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An integral genomic signature approach for tailored
cancer therapy using genome-wide sequencing
data
Xiao-Song Wang 1,2✉, Sanghoon Lee1,3, Han Zhang 1,3, Gong Tang 4 & Yue Wang1,2

Low-cost multi-omics sequencing is expected to become clinical routine and transform

precision oncology. Viable computational methods that can facilitate tailored intervention

while tolerating sequencing biases are in high demand. Here we propose a class of trans-

parent and interpretable computational methods called integral genomic signature (iGenSig)

analyses, that address the challenges of cross-dataset modeling through leveraging infor-

mation redundancies within high-dimensional genomic features, averaging feature weights to

prevent overweighing, and extracting unbiased genomic information from large tumor

cohorts. Using genomic dataset of chemical perturbations, we develop a battery of iGenSig

models for predicting cancer drug responses, and validate the models using independent cell-

line and clinical datasets. The iGenSig models for five drugs demonstrate predictive values in

six clinical studies, among which the Erlotinib and 5-FU models significantly predict ther-

apeutic responses in three studies, offering clinically relevant insights into their inverse

predictive signature pathways. Together, iGenSig provides a computational framework to

facilitate tailored cancer therapy based on multi-omics data.
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Precision oncology, defined as molecular profiling of tumors
to achieve customized patient care, has entered the main-
stream of cancer patient care1. The current standard prac-

tices for precision oncology include detecting actionable
mutations via genetic testing (i.e., EGFR mutation, ALK rear-
rangements), or detecting small-sized predictive or prognostic
gene signatures via targeted expression assays (i.e., Oncotype DX,
MammaPrint). Such assays, however, require at least one assay
per decision, which limit their cost-effectiveness. On the other
hand, the past ten years have observed a stunning reduction of
sequencing costs for a human genome from $300,000 to $1000,
with $100 whole-genome sequencing expected soon2. With this
rate, it is expected that transcriptome and genome sequencing will
become the clinical routine for patients. With the advent of low-
cost genome sequencing, precision oncology is at the cusp of a
deep transformation via leveraging the big data to provide a wide
array of clinical decision supports which is deemed to be cost-
effective. The computational approaches that can leverage these
big data to facilitate clinical decisions and provide tailored health
care are in high demand. For example, in metastatic lung cancer,
the target therapies prescribed based on the current modeling of
genomic sequencing data produced only minimal gain of quality-
adjusted life year3. Innovative and robust clinical big data-based
decision support models for precision oncology will be of vital
importance.

In recent years, there has been great enthusiasm about the
potential of artificial intelligence-based clinical decision support
systems for big data-based precision medicine, however, to date
only few examples exist that impact clinical practice4. The main
challenge is that multi-OMIC big data typically contain daunting
amounts of high-dimensional features but a limited number of
subjects which poses great challenges to the computational power
and training process of artificial intelligence (AI) -based methods.
In addition, AI approaches are “black box” tools, so the algo-
rithmic and biological mechanisms underlying the models are
largely unknown. The modeling process is controlled by AI which
makes it difficult to interpret complex model predictions and is
often plagued with the problems of overfitting and overweighing.
In addition, there is a lack of big data-based methods specifically
addressing the insufficient performance of the prediction models
for crossing dataset modeling resulting from the common biases
in detected genomic features across different datasets arising from
sequencing errors, different library preparation methods and
platforms, discordant sequencing depth and read-length, het-
erogeneous sample qualities, and experimental variations, etc.
This calls for robust, transparent, and explainable methods that
can predict clinical treatment outcomes from multi-OMIC data
with substantially improved tolerance of sequencing biases.

In this work, we propose a class of methods for big data-based
precision medicine called integral genomic signature (iGenSig)
analysis, which is designed to provide more robust clinical deci-
sion support with higher transparency and cross-dataset applic-
ability (Fig. 1). Due to the computational challenge of the high
dimensionality of genomic features, a common practice for big
data-based modeling is to reduce the dimensionality of genomic
features via removing redundant variables highly correlative with
each other for gene expression signature panels, or creating
synthetic features for machine learning approaches5 (Supple-
mentary Fig. 1). Here we propose that the redundancies within
high-dimensional features can in fact overcome sequencing errors
and bias especially when there is a loss of detection of a subset of
correlates. Here we define the genomic features significantly
predicting a clinical phenotype (such as therapeutic response) as
genomic correlates, and an integral genomic signature as the
integral set of redundant high-dimensional genomic correlates for
a given clinical phenotype such as therapeutic response. The

iGenSig analysis generates prediction scores based on the set of
redundant genomic features from labeled genomic datasets of
therapeutic responses, and then reduces the effect of feature
redundancy via adaptively penalizing the redundant features
detected in specific samples based on their co-occurrence assessed
using unlabeled genomic datasets for large cohorts of human
cancers from The Cancer Genome Atlas (TCGA) (Fig. 1a). This
allows for preserving redundant genomic features and introdu-
cing de novo redundant genomic features during the modeling
while preventing the feature redundancy from flattening the
scoring system. With this method, we speculate that if a subset of
the genomic features was lost due to sequencing biases or
experimental variations, the redundant genomic features would
help sustain the prediction score. More importantly, we expect
that the unbiased genomic information obtained from unlabeled
large cancer cohorts will substantially improve the cross-dataset
applicability of the iGenSig models, particularly on clinical trial
datasets. On the other hand, iGenSig modeling utilizes the aver-
age correlation intensities of significant genomic features detected
in specific samples to diminish the effect of false-positive detec-
tion resulting from sequencing errors and overweighing. This
method also prevents overfitting by dynamically adjusting the
feature weights for training subjects. Thus, iGenSig is a simple,
white-box solution with an integral design to tolerate sequencing
errors and bias for big data-based precision medicine. The prin-
ciple and key features of iGenSig modeling are summarized in
Fig. 1b.

Results
Development of the integral genomic signature approach based
on a genomic dataset of drug sensitivity. To develop the iGenSig
modeling, we utilized the drug sensitivity measurements of che-
mical perturbations, gene expression profiling data, and exome
sequencing data for 989 cancer cell lines released by Genomic
Datasets of Drug Sensitivity6 (GDSC, Supplementary Table 1).
For the drug response measurements, we used high Act Area, the
area above the fitted dose-response curve (or 1-AUC), to define a
sensitive drug response, and high AUC, the area under the dose
curve, to define a resistant response. According to the literature,
the AUC and Act Area are much better quantifiers of drug
responses than IC507. To uniform multi-OMIC features, we
formulated a Genomic-feature Matrix Transposed (GMT) format
for compiling binary multi-OMIC features, similar to that used
for compiling gene concepts8,9. Using this format, we analyzed
the expression profiling data and exome sequencing data from
GDSC and compiled an integrated dataset combining the geno-
mic features including upregulated genes, downregulated genes,
mutated genes, and mutation hotspots. To increase the cross-
dataset applicability of the iGenSig models, we intentionally
introduced de novo feature redundancy by generating twelve
overlapping levels of differentially expressed gene lists (Fig. 1a).
We then selected significant genomic correlates using a weighted
Kolmogorov–Smirnov (K-S) test that ranks the enrichment of
each genomic feature in the cell line panel sorted decreasingly by
Act Area or AUC, similar to that implemented by Gene Set
Enrichment Analysis (GSEA)10. Next, we leveraged the TCGA
Pan-Cancer RNAseq and exome dataset for 9532 tumors to
quantify the co-occurrence between genomic features associated
with each cell line based on similarity measures, which were then
used to calculate a redundancy penalty score for each genomic
feature. This provides unbiased information about the feature
redundancy based on unlabeled extra-large patient cohorts.

