the ANFIS cycles through each 
combination of epochs and PSO particles. The data demonstrates the effectiveness of the ANFIS in creating an effective predictive 
model with relatively low computational costs. 

Table 10 also show the graphs which appear as a bell-shaped curve that extends from the minimum to maximum values of the input 
variable, with a peak value in the middle. The shape of the graph does not appear too linear or flat, indicating that the PSO has 

Table 5 
ANFIS (PSO) parameters and evaluation scores.  

Parameters Evaluation Scores 

No. of Epochs J Minimum accuracy Training Data precision Test Data 
No. of Particles in PSO Correlation Training Data accuracy Test Data recall Training Data 
No. of Premise Functions Correlation Test Data loss Training Data recall Test Data 
No. of Consequent Functions No. of Best Learners loss Test Data f1-score Training Data 
No. of Variables No. of Close Learners precision Training Data f1-score Test Data  
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optimized on all the parameters of ANFIS accurately. The vertical lines of a graph drawn for a membership function in ANFIS shows 
that it has crisp boundaries and a smooth overall slope that is consistent with the expected behavior from the analysis of the data. It 
indicated that there are no such areas of divergence or accuracy issues that deviate significantly from the expected value. However, the 
Gaussian function is used as a membership function in this ANFIS, with parameters m (mean) and s (standard deviation), which is then 
used to fine tune the parameters m and s to generate the best curve that corresponds to the input data. After the training process is 
completed, the parameters are updated according to the curve generated and this will provide a more accurate representation of the 
data. Further, it is important to make sure that the shape and range of values of the graph accurately reflect the terms used to define the 
structure of the fuzzy rule. In order to assess the graph of a membership function in ANFIS (PSO) developed for classifying PD data, we 
analyzed the accuracy and relevance of the graph. The first step in assessing the results of an ANFIS (PSO) is to evaluate the accuracy of 
the model. This was done by comparing the predicted labels from the model to the true labels in the dataset, and then calculating the 
accuracy (or other performance metrics) of those predictions. The second step in assessing the results of an ANFIS (PSO) is to evaluate 
the interpretability of the membership functions. This was done by looking at the overall shape of the functions and evaluating how 
well each function is able to capture the underlying patterns in the data. This was done by examining things like the width of the shape, 
the location of the apexes, and the steepness of the sides. 

Table 11 shows the closed form solution obtained for ANFIS (PSO), which is an optimal set of parameters (weights and biases) that 
was further used to make predictions from the PD data. The solution obtained shows that the process of tuning ANFIS (PSO) has been 
completed, and the resulting set of parameters can be used without further tuning or optimization. 

Table 12 presents the average evaluation scores of the ANFIS (PSO) applied to the PD prediction task along with its graphical 
representation in Fig. 7. The table compares the performance of the ANFIS (PSO) model at different epochs: 200, 400, 600, 800 and 
1000; and for different number of rules per feature: 10, 15 and 20; averaged on the number of particles used in the PSO. The results 
reveal that the model consistently achieved good accuracy with increasing epochs, with the highest average accuracy of 89.98 % 
obtained at epoch 1000 when 4 rules per feature were used. Further, the model achieved a highest average precision score of 92.75 % 
and highest average recall score of 96.96 at epochs 1000 and 200 respectively. This indicates that the model is capable of correctly 
classifying individuals with PD with a high degree of reliability. Overall, this study demonstrates that combining ANFIS and PSO can 
produce accurate classification models for predicting PD. 

Table 6 
Performance of ANFIS (PSO).  

