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Golgi anti-apoptotic protein (GAAP), also known as transmembrane Bax

inhibitor-1 motif-containing 4 (TMBIM4) or Lifeguard 4 (Lfg4), shares remark-

able amino acid conservation with orthologues throughout eukaryotes,

prokaryotes and some orthopoxviruses, suggesting a highly conserved

function. GAAPs regulate Ca2þ levels and fluxes from the Golgi and endoplas-

mic reticulum, confer resistance to a broad range of apoptotic stimuli, promote

cell adhesion and migration via the activation of store-operated Ca2þ entry, are

essential for the viability of human cells, and affect orthopoxvirus virulence.

GAAPs are oligomeric, multi-transmembrane proteins that are resident in

Golgi membranes and form cation-selective ion channels that may explain

the multiple functions of these proteins. Residues contributing to the ion-

conducting pore have been defined and provide the first clues about the

mechanistic link between these very different functions of GAAP. Although

GAAPs are naturally oligomeric, they can also function as monomers, a feature

that distinguishes them from other virus-encoded ion channels that must oli-

gomerize for function. This review summarizes the known functions of

GAAPs and discusses their potential importance in disease.
1. Introduction: the transmembrane BI-1-containing
motif/Lifeguard family and the ancestral GAAP

1.1. Discovery and origins of GAAPs
In 2002, sequencing of the camelpox virus (CMLV) genome identified a novel

gene, 6L, located in the left terminal region of the genome [1]. This gene encodes

a highly hydrophobic, 237 amino acid (aa), membrane protein of approximately

23 kDa that was characterized and named Golgi anti-apoptotic protein (GAAP)

based on its intracellular localization and its first described function [2]. Bio-

informatic analysis identified GAAP relatives in some other orthopoxviruses,

including some strains of vaccinia virus (VACV) [1], the vaccine used to eradicate

smallpox, but also throughout higher eukaryotes, as well as some sponges, fungi,

yeast and an increasing number of prokaryotes [2–5]. Similarly, a human ortho-

logue of unknown function was identified from the human genome sequencing

project, and was expressed and characterized [2].

Since the discovery of GAAPs, the viral and human versions (vGAAP and

hGAAP, respectively) have been the most studied, leading to the identification of

several cellular functions and structural properties of GAAPs. Both vGAAP and

hGAAP localize to the Golgi apparatus [2] and confer resistance to a broad range

of pro-apoptotic stimuli of both intrinsic and extrinsic origins [2,4]. Human

GAAP regulates the Ca2þ content and fluxes from the principal intracellular Ca2þ

stores (Golgi and endoplasmic reticulum, ER) [6] and promotes cell adhesion

and migration via the activation of store-operated Ca2þ entry (SOCE) from the

extracellular space [7]. GAAPs are multi-transmembrane proteins that are also
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known to homo-oligomerize, and vGAAPs from VACV and

CMLV were shown to form cation-selective ion channels,

potentially forming the basis for the modulation of its diverse

functions [4,8].

1.2. Human GAAP: a housekeeping gene essential for
cell survival

hGAAP mRNA is expressed ubiquitously across all human

tissues tested, with lower expression detected in the brain com-

pared to other tissues [2,9,10]. The conservation of GAAP

expression suggested that its function may be fundamental to

the function of a wide variety of cell types. Indeed, hGAAP

was proposed to be an essential, universal, housekeeping protein

based on microarray analyses [11], and knockdown of endogen-

ous hGAAP by small interfering RNA (siRNA) demonstrated

that it is essential for cell viability because cells die by apoptosis

in its absence [2]. Interestingly, the viral protein is sufficiently

similar (73% aa identity) to complement for loss of hGAAP

in human cells. The requirement of other GAAP relatives in

simpler systems such as yeast or bacteria remains to be assessed

but may provide interesting information on the importance and

conservation of its essential housekeeping functions.

1.3. Why do some orthopoxviruses express a
viral GAAP?

Viral GAAPs are expressed by CMLV, a few strains of VACV and

cowpox virus, and are non-essential for viral replication [2].