To prevent the bias from overfitting, we used a random
collection of 80% GDSC cell lines as a train set and the rest 20%
as an internal test set for assessing the performance of the model.
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A total of five train/test sets are generated for modeling through
random permutations. We then performed iGenSig modeling for
364 drugs that elicit a negatively skewed drug response
distribution in cancer cell lines indicating the narrow effect of
outstanding responses and have at least 20 sensitive cell line
subjects indicating the availability of outstanding responders. To

benchmark the performance of the models, we discretized the cell
lines into drug-sensitive and non-sensitive groups based on a
waterfall method established in a previous study11, and calculated
the Area Under ROC Curve (AUROC) for each drug. As a result,
196 drugs showed an AUROC > 0.75 on the testing sets (54%),
and 20 drugs showed a ROCAUC >0.85 (Fig. 2a and
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Fig. 1 The principle, workflow, and algorithms of the integral genomic signature modeling approach. a The workflow and algorithms of integral genomic
signature analysis. The upper panel shows the calculation of the weights for significant genomic features that predict drug sensitivity or resistance based on
weighted K-S tests of Act Area or AUC for each drug respectively, and the lower panel shows the computation of a similarity matrix for genomic features
based on TCGA Pan-Cancer dataset to penalize the redundancy between the genomic features associated with each cell line x. The resulting sensitive or
resistant genomic signature scores are calculated separately using the weights predictive of sensitivity or resistance respectively based on the indicated
formula. The dot plot shows the sensitive and resistant iGenSig scores for all cell line subjects, with red and blue colors indicating sensitive and resistant
cell lines. b Schematic showing the principle and key features of iGenSig modeling: (i) the iGenSig approach intentionally retains and creates redundant
genomic features, a concept like the use of redundant steel rods to reinforce the pillars of a building. (ii) iGenSig modeling utilizes the average correlation
intensities of significant genomic features detected in specific samples to diminish the effect of false-positive detection resulting from sequencing errors
and prevent overweighing. (iii) iGenSig modeling extracts the second genomic information from unlabeled genomic datasets for large cohorts of human
cancers, in addition to the labeled genomic datasets of drug sensitivity, which will substantially improve its cross-dataset applicability, particularly on
clinical trial datasets. (iv) iGenSig modeling is a white-box approach, thus will be more interpretable and controllable than machine learning or deep
learning approaches.
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Fig. 2 The performance of iGenSig models in predicting the drug responses of GDSC cell lines. a The performance of the iGenSig models for GDSC
profiled drugs was assessed by their average AUROC. About 364 drugs that show a negatively skewed drug response distribution in cancer cell lines and
have at least 20 sensitive cell lines are included in the analyses. The drugs with top-performing models (AUROC >0.85) are shown in bar chart on the right.
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Supplementary Data 1). Many of the top-performing drugs are
FDA-approved chemotherapy or targeted therapy agents for
cancer treatment, such as Lapatinib, Vincristine, Venetoclax,
Epirubicin, Niraparib, and Afatinib. The top-performing drug
models include targeted therapies against well-known cancer
targets such as ERBBs, HDAC, BCL2, JAKs, PARP, ERK, CDKs,
etc., and Lapatinib, Vincristine, and CAY10603 presented the best
performing models with an average AUROC more than 0.9. The
predictive powers of the iGenSig models appear to obviously
correlate with the number of available genomic correlates for each
drug (Spearman R= 0.60, Fig. 2b), suggesting that the iGenSig
models rely on the available genomic information that can predict
drug responses. The iGenSig scores negatively correlate with the
AUC drug measurements in cell lines with a similar trend in both
training and testing sets as exemplified by the Lapatinib model
(Fig. 2c), suggesting that iGenSig modeling do not overfit toward
the training set. Next, we clustered the drug's target kinase
signaling based on their iGenSig scores in GDSC cell lines, which
resulted in distinctive clustering of the drugs targeting the same
or similar kinases (Fig. 2d). Interestingly, the Pan-cancer cell lines
form five distinctive sensitivity clusters toward the drugs targeting
the five kinase pathways. Outstanding response predictions for
BRAF/MEK inhibitors are preferentially enriched in melanoma
cell lines, while other drugs such as EGFR inhibitors exhibit
cancer-type agnostic iGenSig scores, consistent with the tumor-
type related clinical activities of these drugs.

iGenSig models show no performance loss on the independent
validation dataset for drug sensitivity. To assess the cross-
dataset performance of our iGenSig models, we analyzed the
RNAseq and exome sequencing data from the Cancer Cell Line
Encyclopedia (CCLE)11. In total there are 14 drugs measured by
both CCLE and GDSC datasets. Our result showed that the
predictive performance of iGenSig models on the CCLE dataset
appears to correlate with their performance on the testing sets of
the GDSC dataset (Pearson R= 0.58, Fig. 3a). Using GDSC as a
training set and CCLE as a validation set, the models for four
drugs achieved AUROC of more than 0.8. These include Irino-
tecan, Nilotinib, Lapatinib, and Erlotinib, for which the AUROC
for prediction are 0.902, 0.873, 0.857, and 0.812 respectively
(Fig. 3b). Plotting the significant genomic features for Erlotinib in
the two datasets revealed a consistent integral genomic signature
correlating with drug-sensitive or resistant responses (Fig. 3c), as
opposed to the modest consistency of the drug sensitivity
measurements12. This is in line with the previous report about the
greater agreement of prediction models than raw sensitivity
values13, which could be attributed to the number of cell lines
screened by both GDSC and CCLE for which insufficient sensi-
tive cell lines were screened in both projects14, or due to the
difference in cellular states under different cell culture conditions.
It is interesting to note that the predictive performance of iGenSig
models resulting from the permutated training sets on the CCLE
validation dataset showed much lower deviations compared to
that on the GDSC testing dataset (Fig. 3a). This may be attributed
to the much smaller number of sensitive subjects in the GDSC
testing datasets compared to the CCLE validation dataset.

To test if the iGenSig predictions rely on the genomic features
of the primary drug targets, we removed the drug target genes for
Erlotinib, Lapatinib, or Nilotinib from GDSC and CCLE genomic
feature sets. We then built the iGenSig models for these drugs
based on the genomic features devoid of drug targets and assessed
their performance on GDSC internal test set or the CCLE
validation set. Our result showed that the performances of these
iGenSig models are not affected by deleting the genomic features
for known drug targets (Supplementary Fig. 2a). Furthermore, we

examined if excluding the hematologic cancer cell lines such as
leukemia and lymphoma from the GDSC training dataset can
improve the prediction performances of iGenSig models on the
drug sensitivity of CCLE solid cancer cell lines. Our results,
however, did not significantly improve the performance of the
fourteen drug models, but instead, this approach slightly
decreased the overall performance (Supplementary Fig. 2b). This
suggests that there may be predictive genomic information gained
from these hematologic cancer cell lines as well. We thus used the
models developed from the Pan-cancer cell line dataset in the
following analysis.

The iGenSig model predicts the response of patient subjects to
Erlotinib treatment in the BATTLE trial and SAKK 19/05 trial.
Next, we sought to test the applicability of the GDSC iGenSig
models in predicting therapeutic responses of patient subjects in
clinical trials. We first focused on EGFR inhibitors for which our
iGenSig models showed excellent cross-dataset performance.
Most of the clinical trials for targeted drugs assessed their com-
binations with chemotherapies instead of monotherapies, which
we postulate could confound the outcome of drug response
prediction. Our further literature investigation revealed that a
genomic study of the BATTLE trial (GSE33072) profiled non-
small cell lung cancer (NSCLC) tumors from 131 patients by gene
expression array, among which 28 patients are treated with
Erlotinib monotherapy, 47 patients are treated with Sorafenib
monotherapy, and 20 patients are treated with vandetanib.
Overall, the patient responses to Erlotinib in this trial are limited,
and all patients treated with Erlotinib progressed within six
months. This may be due to the selection of pretreated che-
morefractory NSCLC patients as enrollment criteria15. Despite
this, progression-free survival (PFS) analysis suggested that our
GDSC iGenSig model for Erlotinib significantly predicted the
favorable response of these patients in the Erlotinib arm, with a
hazard ratio of 0.2 (p= 0.005, Fig. 4a, left). Among the three
major treatment arms of this trial, the GDSC Erlotinib model
showed a specific predictive effect on the Erlotinib arm compared
to the Sorafenib or Vandetinib arms (Fig. 4a, right).