ANFIS Layout A B C D E F G H I J 

[2,2,2,2,2] 200 40 10 32 414 0.9296 0.37 0.25 14 40 
400 0.9098 0.4 0.23 13 40 
600 0.897 0.37 0.24 38 40 
800 0.8873 0.38 0.24 15 40 
1000 0.8794 0.38 0.24 16 40 
200 50 0.9364 0.38 0.22 29 46 
400 0.9164 0.41 0.25 34 50 
600 0.9056 0.26 0.26 5 50 
800 0.8987 0.42 0.26 43 50 
1000 0.8925 0.4 0.26 14 50 

[3,3,3,3,3] 200 40 15 243 2961 0.8951 0.42 0.19 26 1 
400 0.8511 0.45 0.19 0 12 
600 0.8283 0.45 0.19 15 28 
800 0.8114 0.46 0.21 29 36 
1000 0.7982 0.47 0.21 25 36 
200 50 0.905 0.37 0.28 23 1 
400 0.8617 0.45 0.23 29 12 
600 0.8349 0.47 0.21 47 36 
800 0.8153 0.47 0.22 28 49 
1000 0.7989 0.48 0.19 36 46 

[4,4,4,4,4] 200 40 20 1024 12348 0.8909 0.44 0.25 7 1 
400 0.8448 0.46 0.19 20 1 
600 0.8197 0.49 0.19 11 1 
800 0.8028 0.48 0.19 12 4 
1000 0.7905 0.52 0.15 2 2 
200 50 0.8927 0.46 0.24 3 1 
400 0.8334 0.47 0.27 19 1 
600 0.7853 0.53 0.29 37 1 
800 0.7564 0.54 0.28 26 3 
1000 0.7315 0.55 0.29 6 1 

Average 0.8533 0.44 0.23 20.73 23.96 

Column Headers:A. No. of Epochs, B. No. of Particles in PSO, C. No. of Premise Functions, D. No. of Consequent Functions, E. No. of Variables, F. J 
Minimum, G. Correlation Training Data, H. Correlation Test Data, I. No. of Best Learners, J. No. of Close Learners. 
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Table 7 
Performance of ANFIS (PSO) (contd.).  

ANFIS Layout A B C D E F G H I J K L 

[2,2,2,2,2] 200 40 20.42 26 79.58 74.01 95.47 89.22 80.81 78.42 87.53 83.47 
400 19.66 26.43 80.34 73.57 95.47 89.22 81.51 78.01 87.94 83.24 
600 20.42 25.99 79.58 74.01 95.21 89.82 80.94 78.12 87.5 83.57 
800 20.23 25.99 79.77 74.01 94.96 89.82 81.25 78.13 87.57 83.57 
1000 20.23 25.99 79.77 74.01 94.47 89.82 80.98 78.13 87.63 83.57 
200 50 20.23 26.87 79.77 73.13 94.96 88.62 81.25 77.89 87.57 82.91 
400 19.66 25.55 80.34 74.45 94.96 90.42 81.78 78.24 87.88 83.89 
600 19.85 25.11 80.15 74.89 95.71 91.02 81.2 78.35 87.86 84.21 
800 19.28 25.11 80.72 74.89 95.72 91.02 81.72 78.35 88.17 84.21 
1000 19.85 25.55 80.15 74.44 93.95 89.82 82.16 78.53 87.66 83.8 

[3,3,3,3,3] 200 40 19.09 27.31 80.91 72.69 96.22 89.82 81.62 76.92 88.32 82.87 
400 18.53 27.75 81.47 72.25 94.96 88.62 82.86 77.08 88.5 82.45 
600 18.52 28.19 81.47 71.81 94.96 88.62 82.86 76.69 88.5 82.22 
800 18.34 27.31 81.66 72.69 94.71 88.02 83.19 77.78 88.57 82.58 
1000 17.96 27.75 82.04 72.25 95.21 86.82 83.26 77.96 88.84 82.15 
200 50 20.6 25.11 79.4 74.89 95.21 89.82 80.77 78.95 87.4 84.03 
400 18.53 26.87 81.47 73.13 95.21 88.02 82.71 78.19 88.52 82.82 
600 17.96 27.31 82.04 72.69 95.21 88.02 83.26 77.78 88.84 82.58 
800 17.77 27.31 82.23 72.69 95.21 87.43 83.44 78.07 88.94 82.49 
1000 17.58 28.63 82.42 71.37 94.71 85.63 83.93 77.72 88.99 81.48 