However, it affects virus infection in vivo and deletion of

vGAAP from VACV strain Evans caused an increase in virus

virulence in vivo accompanied by an increased infiltration of leu-

cocytes into infected tissue [2]. Given that mammalian cells

express a GAAP, why have some orthopoxviruses evolved to

express a vGAAP? Possible explanations are (i) that the viral

protein has subtly different properties to the cellular protein

and these are advantageous to the virus, (ii) that the induction

of cell motility by vGAAP is beneficial to virus spread,

(iii) that vGAAP regulates the host response to infection, and

(iv) that the level of expression of cellular GAAP in mammalian

cells is low, and so expression at higher levels, as observed

during virus infection [2], is beneficial. The low level of cellular

GAAP expression will be reduced further during infection

because orthopoxviruses like VACV induce a rapid shut off of

cellular protein synthesis [12] mediated by the de-capping

enzymes D9 and D10 [13–15] and protein 169 [16]. Therefore,

the expression of vGAAP may help keep the infected cells

more suitable hosts to support virus replication. However,

under the cell culture conditions tested, a VACV engineered to

not express vGAAP replicated as well as control viruses expres-

sing vGAAP [2]. Given that loss of vGAAP from VACV strain

Evans affects virus virulence and the influx of inflammatory

cells into infected tissue [2], vGAAP can be added to the long

list of immuno-regulators expressed by VACV that affect the

host response to infection [17].

1.4. GAAPs within the TMBIM and Lifeguard family: an
evolutionary perspective

Initially, GAAP was classified as the fourth member of the

transmembrane Bax (Bcl-2-associated X protein) inhibitor-1
motif-containing (TMBIM) family, based on similarities in the

number of predicted transmembrane domains (6–7 TMDs),

known as the UPF0005 motif, and a shared anti-apoptotic

function with the most studied member of the family, Bax

inhibitor-1 (BI-1), from which the family name was derived

[18–20]. Currently, this family includes seven well-conserved

members: responsive to centrifugal force and shear stress

gene 1 protein (RECS1) (TMBIM1), TMBIM1b, FAS inhibitory

molecule 2 (FAIM2)/LFG (TMBIM2), glutamate receptor

ionotropic NMDA-associated protein (GRINA) (TMBIM3),

GAAP (TMBIM4), growth hormone-inducible transmembrane

protein (Ghitm) (TMBIM5) and BI-1 (TMBIM6) [2,20–22].

Although the TMBIM family has been the most commonly

used classification, a subsequent phylogenetic analysis

showed that five of its members, including GAAP, cluster inde-

pendently of the Bax-motif-containing proteins, Ghitm and

BI-1, as far back as the root of all animals and possibly extant

eukaryotes, thus creating a diverging family nomenclature

known as the Lifeguard (LFG) family [5,21]. Current LFG

family members are therefore GRINA (Lfg1), FAIM2/LFG

(Lfg2), RECS1 (Lfg3), GAAP (Lfg4) and TMBIM1b (Lfg5).

GAAP contains key sequence similarities and differences of

functional consequence with both LFG and BI-1 families. For

instance, the SPE[ED]Y motif between TMD6 and hydrophobic

loop 7 of GAAP, which is central within the channel pore and

important for cell adhesion and migratory functions, is present

throughout the LFG family members but absent from Ghitm

and BI-1 [4,5,21]. Conversely, a series of charged residues at

the C terminus of GAAP (LEAVNKK) is conserved only in

BI-1 (EKDKKKEKK), Ghitm (RKK) and to a minimal extent

GRINA (KE) [4], with similar critical requirements for GAAP

and BI-1 in regulating cell adhesion, apoptosis and Ca2þ

homeostasis [3,7,23–25]. Furthermore, the most closely related

members to GAAPs are LFG protein and BI-1 with 34 and 28%

aa identity, respectively [2]. Despite the fact that the relation-

ship between these proteins is unclear, it is evident that a

divergence exists within the TMBIM family. If this separation

is as ancient as proposed, the LFG family would constitute

an independent family from Ghitm and BI-1, rather than a sub-

class of the TMBIM family. Nevertheless, phylogenetic analysis

from both classification systems indicate the most probable

family progenitor to have been a GAAP-like ancestor that

expanded by a series of duplication and subsequent modifi-

cation events to generate the current TMBIM and LFG family

members [5,19,21]. This could explain why GAAP and BI-1

share some properties, such as the charged C terminus, that

is absent in some other family members. More specifically,

expansion of the five LFG family members from a GAAP-like

progenitor was dated by phylogenetic analysis as prior to the

divergence of plants and protozoa about 2000 million years

ago [5,21].

TMBIM and LFG family members lack clear functional

motifs indicative of function [4,21], and therefore family mem-

bers have been studied independently, and findings from one

member have often been tested and applied in the study of

other members. Given the high degree of conservation between

these proteins, this exercise has been productive, highlighting

many similarities as well as functional variations (table 1).