Next, we examined the predictive value of this model on a
Swiss SAKK 19/05 trial that tested the combination of Erlotinib
and bevacizumab (Avastin)16. Recent evidence suggested that the
addition of Bevacizumab to Erlotinib exhibits increased ther-
apeutic efficacy. As bevacizumab alone is known to lack efficacy
in lung cancer, this effect is thought to be the result of enhanced
erlotinib activity16. The SAKK 19/05 trial is a multi-center single-
arm trial in previously untreated patients. The endpoint provided
by this study is objective response at 12 weeks after Erlotinib and
bevacizumab treatment, and no survival data are available. Our
result showed that the GDSC iGenSig model for Erlotinib showed
a predictive AUROC of 0.795 (Fig. 4b, left), and this predictive
value is independent of EGFR mutation status (Fig. 4b, right). On
the other hand, out of the four patients with EGFR mutated
tumors, only the tumor showing the highest iGenSig score
exhibited an objective response. This suggests that while EGFR
inhibition is indicated for EGFR mutated patients, a subgroup of
EGFR wild-type patients may derive significant benefit from
EGFR inhibitors as well, which could be identifiable by the
iGenSig model. Consistently, clinical studies suggest that EGFR
inhibition should not be confined to EGFR mutated lung cancer
patients17. In addition to clinical trial datasets, we also
applied our iGenSig model to a set of PDX models treated with
Erlotinib and profiled with RNAseq and WXS, which revealed
significant predictive value as well (HR= 0.12, p= 0.0001,
Supplementary Fig. 3). Taken together, these results support the
utility of integral genomic signature modeling in predicting
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therapeutic responses of EGFR inhibition and its excellent cross-
dataset performance.

Biological interpretation of the iGenSig model yielded insights
into the predictive signature pathways. Since epithelial-
mesenchymal transition (EMT) has been previously reported to

mediate EGFR resistance in the BATTLE trial study18, we wonder if
the EMT signature contributes to the iGenSig predictions. We thus
examined the pathways characteristic of the integral genomic sig-
nature for Erlotinib sensitivity in our iGenSig model. This can be
achieved by extracting the genes contributing to the genomic fea-
tures predicting sensitive responses in our GDSC iGenSig model.
The resulting gene list can be then used to explore the enriched
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pathways based on the concept signature enrichment analysis
(CSEA) developed in our previous study, which is designed for deep
functional assessment of the pathways enriched in an experimental
gene list9. Our result showed that the most significantly down-
regulated pathways characteristic of Erlotinib sensitive responses
include MYC and E2F target gene signatures (Fig. 4c). Consistent
with this, amplification of MYC has been found to mediate resis-
tance to EGFR inhibitors, and targeting MYC was proposed as a
promising strategy to overcome acquired resistance19. On the other
hand, the EMT pathway is ranked as one of the most significantly
upregulated pathways in the Erlotinib sensitive signature identified
from GDSC cell lines, which contradicts the previous report18.

We postulated that this may be attributed to the content of the
EMT signature that mixed both upregulated and downregulated

genes in EMT. We thus compiled an upregulated EMT signature
and a downregulated EMT signature based on a previous
report20. Correlating these EMT signatures with the Erlotinib
iGenSig scores revealed that the downregulated and upregulated
EMT signatures are indeed enriched in the subjects with high or
low iGenSig scores respectively in the BATTLE trial dataset
(Supplementary Fig. 4). However, in the GDSC Pan-Cancer cell
line panel, both upregulated and downregulated EMT signatures
are repressed in Erlotinib-resistant cell lines. This suggests that
the repressions of both EMT signatures are characteristic of the
Erlotinib-resistant cell lines at the Pan-cancer scale and explains
the contradicting pathway enrichment results from CSEA
analysis. Among the known EMT markers and transcription
factors, overexpression of E-cadherin (CDH1) was observed in
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both sensitive cell lines and patient responders from BATTLE
trial (Fig. 4d). Whereas overexpression of EMT markers such as
N-cadherin (CDH2), Vimentin (VIM), and β-catenin (CTNNB1)
are characteristic of the cell lines with intermediate sensitivity,
and overexpression of ZEB1 is characteristic of Erlotinib-resistant
cell lines. In the BATTLE trial, overexpression of β-catenin and/
or ZEB1 are characteristic of subjects with low iGenSig scores. As
ZEB1 is a transcriptional repressor, we assessed the correlation of
ZEB1 target genes with the iGenSig scores. This revealed that the
downregulation of ZEB1 target genes is characteristic of both
resistant cell lines and patient subjects in the two clinical trials
(Fig. 4d). On the other hand, MYC target genes appear to be
upregulated in the most Erlotinib-resistant cell lines. Together,
our results suggest that EMT is associated with reduced but
intermediate response to Erlotinib whereas repression of
ZEB1 signature and upregulation of MYC signature is associated
with tumor-type agnostic resistance at the Pan-cancer scale. It is
interesting to note that the iGenSig scores for the BATTLE trial
appear to accentuate the epithelial signature on high-scored
subjects, whereas the iGenSig scores for the SAKK 10/05 trial
accentuate the MYC signature on low-scored subjects. This may
explain their better performance in predicting sensitive or
resistant subjects respectively (see Discussion).

The iGenSig model predicted patient response to 5-FU treat-
ment in a French CIT multi-center study. Next, we sought to
examine the utility of iGenSig modeling in predicting che-
motherapy response. While most clinical studies of chemo-agents
focus on testing combination regimens, we identified a multi-
center clinical study carried out by the French Cartes d’Identité
des Tumeurs (CIT) program that tested 5- Fluorouracil (5-FU)
monotherapy on postsurgical colon cancer patient21. In addition,
this study also tested combination chemotherapy regimens such
as FOLFIRI, FOLFOX, and FUFOL. 5-FU is an antimetabolite
drug, and is one of the most commonly used drugs for cancer
treatment, particularly for colorectal cancer22. The GDSC iGenSig
model for 5-FU significantly predicted patient overall survival in
the 5-FU monotherapy arm (p= 0.002), with a hazard ratio of
0.27 (Fig. 5a). Whereas this predictive effect was diminished in
the treatment arms testing combination chemotherapies con-
taining 5-FU (Fig. 5b). To examine if this is due to the therapeutic
effect exerted by other chemo-agents, we examined the FOLFIRI
arm testing the combination of folinic acid, 5-FU, and irinotecan,
for which the iGenSig models for the latter two drugs are avail-
able. Among the alive patients in this arm, two patients showed
high iGenSig scores by both models, whereas the other three
patients showed high scores by either of these two models

(Fig. 5c). This suggests that in the two alive patients with low
5-FU iGenSig scores, the therapeutic effects may be derived from
irinotecan.

Next, we examined the pathways enriched in the 5-FU sensitive
iGenSig signature. Interestingly, as opposed to the Erlotinib
signature, the EMT pathway is ranked as the most downregulated
pathway in the sensitive GDSC cell lines, whereas the MYC target
gene signature and interferon γ signature are revealed as top
upregulated pathways associated with sensitive responses (Fig. 5d, e).
This suggests that the tumors that are resistant to EGFR inhibitors
may be sensitive to the 5-FU treatment. Fascinatingly, consistent
with this, it is known that EGFR wild-type tumors show higher
sensitivity to uracil-tegafur than EGFR mutated tumors in lung
cancer23, whereas EGFR inhibition has been found to sensitize 5-Fu-
resistant colon cancer cells24. Moreover, the interferon γ signature is
associated with an inflammatory response triggered by the double-
strand breaks resulting from the DNA damaging effect of 5-FU. The
upregulation of Interferon γ regulated genes in cancer cells may
confer better therapeutic effects through the interferon γ induced
growth arrest and apoptosis in cancer cells25,26, and this signature
appears to be captured from leukemia and lymphoma cell lines in the
GDSC panel (Supplementary Fig. 5).