[4,4,4,4,4] 200 40 18.71 26.87 81.29 73.13 94.46 86.83 82.96 78.8 88.34 82.62 
400 18.15 28.19 81.85 71.81 95.72 86.83 82.79 77.54 88.79 81.92 
600 17.39 28.63 82.61 71.37 95.47 85.63 83.66 77.72 89.17 81.48 
800 17.39 28.63 82.61 71.37 95.97 85.63 83.37 77.72 89.23 81.48 
1000 16.45 30.4 83.55 69.6 95.47 83.83 84.6 76.92 89.7 80.23 
200 50 18.15 26.87 81.85 73.12 96.22 87.43 82.51 78.49 88.84 82.72 
400 17.77 26.43 82.23 73.57 95.21 86.23 83.44 79.56 88.94 82.76 
600 16.07 25.99 83.93 74.01 95.97 86.23 84.67 80 89.96 83 
800 15.69 26.43 84.31 73.57 96.47 85.63 84.73 79.89 90.22 82.66 
1000 15.5 25.55 84.5 74.45 95.72 86.83 85.39 80.11 90.26 83.33 

Average 18.53 26.87 81.47 73.12 95.30 88.02 82.65 78.20 88.54 82.81 

Column Headers:A. No. of Epochs, B. No. of Particles in PSO, C. Loss Training Data, D. LOss Test Data, E. accuracy Training Data, F. accuracy Test 
Data, G. precision Training Data, H. precision Test Data, I. recall Training Data, J. recall Test Data, K. f1-score Training Data, L. f1-score Test Data. 

Table 8 
ANFIS (PSO): Analysis of best scores (J minimum, correlation and learners).  

ANFIS Configuration J Minimum =
0.7315 

Correlation Training Data =
0.26 

Correlation Test Data =
0.15 

No. of Best Learners 
= 47 

No. of Close Learners 
= 50 

No. of Rules per Feature 4 2 4 3 2 
No. of Epochs 1000 600 1000 600 200, 400, 600, 800, 

1000 
No. of Particles in PSO 50 50 40 50 50 
No. of Premise Functions 20 10 20 15 10 
No. of Consequent 

Functions 
1024 32 1024 243 32 

No. of Variables 12348 414 12348 2961 414  

Table 9 
ANFIS (PSO): Analysis of best evaluation scores.  

ANFIS Configuration A =
15.5 

B = 25.11 C =
84.5 

D = 74.89 E =
96.47 

F =
91.02 

G =
85.39 

H =
80.11 

I =
90.26 

J =
84.21 

No. of Rules per Feature 4 2, (3) 4 2, (3) 4 2 4 4 4 2 
No. of Epochs 1000 600, 800, 

(200) 
1000 600, 800, 

(200) 
800 600, 

(800) 
1000 1000 1000 600, 

(800) 
No. of Particles in PSO 50 50 50 50 50 50 50 50 50 50 
No. of Premise 

Functions 
20 10 20 10, (15) 20 10 20 20 20 10 

No. of Consequent 
Functions 

1024 32 1024 32, (243) 1024 32 1024 1024 1024 32 

No. of Variables 12348 414 12348 414, (2961) 12348 414 12348 12348 12348 414 

Column Headers:A. Loss Training Data, B. Loss Test Data, C. accuracy Training Data, D. accuracy Test Data, E. precision Training Data, F. precision 
Test Data, G. recall Training Data, H. recall Test Data, I. f1-score Training Data, J. f1-score Test Data. 
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4.4. Performance analysis of ANFIS (Adam) versus ANFIS (PSO) 

Figs. 8–12 show the performance analysis of ANFIS (Adam) versus ANFIS (PSO), averaged over number of epochs and number of 
rules per feature. The results obtained for ANFIS (PSO) are initially averaged for number of particles in PSO, to get the average scores 
based on the number of epochs and number of rules per feature. The experimentation was performed for each epoch, the number of 
rules per feature, and number of particles of PSO. The evaluation scores of both ANFIS (Adam) and ANFIS (PSO) are then averaged and 
tabulated in the figures. The results indicate that ANFIS (Adam) has better accuracy compared to the ANFIS (PSO) approach. This can 
be attributed to the optimization capabilities of Adam optimizer, which helps to improve the accuracy of the model. As more epochs 
are used, the accuracy of both ANFIS (Adam) and ANFIS (PSO) increases, although ANFIS (Adam) generally shows a better perfor
mance than ANFIS (PSO). Consequently, this table indicates that both the models can provide improved results over the standard 
ANFIS approach in terms of evaluation scores achieved. 