Clinical studies of combination drug therapies revealed con-
founding factors of iGenSig models. We then went on to further
explore the predictive values of GDSC iGenSig models on the
clinical trials testing the combination of targeted therapy with
chemotherapy, or combinatory chemotherapy regimens. To
achieve this, we identified three large gene expression datasets
from breast cancer clinical studies testing the drug combinations
containing the drugs with favorable GDSC iGenSig models. We
first examined the predictive value of the lapatinib model on the
CALGB40601 trial, a neoadjuvant phase III trial that tested the
combination of Lapatinib with Paclitaxel in Her2-positive breast
cancer in one of the three treatment arms27. As we expected, our
results showed that the GDSC iGenSig models derived from
lapatinib or paclitaxel single-drug treatment has limited pre-
dictive effects on these combination treatments, with an AUROC
of 0.61 and 0.52 respectively. Since overexpression of estrogen
receptor (ER) is known to confer resistance to HER2-targeted
therapy through driving HER2-independent signaling28, thus
may confound the predictive effect of our models, we stratified
the patients based on their ER positivity. Following stratification,
the lapatinib model showed significant predictive value in ER-
negative patients (p= 0.04, Fig. 6a). In contrast, the paclitaxel
model showed only a modest association with the pathological
response (pCR) (Fig. 6b). This may be explained by the major

Fig. 4 Predictive values of the iGenSig model for Erlotinib developed from GDSC cell line pharmacogenomic data on the survival of patient subjects
from the US BATTLE trial and Swiss SAKK 19/05 trial. a Left, Kaplan–Meier plot showing the predictive values of GDSC iGenSig model for Erlotinib on
the patients from the U.S. BATTLE trial. A data-driven cut point of high iGenSig scores was determined as described in Methods. The P value is based on
the log-rank test. Right, the differences in iGenSig scores among patients that achieved (Y) or did not achieve (N) 8-week disease control in the Erlotinib,
Sorafenib, and Vandetanib treatment arms. Patients with EGFR or KRAS mutations are depicted with red or blue colors. b The predictive values of the
GDSC iGenSig model for Erlotinib on the patient subjects from the Swiss SAKK 19/05 trial. Left, the ROC curve showing the performance of sensitive
iGenSig scores on predicting the objective responses of patient subjects at 12 weeks following Erlotinib and Avastin treatment in the Swiss SAKK 19/05
clinical trial. Right, the predictive value of the iGenSig model for Erlotinib does not depend on EGFR mutation status. The box plots in a, b show the minima,
first quartile, median, third quartile, and the maxima. c The network of upregulated and downregulated pathways characteristic of Erlotinib sensitive GDSC
cell line subjects. The top upregulated and downregulated pathways clustered in the respective interconnected networks are shown in the figure. The CSEA
enrichment score for each pathway in the Erlotinib sensitive signature is depicted by the size of each node. The pathway associations are depicted by the
thickness of the edge. The pathway associations are calculated based on CSEA association scores between each pair of pathways. d Heatmap showing the
associations of EMT markers and master transcription factors, as well as ZEB1 and MYC target genes with the sensitive iGenSig scores for Erlotinib in the
GDSC, BATTLE, and SAKK 10/05 clinical trial datasets. The cell lines and patient subjects are sorted based on their sensitive iGenSig scores. The boxplot
elements in 4a and 4b indicate the max, 75th percentile, median, 25th percentile, and min. The p values shown in the box plots of 4a, b are based on one-
sided student’s t-tests.
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clinical benefits derived from the HER2-targeted agents in HER2-
positive patients. Next, we examined the predictive contributions
of lapatinib and paclitaxel models as well as other clinical vari-
ables such as tumor stage, PR status, menopausal status, and
patient age on patient outcome. By calculating Pseudo-R2 using
logistic regression models (see Methods), the lapatinib model

ranks the highest in explaining the variation in patient response,
followed by PR status, and the composite model based on both
lapatinib and paclitaxel models produced a higher predictive
value than the individual models (Fig. 6c).

Next, we examined the predictive effect of the paclitaxel model
on a prospective neoadjuvant multicenter clinical study for stage
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Fig. 5 Predictive values of the iGenSig model for 5-FU developed from GDSC cell line pharmacogenomic dataset on patient survival in the French CIT
multicenter postsurgical colon cancer patient cohort. a Kaplan–Meier plot showing the predictive values of the GDSC iGenSig model for 5-FU on the
overall survival of patients from the French CIT cohort treated with 5-FU monotherapy. A data-driven cut point of high iGenSig scores was determined as
described in Methods and the P value is calculated based on the log-rank test. b The predictive values of the GDSC iGenSig model for 5-FU on the overall
survival of all patient subjects from the CIT cohort treated with different adjuvant chemotherapy regimens or untreated. The BRAF and KRAS mutation
status for each subject are indicated by colored dots. The boxplot elements indicate the maxima, 75th percentile, median, 25th percentile, and minima. The
p values are based on one-sided student’s t-tests. c The predictive values of the GDSC iGenSig models for irinotecan and 5-FU on the patient subjects
treated with the FOLFIRI regimen in the CIT study. The patients are stratified based on their overall survival and their sensitive iGenSig scores based on the
two models are plotted. d The network of upregulated and downregulated pathways characteristic of 5-FU sensitive GDSC cell line subjects. The top
upregulated and downregulated pathways clustered in the respective interconnected networks are shown in the figure. The CSEA enrichment score for
each pathway in the Erlotinib sensitive signature is depicted by the size of each node. The pathway associations are depicted by the thickness of the edge.
The pathway associations are calculated based on CSEA association scores between each pair of pathways. e Heatmap showing the associations of EMT
markers and master transcription factors, ZEB1 and MYC target genes, and interferon γ responsive genes with the sensitive iGenSig scores for 5-FU in the
GDSC and CIT datasets. The cell lines and patient subjects are sorted based on their sensitive iGenSig scores for 5-FU.
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I-III ER-negative breast cancer patient cohort treated with
chemotherapy containing sequential taxane and anthracycline-
based regimens29. The GDSC paclitaxel model showed a
moderate predictive effect on distant recurrence-free survival
(p= 0.085), with a hazard ratio of 0.65 (Fig. 6d). Next, we sought
to examine if anthracycline treatment and other clinical variables
such as AJCC stage, tumor grade, node status, receptor status, etc.
may confound the iGenSig models. Among anthracyclines,
epirubicin is preferred for treating ER-negative breast cancer
patients and has the best GDSC iGenSig model. We thus used the
iGenSig model for epirubicin as a predictor for the anthracycline
treatment. The interactions of the paclitaxel model with these
confounding variables are assessed using logistic regression (see
Methods). Our result showed that the most confounding variable
appear to be AJCC stage (p= 0.048), followed by the Epirubicin
model (p= 0.069) and tumor grade (p= 0.093) (Fig. 6e). When
stratified by the AJCC stage, both the Lapatinib model and the
Epirubicin model showed significant predictive values in stage I-II
tumors, which were diminished in stage III tumors (Fig. 6f).

To verify this result, we examined another neoadjuvant clinical
study carried out in a Japanese breast cancer patient cohort at Osaka
University Hospital (OUH) testing neoadjuvant paclitaxel followed
by 5-fluorouracil, epirubicin, and cyclophosphamide (P-FEC)30. This
study included both ER-positive and negative patients, and only pCR
is provided as a clinical endpoint. Consistently, the paclitaxel model
showed significant predictive value on pCR in the stage I-II breast
cancer patients only (p= 0.0004). Within the Stage I-II patient group,
the iGenSig models for paclitaxel, 5-fluorouracil, and epirubicin
showed an AUROC of 0.74, 0.71, and 0.67 respectively, and the
composite predictive models based on all three models achieved an
AUROC of 0.81. Taken together, these data suggest that in
combination therapy, the iGenSig models derived from single-drug
treatment data can be confounded by the therapeutic benefits derived
from other drugs in the combination, as well as confounding drug
resistance factors, such as ER overexpression and late tumor stage.
Stratifying the patients based on known confounding factors and
combining the models for different drugs included in the regimen
will help better observe the predictive effect of the iGenSig models on
patient response to combination drug therapies.

Comparing the iGenSig algorithm with standard machine
learning algorithms on modeling drug responses. Next, we
sought to compare the performance of the iGenSig algorithm with
standard machine learning or deep learning algorithms. First, we
compared the iGenSig algorithm with the ridge regression and

Support Vector Regression (SVR), which are the limited available
machine learning algorithms capable of carrying out predictive
modeling using ultra-high-dimensional features. In addition, we also
performed ridge regression and Support Vector Machine (SVM)
modeling based on binomial drug sensitivity labels. For AI-based
methods, we computed the unsupervised representation of the
genomic features for dimensionality reduction based on the auto-
encoder deep learning method, as previously reported31,32. The
resulting synthetic features were then fed to the machine learning
methods for supervised learning on drug responses, such as elastic
net, support vector machine (SVM), or Random Forest (RF) (Sup-
plementary Fig. 6). We then applied these algorithms to model
cancer cell sensitivity to the fourteen drugs shared by GDSC and
CCLE datasets, and to model patient responses in the six clinical trial
datasets, including BATTLE, SAKK 19/05, French CIT,
CALGB40601, neoadjuvant taxane-anthracycline, and P-FEC stu-
dies. Our results showed that iGenSig models have the highest
overall performance on clinical trial datasets among all modeling
methods (Fig. 7). Ridge regression and SVR/SVM models worked
better than AI-based models and are comparable to the iGenSig
models on the CCLE validation dataset (Fig. 7a). This suggests that
dimensionality reductions during AI-based modeling may reduce
the cross-dataset prediction performance. The better performance of
iGenSig models on clinical trial datasets supports the utility of our
algorithm design in improving cross-dataset modeling for patient
subjects via leveraging the redundancy within the integral genomic
signature and extracting unbiased genomic information from unla-
beled large tumor cohorts (Fig. 7b–g). More important, iGenSig is a
white-box algorithm that has the much-needed transparency
required for clinical application compared to the machine learning
algorithms based on complex mathematical systems, which allows
for easier interpretation of the biological mechanisms underlying the
models.

Moreover, we also compared iGenSig with machine learning
algorithms on a PDX genomic dataset that measured the
sensitivity of Pan-cancer PDX tumors against 36 single drugs33.
These include nine GDSC profiled drugs, seven of which have
more than one PDX responder in this dataset. Our results show
that the GDSC models for these seven drugs showed diverse
predictive values on these PDX models so all modeling methods
showed large deviations in predictive results for different drugs
(Supplementary Fig. 7). The iGenSig, ridge regression, and SVR/
SVM models showed comparable predictive performances, all of
which are better than AI-based methods. We speculate that the
observed large deviations could be in part attributed to the tumor
microenvironment factors important for some drugs that cannot

Fig. 6 The predictive values of the GDSC iGenSig models on the survival of patient subjects from the CALGB40601 trial treated with lapatinib and
paclitaxel, and from neoadjuvant clinical studies testing taxane-anthracycline-based combination chemotherapies. a The predictive values of the GDSC
iGenSig model for lapatinib on the pathological responses (breast and axilla) of the patient subjects from arm 3 (lapatinib+ paclitaxel) of the CALGB40601
trial. The patients are stratified based on their ER positivity. b The associations of the GDSC iGenSig models for lapatinib and paclitaxel with the pathological
responses (breast and axilla) of the ER-negative patient subjects from arm 3 of the CALGB40601 trial. c Pseudo R2 showing the percentage of contribution
explaining the variance in pathological responses of ER-negative patient subjects for GDSC lapatinib and paclitaxel models, their composite model, and other
confounding clinical variables. d Kaplan–Meier plot showing the predictive values of the GDSC iGenSig model for Paclitaxel on the distant recurrence-free
survival of patients with basal-like TNBC treated with neoadjuvant taxane-anthracycline chemotherapy. A data-driven cut point of high iGenSig scores was
determined as described in Methods and the P value is determined based on the log-rank test. e The interactions of confounding clinical variables with the
GDSC paclitaxel model were assessed based on multiple logistic regression models for overall survival status. The bar plot shows the −log10 transformed p
values of Chi-Square tests comparing the pair-wise multiple logistic regression models with the simple logistic regression model for the GDSC paclitaxel
model. f The predictive value of the GDSC iGenSig model for paclitaxel and Epirubicin on the pathological responses of the enrolled patient subjects stratified
based on tumor stages. The source cohorts of patient subjects are indicated by colored dots. g The predictive values of the GDSC paclitaxel model on the
pathological complete response of breast cancer patients to P-FEC chemotherapy stratified based on tumor stage. The receptor status of each patient is
indicated by colored dots. h The AUROC of the GDSC models for Paclitaxel, Epirubicin, and 5-FU or their composite model on predicting the pathological
complete responses of stage I-II breast cancer patients treated with P-FEC in the OUH study. The p values annotated on panels a, f, and g are based on one-
sided student’s t-tests. The boxplot elements in 6a, 6f, and 6g indicate the maxima, 75th percentile, median, 25th percentile, and minima.
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be modeled using in vitro cultured cell lines (as discussed below)
or the lack of responders in this dataset.

Discussion
Here we introduce a class of white-box methods called integral
genomic signature analyses that leverage the high-dimensional
redundant genomic features as an integral genomic signature to

enhance the transferability of multi-omics-based modeling for
precision oncology, a concept like the use of redundant steel rods
to reinforce the pillars of a building (Fig. 1b). The iGenSig
method is designed to address the transparency, cross-dataset
applicability, and interpretability issues for big data-based mod-
eling. The iGenSig models demonstrated improved performances
in cross-applicability to clinical trial datasets, tolerating the
experimental variations and bias in the genomic data. IGenSig
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Fig. 7 Comparisons between the iGenSig algorithm and standard machine learning algorithms on modeling drug responses. a The Prediction
performance of the iGenSig algorithm and machine learning methods on the CCLE validation dataset for 14 drugs. If a drug is profiled by both GDSC batch 1
and 2, the drug sensitivity data from batch 1 are used in the analysis. b–g The Prediction performance of the iGenSig algorithm and machine learning
methods on US BATTLE trial (b), Swiss SAKK 19/05 trial (c), CALGB40601 trial (d), neoadjuvant taxane-anthracycline study (e), neoadjuvant P-FEC study
(f), and the French CIT colon cancer clinical study (g). The predictive models for the respective drugs annotated under each plot were generated based on
80% cell lines from GDSC with five permutated training sets. For ML methods, the supervised learning was directly performed on the original high-
dimensional genomic features using Gaussian family ridge regression (G-ridge) and support vector regression (SVR) based on drug sensitivity
measurements or using Binary family ridge regression (B-ridge) and support vector machine (SVM) based on binary sensitivity labels. For AI methods, the
unsupervised learning was performed by autoencoder (AE) and supervised learning was performed using various machine learning tools including elastic
net (EN), random forest (RF), and support vector machine (SVM) based on binary sensitivity labels. The p values are based on two-sided student’s t-tests.
The AUROC for predicting patient binary responses (pCR for breast cancer clinical studies or objective response for the SAKK 19/05 trial) or the
concordance of the predictive scores with patient survival (PFS for the BATTLE trial and OS for the CIT cohort) are shown in the figure depending on the
best available clinical endpoints for these studies. The mean and standard deviations are shown in the violin plots.
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models can be managed in every detailed step, and the underlying
pathways can be readily biologically interpreted through the
concept signature enrichment analysis we developed9. The per-
formance of iGenSig models appears to at least in part depend on
the availability of significant genomic correlates, which provided
insights into the different performances of iGenSig models on
different drugs. We expect that iGenSig as a class of big data-
based modeling methods will have broad application in modeling
therapeutic responses based on pharmacogenomics and clinical
trial datasets. Further, iGenSig can also be potentially applied to
predict other cancer behaviors to facilitate clinical decisions such
as the aggressiveness of carcinoma in situ, or metastatic potential
of clinically localized tumors.