Loss is an evaluation metric that measures how well a model is able to fit the data it is being trained on. This is important when 
classifying medical datasets, as it indicates how well the model is able to predict outcomes and detect patterns in the data. High loss 
indicates that the model is not able to accurately predict outcomes and can lead to incorrect classifications, so focusing on low loss 
values is important when classifying medical data sets. Fig. 8 shows that the ANFIS (PSO) is better than the ANFIS (Adam) in terms the 
evaluation metric loss, irrespective of the number of epochs and number of rules per features used in implementing the ANFIS. Due to 
the inherent capabilities of the PSO optimizer, the ANFIS (PSO) incurs the loss better than the loss (from incurred by ANFIS (Adam). 
The ANFIS (Adam) incurred the loss from 22.46 to 23.02 and from 22.26 to 22.92, when the evaluation scores were averaged for 
number of epochs and number of rules per feature, respectively. 

Table 10 
Sample plots of membership functions (best Feature-1 at epochs = 200) of ANFIS (PSO).  

No. of Rules per Feature No. of Particles used in PSO = 40 No. of Particles used in PSO = 50 

2 

3 

4 

Table 11 
Closed-form solution of ANFIS (PSO).  

Theta [[ 0.75047259] [-0.13464271] [-0.08298691] [ 0.02156321] [ 0.00727497] [-0.03747104]] 

Correlation Training Data 0.3814 
Correlation Test Data 0.2407  
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Accuracy is an evaluation metric that measures how well a model performs in predicting elements in a dataset. It is especially 
important when classifying PD because of the nature of this type of data, as there are often severe consequences for incorrect pre
dictions. High accuracy indicates that a model is able to correctly identify cases and avoid false positives or false negatives. Fig. 9 shows 
that the performance of ANFIS (Adam) was better than ANFIS (PSO) in terms the evaluation metric accuracy. However, the average 
accuracies increased linearly as the number of epochs and number of rules were increased in the both the models. The best average 
accuracy of 82.52 % for ANFIS (Adam) was achieved when the number of rules per feature were 20, and the best average accuracy of 
77.76 % for ANFIS (PSO) was also achieved when the number of rules per feature were 20. This shows that the number of rules used per 
feature has higher impact on the performance of the ANFIS models irrespective of the number of epochs used. 

F1-score is an evaluation metric that combines precision and recall into a single measure. In other words, it provides an overall 

Table 12 
Evaluation scores of ANFIS (PSO) (averaged on No. of particles (40 and 50)).  

Epochs Evaluation 
Scores 

No. of Rules = 10 No. of Rules = 15 No. of Rules = 20 

Train Test Train Test Train Test 

200 loss 40.89 62.57 38.87 56.06 32.12 59.67 
accuracy 82.04 73.57 85.44 38.87 88.28 77.09 
f1-score 88.86 83.61 90.71 83.57 92.51 85.56 
precision 82.75 77.66 86.64 78.95 88.45 80.63 
recall 95.95 90.53 95.19 88.76 96.96 91.12 

400 loss 36.07 63.49 37.36 56.87 28.95 66.21 
accuracy 86.96 74.45 85.82 75.33 89.60 74.01 
f1-score 91.62 83.62 90.91 84.27 93.17 83.19 
precision 88.08 80.00 87.21 80.21 91.46 80.22 
recall 95.44 87.57 94.94 88.76 94.94 86.39 

600 loss 35.63 63.71 36.94 57.85 28.62 68.52 
accuracy 86.77 74.01 85.82 74.89 89.79 74.45 
f1-score 91.48 83.38 90.89 83.94 93.23 83.43 
precision 88.06 79.57 87.38 80.11 92.31 80.66 
recall 95.19 87.57 94.68 88.17 94.18 86.39 