It is interesting to note that our iGenSig model for Erlotinib
demonstrated predictive value on both preclinical tests on
patient-derived xenografts and two clinical trials on human
subjects, including the US BATTLE trial and the Swiss SAKK
19/05 trial. Interpretation of this model revealed that upregula-
tion of MYC target gene signature and downregulation of ZEB1
target genes are characteristic of Erlotinib resistance signature,
whereas induction of EMT is associated with reduced but inter-
mediate responses. While both EMT and ZEB1 has been found to
medicate acquired resistance to EGFR inhibitors in non-small cell
lung cancer34,35, our iGenSig signature suggested the discordance
of ZEB1 overexpression with EMT induction and their differ-
ential contribution to Erlotinib resistance in Pan-cancer cell lines.
This implies that the phenotypic changes other than EMT
induced by ZEB1 may contribute to Erlotinib resistance at the
Pan-cancer scale. Consistent with this finding, ZEB1 has been
reported to exert more critical functional consequences than EMT
itself. For example, it has been proposed that specific EMT
inducers such as ZEB1, but not the EMT state, determine cancer
stem cell properties36. Future experimental studies will be
required to determine the differential contribution of ZEB1 and
EMT to Erlotinib resistance in human cancers.

On the other hand, our GDSC iGenSig model for sorafenib
failed to predict patient response in the sorafenib treatment arm
in the BATTLE trial dataset. To explore if this is attributable to
the differences in the in vitro and in vivo microenvironments, we
examined the primary targets of this drug. Sorafenib is a multi-
kinase inhibitor of Raf-1, B-Raf, and VEGFR-2. Among these,
VEGFR-2 is a VEGF receptor involved in angiogenesis. In light of
this, we wonder if the iGenSig models based on in vitro cell line
responses failed to model in vivo tumor responses to VEGFR
inhibition. Based on the literature, VEGFA amplification is a
known biomarker for Sorafenib response37, whereas CXCL8 (IL8)
are known to induce VEGF overexpression in endothelial cells
and promote angiogenesis38. Correlating these biomarkers with
the iGenSig scores revealed that in the Sorafenib treated arm of
the BATTLE trial, the sensitive tumors with low iGenSig scores
appear to overexpress VEGFA and CXCL8, as well as the AMP-
activated protein kinases (PRKAA1/2) important for stimulating
VEGF expression and angiogenesis39 (Supplementary Fig. 8).
This suggests that the inability of the GDSC iGenSig model to
predict patient response to sorafenib in the BATTLE trial may be
attributed to the anti-angiogenesis activity of sorafenib, which
cannot be modeled using in vitro cultured cell lines. This reflects
the limitation of modeling patient tumor response based on
in vitro cell line models.

Moreover, it is interesting to note that the iGenSig scores for
the BATTLE and SAKK 10/05 trials appear to accentuate dif-
ferent signature pathways. The iGenSig scores for the BATTLE
trial accentuate the epithelial signature on tumors with high
iGenSig scores, whereas the iGenSig scores for the SAKK 10/05
trial accentuate MYC target signature on tumors with low
iGenSig scores (Fig. 4d). This could be due to the inability of the

current iGenSig modeling method to factorize these signature
pathways and model their interactions, or due to the confounding
effect of different immunological contextures in these tumors.
Future studies will be required to examine the effect of immune
cell infiltrates on bulk sequencing-based modeling, as well as
develop new iGenSig methods that can factorize the different
pathway signatures as predictive pillars, and better model their
predictive interactions on treatment outcomes.

Our analyses of six clinical trial datasets suggest that the
iGenSig models for single-drug treatment show better predictive
values in patients treated with the respective monotherapy. The
major challenges to apply these single-drug models to combina-
tion therapies include the therapeutic benefits derived from the
other drugs and known resistance factors such as ER over-
expression and advanced tumor stage III. These confounding
variables cannot be modeled based on the GDSC cell line panel.
First ER-positive breast cancer cells typically do not grow in vitro
thus there are very limited ER-positive cell line models in the
GDSC cell line panel. Second, stage III breast tumors are char-
acterized by extensive lymph node involvement (≥4 nodes) or
chest wall or skin invasion. Such regional metastasis may create a
tumor microenvironment leading to drug resistance, which can-
not be recreated when the cell lines are generated from primary
tumors.

The remaining issue to be addressed for iGenSig modeling is
how to eliminate the effect of confounding genomic features
resulting from the imbalanced distribution of confounding factors
such as gender or prognostic factors that can impact patient
outcomes such as metastasis, etc. While this issue may be less
impactful in modeling cell line responses when a large number of
cell line subjects are included, it could become more con-
sequential when a smaller number of subjects are tested in the
clinical trial. In this case, the genomic features associated with the
confounding factor may be identified and excluded from the
iGenSig model through multivariate statistics. In addition, the
confounding clinical variables that affect prognosis such as local
or distant metastasis should be accounted for via multivariate
statistics or stratification methods when assessing the perfor-
mance of iGenSig models in predicting patient survival outcomes.
This could be particularly helpful for modeling the clinical trials
testing combination drug therapies where the predictive powers
of the iGenSig models derived from single-drug treatment are
relatively weak due to the therapeutic benefits from combinatory
drugs. Future studies will be required to further optimize the
iGenSig methods for modeling clinical trial datasets and taking
into consideration of these biological variables and confounding
factors.

Methods
Data retrieval. The drug response data, gene expression data, and mutation data
are from the Genomics of Drug Sensitivity in Cancer Project (GDSC), and the
Cancer Cell Line Encyclopedia (CCLE) as of September 2018. The GDSC and
CCLE gene expression data were retrieved from ArrayExpress (E-MTAB-783) and
NCBI GEO (GSE36133), respectively and normalized using Robust Multi-Array
Averaging (RMA)40. Drug sensitivity data, mutation data, and cell line annotations
were downloaded from the GDSC (http://www.cancerrxgene.org/downloads) or
CCLE (http://www.broadinstitute.org/ccle) websites. The newly released batch 2
drug sensitivity dataset are downloaded from the GDSC website as of May 2021.
The TCGA Pan-cancer gene expression and mutation datasets were retrieved from
the UCSC Xena browser (https://xenabrowser.net/datapages/). The gene expression
and mutation data for the PDX tumors were retrieved from the supplementary
dataset of the original publication33. The clinical trial datasets are retrieved from
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo) or the data-
base of Genotypes and Phenotypes (dbGaP, https://dbgap.ncbi.nlm.nih.gov/), and
the detailed access information are provided in the Data Availability section. All the
genomic datasets included in this study are summarized in Supplementary Table 1.

Extracting genome-wide expression and mutation features for cell line and
tumors. Based on gene expression and somatic point mutation datasets, we extracted
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genome-wide differential gene expression (DGE) and mutation features and gener-
ated an integrated genomic feature file. For gene expression datasets, quantile nor-
malizations were performed and genes with standard deviations of less than 20%
percentile are filtered. We then calculated log2 transformed fold changes of the
expression values compared to the trimmed mean of expression values (excluding the
10% largest and 10% smallest values). To eliminate zero values during log2 trans-
formation, we added 1 to the expression value across all cell lines or tumors. Based on
the mean and standard deviation (SD) of fold changes, we assigned the cell lines or
tumors into the following overlapping groups: “Up_Level1” group with the fold
change above Mean+ 1 × SD for a given gene; “Up_Level2” group with the fold
change above Mean+ 2 × SD;…, and “Up_Level6” group with the fold change above
Mean+ 6 × SD Likewise, “Down_Level1”, “Down_Level2”, … and “Down_Level6”
grouped cell lines based onMean− 1 × SD,Mean− 2 × SD, and Mean− 6 × SD. The
12 “Levels” were labeled as genotypic features for each given gene and the binary
genomic features are compiled as a genomic matrix transposed (GMT) file
format. Similarly, we extracted binary genomic features to represent point mutations.
The mutation hotspots and nonsynonymous somatic mutations such as missense,
nonsense, and frameshift are assigned as mutation features. Each recurrent
mutation hotspot and each recurrently mutated gene were assigned as separate
features.