800 loss 34.93 66.50 36.34 61.42 28.04 71.08 
accuracy 86.77 74.01 85.63 74.45 89.98 75.77 
f1-score 91.46 83.38 90.75 83.62 93.35 84.33 
precision 88.24 79.57 87.35 80.00 92.54 81.32 
recall 94.94 87.57 94.43 87.57 94.18 87.57 

1000 loss 34.83 68.04 34.10 63.58 27.88 71.06 
accuracy 86.77 74.01 86.77 74.89 89.98 76.21 
f1-score 91.46 83.38 91.44 83.85 93.33 84.66 
precision 88.24 79.57 88.42 80.43 92.75 81.42 
recall 94.94 87.57 94.68 87.57 93.92 88.17  

Fig. 7. ANFIS (PSO) (averaged on No. of particles (40 and 50)).  
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score of how well the model performed in predicting elements in the dataset. This is especially important when classifying PD as it 
takes into account both precision and recall, allowing for a more comprehensive analysis of the model’s performance. High F1 score of 
ANFIS (Adam) in Fig. 10 indicates that the model is able to accurately identify positive cases while avoiding false positives, making it a 
useful metric for evaluating the performance. Fig. 10 shows that the performance of ANFIS (Adam) was better than ANFIS (PSO) in 
terms the evaluation metric f1-score. However, the average f1-score increased linearly (from 87.47 % to 88.02 %) with a smaller value 
as the number of epochs and number of rules were increased in ANFIS (Adam). Whereas, the f1-score increased linearly (from 85.55 % 
to 85.81 %) with a smaller value until the number of epochs were increased up to 800, and when it reached 1000 epochs it reduced to 
85.64 %, indicating that the PSO was stuck at the local optima after 800 epochs. However, both the models showed the linear increase 
of f1-score: from 87.23 % to 88.68 % and 85.69 %–85.78 %, for ANFIS (Adam) and ANFIS (PSO), respectively. 

Precision is an evaluation metric that measures how accurate a classification model is in correctly predicting elements in a dataset. 
It is especially important when classifying medical datasets such as PD because some diseases or treatments may have a high rate of 
false-positives, meaning that the model could end up incorrectly labeling patients. Higher precision achieved by ANFIS (PSO) of 91.02 
% at 1000 epochs, and 90.89 % at 20 rules per feature, as shown in Fig. 11 indicates a model’s ability to accurately identify positive 
cases and avoid false positives. Therefore, ANFIS (PSO) outperformed ANFIS (Adam) in terms of precision, though ANFIS (Adam) also 
produced the highest precision of 85.14 % and 86.18 % at 1000 epochs and 20 rules per feature, respectively. This also indicate that the 

Fig. 8. Comparison of loss (ANFIS (Adam) Vs. ANFIS (PSO)).  

Fig. 9. Comparison of accuracy (ANFIS (Adam) Vs. ANFIS (PSO)).  
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ANFIS (PSO) is more reliable than ANFIS (Adam) while classifying the PD data set. 
Recall is an evaluation metric that measures the model’s ability to identify the positive cases from a dataset. This is especially 

important when dealing with medical datasets such as PD because some diseases or treatments may have a low prevalence in the 
population and therefore can be difficult for models to accurately identify. Higher recall indicates that a model has a greater ability to 
correctly identify positive cases, which is important when it comes to PD. Focusing on high recall is beneficial when classifying PD as it 
ensures that the model is able to accurately detect positive cases that would otherwise be missed. Fig. 12 shows that the performance of 
ANFIS (Adam) was better than ANFIS (PSO) in terms the evaluation metric recall. However, the average recall was fluctuating and 
decreased (from 93.09 % to 91.14 %) between the number of epochs, with a smaller value as the number of epochs and number of rules 
were increased in ANFIS (Adam). Whereas, the recall increased linearly (from 79.95 % to 80.85 %) with a smaller value as the number 
of epochs were increased from 200 to 800. However, the behavior of the ANFIS (Adam) was same (fluctuating from 91.73 % to 91.38 
%) even when the number of rules per feature were increased. And, the ANFS (PSO) showed linear increase in recall (from 79.79 % to 
81.24 %) as the number of rules per feature were increased. 

Finally it is evident from the findings in this research that if the tasks of the classification are more focused on accuracy and 
avoiding false positives, then ANFIS (Adam) is the better choice since it has better results in terms of accuracy, f1-score, and recall. 

Fig. 10. Comparison of f1-score (ANFIS (Adam) Vs. ANFIS (PSO)).  

Fig. 11. Comparison of precision (ANFIS (Adam) Vs. ANFIS (PSO)).  
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However, if tasks require more precision and fewer false negatives, then ANFIS (PSO) is the better choice since it has better results in 
terms of loss and precision. Overall, the results presented in this study demonstrate the utility of the two ANFIS models tuned with the 
two different optimizers for the accurate prediction of PD. These models, which were designed to replicate the skills of clinical experts 
and minimize the human bias in clinical decision support systems, holds a potential for its further development as a diagnostic tool for 
PD. 

Although the proposed ANFIS models yields promising results, certain limitations should be acknowledged. First, the training and 
testing performance evaluated in this study were based on a single PD dataset, which means that the generalizability of the model is 
unknown. Therefore, further studies should be conducted to assess the model’s performance on datasets from different patient pop
ulations and with more data points. Second, the features used in this study may not capture all relevant factors affecting the condition. 
For example, psychological factors, such as anxiety and depression, are known to be associated with PD, but were not included in the 
current dataset. Consequently, the performance of the model could be further improved by incorporating additional features into the 
dataset. 

5. Conclusion and future enhancement 

In the current study, the problem of classifying the PD data is addressed. Ensemble learning based feature selection approach is 
employed to select the top 5 subset of features from the PD data set, with the objective of developing the two efficient ANFIS models to 
classify PD. The study employed hybrid ANFIS models for classifying, and coupled with two optimizers: Adam and PSO, for tuning the 
two important ANFIS parameters: number of epochs and number of rules per feature. The PD data set is split into training and testing 
set in the ratio of 0.7:0.3, to train and test the two ANFIS models for number of epochs (200, 400, 600, 800 and 1000) and number of 
rules per feature (2, 3 and 4). The performance of these ANFIS models are evaluated based on the classification evaluation metrics: loss, 
accuracy, f1-score, precision and recall. The results showed that ANFIS (PSO) had better results in terms of loss and precision, while 
ANFIS (Adam) had better results in terms of accuracy, f1-score, and recall. Our experiments showed that the ANFIS tuned with Adam 
Optimizer was able to achieve higher classification accuracy for PD data than when tuned with PSO. This suggests that parameter 
selection plays a critical role in how well a model can classify data. Our findings can be used to better understand the progression of PD 
and develop more accurate diagnostic and therapeutic measures. 

However, the dataset employed in this study did not categorize patients based on different PD stages, like the early motor or 
prodromal phases. While the incorporated methodology aimed at efficient PD classification, future studies could explore integrating 
stage-specific features to enhance the model’s diagnostic capabilities across various disease stages, including the early motor or 
prodromal phases. Additionally, the primary focus on utilizing ANFIS models for PD classification highlights their potential contri
bution to understanding PD progression. Leveraging these models to analyze learned patterns and feature importance could reveal 
crucial factors or markers associated with PD progression, aiding in delineating disease advancement patterns or identifying predictive 
markers indicative of disease progression. Furthermore, this study did not explicitly address the differentiation between PD and other 
forms of Parkinsonism. Future research directions could involve refining ANFIS models or employing methodologies aimed specifically 
at distinguishing PD from various Parkinsonian subtypes. This endeavor could significantly enhance the models’ accuracy in dis
tinguishing accurately between these conditions. These potential extensions offer avenues to explore alternative optimization tech
niques, diverse ANN architectures, ensemble and multi-objective optimization, and the potential use of evolutionary techniques like 
genetic algorithms. Investigating the generalizability of these models across different datasets, such as EEG and MRI data, presents an 
opportunity to further enhance the accuracy of PD prediction and potentially advance the diagnosis and treatment of PD. 

Fig. 12. Comparison of recall (ANFIS (Adam) Vs. ANFIS (PSO)).  
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