Defining drug responses of cancer cell lines. Drug responses of cancer cell lines
are represented by the area under the dose-response curve (AUC) in GDSC or the
area over the dose-response curve (Act Area) in CCLE11,41. We first tested the
skewness of the AUC measurements for each drug in the GDSC dataset. A negative
skewness distribution indicates that the drug has high AUC measurements (lack of
responses) in most of the cell lines, but low AUCmeasurements (sensitive responses)
in a small subset of the cell lines, and a lower level of skewness indicates a higher level
of outstanding responses. To ensure the drugs have sufficient outstanding responders
for training and testing the algorithm, the GDSC drugs with negative skewness and
more than 20 sensitive cell line subjects are included in our iGenSig cancer cell line
modeling. We then defined sensitive drug responses of cell lines based on Act Areas
using the standard waterfall method described in the CCLE study (implemented in
the “define.response.AUC” and “define.response.ActArea” function of the iGenSig R
package)11. The Act Area measurements for CCLE or GDSC cell lines for a given
compound are sorted in ascending order to generate a waterfall distribution. The cut-
off for defining sensitive subjects was determined as the maximal distance to a line
drawn between the start and endpoints of the distribution. The cut-off for non-
responders was determined as “median of Act Area - median absolute deviation
(MAD).” The cell lines with Act Area above the sensitivity cut-off were labeled as
drug-sensitive and below the resistance cut-off were labeled as drug-resistant. The cell
lines with Act Areas between the cut-offs for drug sensitivity and resistance were
labeled as intermediate.

Calculating feature weights and selecting significant genomic features. To
define the weight (ωi) of each genomic feature in predicting sensitive drug
responses, we leveraged the weighted Kolmogorov–Smirnov (WKS) statistics10 to
test the enrichment of the feature-positive cell line in the cell line panel sorted in
descending order based on Act Area (Fig. 1). The enrichment score (ES) for each
genomic feature is calculated using the same algorithm as that implemented in
Gene set enrichment analysis (GSEA)10. To prevent bias, we excluded the genomic
features defining fewer than 5 cell lines during the calculation of GenSig scores.
Likewise, we calculated the weights for each genomic feature in predicting resistant
drug responses based on the cell line panel sorted by AUC in descending order. To
prevent overfitting, for a given cell line x in the training set, cell line x is excluded
from calculating the ES scores for the genomic features associated with cell line x.
We assessed the significance of the observed ES by comparing that to the random
ES scores calculated by random features with the same numbers of positive cell
lines. Repeat this step until 2000 random enrichment scores were calculated, then
the normalized enrichment score (NES) was calculated by:

NES ¼ ES=meanðESrandomÞ ð1Þ

The p values were determined based on the chance of random ES scores to be
above the observed ES score for feature i, and the false discovery rate (FDR) were
calculated using the R package “qvalue” for multiple comparisons. In this study, we
used a universal FDR q value cutoff of 0.1 to select significant genomic features for
calculating iGenSig scores. This parameter can be tuned for different drugs to
further refine the model as the signal-to-noise levels of these predictive genomic
features could be different for different drugs. Furthermore, we observed that some
of the genes have both upregulation and downregulation features ranked as sig-
nificant for predicting the sensitive drug response. We thus filtered the genes that
have both upregulated features with FDR <0.1, and downregulated features with
FDR <0.3, and the genes that have both downregulated features with FDR <0.1, and
upregulated features with FDR <0.3. On the other hand, some of the genes have
only level-1 DGE features selected as significant based on FDR <0.1, but none of
their corresponding high levels of DGE features have an FDR more than 0.3 even if
they define more than ten cell lines. These genomic features represent noises and
are thus filtered as well.

The algorithms for penalizing feature redundancy and methods for iGenSig
modeling. To prevent the inflation of iGenSig scores from feature redundancy, we
leveraged the TCGA Pan-Cancer RNAseq and exome datasets to assess the co-
occurrence between genomic features associated with each cell line and generated
the cosine similarity matrix of genomic features based on Otsuka–Ochiai coeffi-
cient between these features (Kij). We then performed clustering of the cosine
similarity matrix based on Ward’s method (D2) using the R module “hClust”. The
correlated feature groups are then determined based on an adaptive dynamic
cluster detection method42, using the parameters: dynamic.method= “hybrid”,
cutTree.depth= 2, and minClusterSize= 40. We then introduced a penalization
factor (ε) which is calculated for each genomic feature i based on the similarity
indices of the colinear genomic features associated with a given cell line x and of the
same cluster as a feature i:

εi ¼ ∑
j2Clusteri

Kij ð2Þ

Where Kij is the Otsuka–Ochiai coefficient between feature i and a given genomic
feature j from the same cluster group as a feature i associated with cell line x. To
eliminate the cumulative effect of small overlaps between genomic features, the
Otsuka–Ochiai coefficients were adjusted to 0 if Kij < 0.1. Here εi is an estimator of
redundancy among the genomic features of the same cluster group associated with
cell line x. The penalization factor ranges from 1 (all genotypes are completely
different from each other) to n (all genotypes are the same). We then penalized the
weight ωi using εi, resulting in effective weight (EW):

EWi ¼
ωi

εi
ð3Þ

The trimmed mean of εi (trim= 0.3) was then used to calculate the effective feature
number (EFN):

EFNi ¼
n
�εT

ð4Þ

Finally, the iGenSig score of the given cell linex is computed as:

iGenSig Cell Linexj ¼ ∑n
i¼1EWi

EFNi
¼

∑n
i¼1Ifiϵxg

ωi
εi

n
�εT

ð5Þ

The sensitive and resistant iGenSig scores are calculated separately based on the
significant genomic features selected for predicting sensitive or resistant responses.
The sensitive iGenSig scores are used in this study for assessing the performance of
the iGenSig models in predicting sensitive cell lines and patient subjects. Thus, the
iGenSig scores labeled in the figures refer to the sensitive iGenSig scores unless
otherwise noted.

When applying the iGenSig models to the validation datasets, the weights of the
significant genomic features (q < 0.1) calculated based on GDSC datasets will be
used for calculating the iGenSig scores based on the presence of these features in a
patient or cell line subject in the validation dataset. The weights of these features
associated with that subject were then penalized based on the feature redundancy
levels assessed using the TCGA Pan-cancer dataset (for CCLE dataset) or cancer
type-specific TCGA dataset (for a clinical trial dataset of specific tumor type), and
the iGenSig scores were calculated using the same algorithm. Thus, here only the
weights from the GDSC dataset are used for modeling the validation datasets.

Benchmarking the performance of the iGenSig algorithm. To benchmark the
performance of the iGenSig algorithm in determining drug sensitivity, we ran-
domly selected 20% of GDSC cell lines treated by a specific drug as an internal test
set. We assigned the rest of the 80% cell lines as a train set and performed this
randomized sampling five times. The distributions of drug-sensitive and resistant
cell lines were required to be balanced between the train and test set in each
sampling. The CCLE dataset was used as an external validation set of our predictive
models to assess their applicability to an independent dataset. The area under the
ROC curve (AUROC) of the iGenSig scores was calculated based on the binary
response of the cell lines determined based on the sensitive cutoff discussed above,
and the optimal cut-points of iGenSig scores are determined using the R module
“coords” of the “pROC” package. The cell line subjects were divided into sensitive
cell lines and other cell lines that include both intermediate and resistant cell lines,
and the sensitive iGenSig scores are used when assessing the predictive values of the
iGenSig models.

To test if the iGenSig predictions rely on the genomic features of the primary
drug targets, we removed the drug target gene features for Erlotinib, Lapatinib, or
Nilotinib from GDSC and CCLE genomic feature sets. We then built the iGenSig
models based on the genomic features devoid of drug targets and assessed their
performance on the internal test set (20% of GDSC cell lines) or external validation
set (100% of CCLE cell lines). To examine if excluding the hematologic cancer cell
lines from the GDSC training dataset can improve the prediction performances of
iGenSig models on the drug sensitivity of CCLE solid cancer cell lines, we removed
leukemia, lymphoma, and myeloma cell lines from the GDSC dataset when
performing the modeling for the shared 14 drugs, and then applied the models to
CCLE solid cancer cell lines (Supplementary Fig. 2b).
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Meta-analyses of clinical trial and prospective clinical study datasets. To
examine the predictive values of the iGenSig models on patient subjects, we
compiled six clinical trial or prospective clinical study datasets. The detailed
information of the clinical datasets used in this study including enrollment details,
treatment arms, available endpoints, available genomic datasets, and source pub-
lications are summarized in Supplementary Table 1. The iGenSig model for the
specific drug tested on a given treatment arm of the trial are developed based on the
GDSC dataset, and then applied to the genomic features of the clinical trial
datasets. These include the models for Lapatinib (Drug ID: 119), Erlotinib (Drug
ID: 1), Sorafenib (Drug ID: 30), 5-Fluorouracil (Drug ID: 179), Paclitaxel (Drug ID:
1080), and Epirubicin (Drug ID: 1511). The uses of clinical endpoints are
dependent on the clinical information provided by the authors of the original
publications. Overall survival (OS) is the preferred endpoint of choice43, followed
by pathologic complete response (pCR). For the CALGB40601 trial, pCR in the
breast and axilla is used in our analysis, as no tumor residuals in both breast and
lymph nodes can best discriminate patient outcomes44. Other endpoints will be
used in the analysis if OS and pCR are not available.

Implementation of machine learning and deep learning methods. All machine
learning and deep learning methods used in this study are implemented in R. For
ridge regression and support vector regression, we performed the modeling directly
based on the original high-dimensional binary genomic features. For ridge
regression, we implemented using the R package “glmnet”. The Gaussian family is
used for drug sensitivity measurements and the Binary family is used for binary
sensitivity classifications. For tuning the ridge regression model, the best “lamb-
da.1se” was obtained from tenfold cross-validation. Support vector regression is
implemented using the “svm” function of the “e1071” package using default
parameters based on either drug sensitivity measurements or binomial sensitivity
labels. For AI-based methods, we applied the deep learning method autoencoder45

to perform unsupervised representation learning for dimensionality reduction and
machine learning prediction algorithms for supervised learning of therapeutic
responses using the low dimensional features generated by autoencoder, as pre-
viously reported31,32. The models are developed based on 80% of GDSC datasets
(five permutated training sets). The autoencoder model was built with three hidden
layers with the unit sizes in each layer designed in accordance with a previous
report31. We then applied the unsupervised representation of the genomic corre-
lates to supervised learning methods including elastic net, artificial neural network,
Random Forest (RF), and support vector machine (SVM) for prediction modeling.
Elastic net is a regression method that combines lasso and ridge regularization with
the two hyperparameters, alpha and lambda. Alpha is a mixing parameter to define
the relative weight of the lasso and ridge penalization terms and lambda determines
the amount of shrinkage46. We identified alpha with the best tuning and optimized
for predictive performance over a range of lambdas. Regression was performed
using the glmnet R package (ver. 4.0.2). We implemented an RF regression model
using randomForest R package (ver.4.6.14). We specified 1,000 trees to grow and
ensure every object gets predicted multiple times. We used SVM with the linear
kernel method, “svmLinear2”, provided by the caret R package (ver. 6.0.86). We
specified tuneLength= 10 in the tuning parameter grid and accuracy metric. For all
modeling methods, the models were developed using the same genome-wide gene
expression and mutation features we compiled, and we used the same training and
external validation sets of cell lines and patient subjects as in iGenSig modeling.
One model is developed for each drug based on each permutation set, which are
then applied to the CCLE and clinical trial datasets. To match the genomic features,
the genomic features are set to zero if they do not present in the validation sets as in
the iGenSig modeling.

Pathway enrichment analysis for integral genomic signature. To identify the
pathways characteristic of the integral genomic signature for Erlotinib resistance
modeled from the GDSC dataset, we first extracted the genes involved in the
iGenSig signature and then classified these genes into positive contributing genes
and negative contributing genes. The positive contributing genes are defined as
upregulated genes or genes with hotspot mutations. The negative contributing
genes are defined as downregulated genes or mutated genes without mutation
hotspots. The pathways enriched in the positive or negative contributing genes for
predicting Erlotinib or 5-FU sensitive responses are analyzed by the Concept
Signature Enrichment Analysis (CSEA) developed in our previous study9 using the
Hallmark pathway gene sets from MSigdb (http://www.gsea-msigdb.org). The
resulting top pathways are disambiguated via correcting the crosstalk effects
between pathways, to reveal independent pathway modules47. A p value <0.01 is
used as a cutoff for disambiguation. The functional associations between the sig-
nificant pathways are then assessed using our CSEA method that computes the
enrichment of each pathway x on the human gene list sorted descendingly based on
the universal concept signature scores of each pathway y9. The pathway network
was visualized using the “igraph” R package (ver. 1.2.4.2).

Statistical analysis. The correlation between the predictive powers of the iGenSig
models (AUROCs) with the total number of significant predictive genomic features
(square root transformed) for each drug was determined using Spearman’s cor-
relation coefficient. For survival analysis, the P values are calculated based on log-

rank tests and a data-driven cut point of high iGenSig scores was determined using
the R-package “maxstat”48. The concordance is used as a measure of goodness-of-
fit for the predictive models in Coxph survival regression, which defines the
probability that the predictive scores goes in the same direction as the survival data.
To estimate the percent of outcome variations that can be explained by different
factors, we fitted a logistic regression model and calculated the Pseudo-R2 for
different predictive factors and clinical variables such as iGenSig scores, clinical
stage, tumor grade, etc. For interaction analysis, multiple logistic regression models
are generated for pair-wise interactions of the iGenSig model with each of the
confounding factors, and the multiple models are compared with the simple
logistic regression model via the Chi-Square test implemented in the “anova”
function. P values of the box or violin plots were analyzed by paired or unpaired
Student’s t-tests. Two-sided tests are used when both directions are to be tested,
such as when comparing the different modeling methods. One-sided tests are used
to determine if there is a difference between groups in a specific direction such as
that defined by the iGenSig scores.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data used in this study can be retrieved from a public data repository and are
summarized in Supplementary Table 1. Drug sensitivity data, mutation data, and cell line
annotations are available through the GDSC (http://www.cancerrxgene.org/downloads)
and CCLE (http://www.broadinstitute.org/ccle) websites. The TCGA Pan-cancer datasets
are available through the UCSC Xena browser (https://xenabrowser.net/datapages). The
publicly available microarray gene expression data for clinical trials are obtained from
GEO (https://www.ncbi.nlm.nih.gov/geo). These include BATTLE trial, (GSE33072),
Swiss SAKK 19/05 trial (GSE37138), a multicenter clinical study carried out by the
French CIT program (GSE39582), multicenter taxane treated stage I-III basal-like breast
cancer patient cohort (GSE25055 and GSE25065), and OUH neoadjuvant P-FEC study
on Japanese breast cancer patients (GSE32646). The RNAseq and mutation data for the
CALGB40601 clinical trial dataset are retrieved from dbGaP (phs001570.v2.p1) that are
available under restricted access controlled by the NCI Data Access Committee
[NCIDAC@mail.nih.gov]. A minimum dataset compendium containing the TCGA,
GDSC, CCLE, BATTLE, and French CIT datasets is made available through Zenodo
(https://zenodo.org/badge/latestdoi/444456261).

Code availability
The R modules for iGenSig modeling are available through Github (https://github.com/
wangxlab/iGenSig/) and through Zenodo (https://zenodo.org/badge/latestdoi/444456261)49.
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