Subsequent studies were aimed at reassembling the known

functions of TMBIM/LFG family members [18,19,21,67,68].

Indeed, a recent review proposed a global ‘stress integrator’

or ‘sentinel’ role for the family, thus regulating multiple

essential adaptive responses to global stresses caused
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Figure 1. Conservation within the GAAPs. The extent of hydrophobicity and sequence conservation among GAAP orthologues. (a) The aa identities calculated by the
BLASTP server and differences in aa length are indicated. (b) The hydrophobicity profile for hGAAP (eukaryote) was aligned with that of viral (vGAAP from CMLV)
and prokaryotic (Ca. Chloracidobacterium thermophilum) GAAP representatives. Complete aa sequences were used for all. (c) aa sequence alignment of hGAAP against
GAAP orthologues from two to three representative members from each taxon. The level of conservation for each residue was scored according to Scorecons and
represented in a colour gradient, with red and white indicating identity and no similarity, respectively. Sequences analysed include Homo sapiens, Bos taurus and
Gallus gallus (vertebrates); VACV Evans, CMLV and CPXV (viruses); Cerapachys biroi and Tribolium castaneum (insects); Penicillium chrysogenum and Tuber melanos-
porum ( fungi); Arabidopsis thaliana, Genlisea aurea and Zea mays ( plants); Schizosaccharomyces pombe and Saccharomyces cerevisiae (yeast); and Campylobacter
jejuni, Helicobacter pylori and Candidatus Chloracidobacterium thermophilum (bacteria). Black and grey boxes indicate the location of TMDs 1 – 6 and the hydrophobic
region/loop 7 of GAAPs, respectively. Adapted from Carrara et al. [4].
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by environmental changes across different interconnected

signalling pathways and tissues [18].

The strong conservation of hydrophobicity profile within

TMBIM and LFG members suggests that structure and/or

hydrophobicity must be a critical aspect of their function

[3,19]. This fits with the hypothesis that the ion channel

activity of GAAP and BI-1 constitutes the core function

from which their other functions are derived as downstream

target effects.

1.5. Why is GAAP highly conserved?
Orthologues of GAAP, identified throughout eukaryotes

and recently in some prokaryotes, are characterized by a

unique degree of protein sequence identity and length, with

the majority of proteins differing by only 1–4 aa in length,

and a strikingly conserved hydrophobicity profile maintained

right down to bacteria (figure 1), suggesting an important

fundamental cellular function, for which transmembrane

structure is necessary [2,4]. Unlike in mammals, vGAAP is

not ubiquitous among viruses and is found only in a subset

of orthopoxviruses that include 3 of 16 strains of VACV

examined, CMLV and cowpox virus [2,4]. In these viruses,

the vGAAPs differ in only a few aa from one another and
share more than 98% aa identity, and therefore also share the

conserved membrane structure (figure 1) [4]. The level of con-

servation in aa length (1 aa difference), identity (73%)

and hydrophobicity profile between vGAAPs and hGAAP is

greater than many other VACV proteins that have a known

mammalian orthologue [2]. For comparison, VACV strain Wes-

tern Reserve proteins B15 [69] and B8 [70] share only 33% and

25% aa identity with the extracellular domain of the human

interleukin-1b receptor and interferon-g receptor, respectively.

The much closer similarity of vGAAP and mammalian GAAPs

might reflect a more recent acquisition of the host gene by

an ancestral poxvirus, or conservation of GAAP sequence

due to functional requirements. In this regard, the analysis of

the nucleotide composition of the viral and mammalian

GAAPs is informative. Orthopoxviruses such as VACV,

cowpox virus and CMVL have genomes with high AþT con-

tent (67% for VACV) that differ considerably from that of

humans and other mammalian genomes, and consequently

the codon usage of these viruses also differs from their mam-

malian hosts [1,71]. But the AþT content of vGAAP from

VACV (57.6%) or CMLV (59.0%) is more similar to hGAAP

(57.5%) than it is to the majority of the virus genome (67%).

So it has not yet adapted to the nucleotide composition of the

virus genome as a whole, either due to relatively recent gene
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acquisition or due to functional constraints. The ability of

VACV GAAP to restore cell viability following siRNA knock

down of the essential endogenous hGAAP demonstrates that

this conservation has retained protein function [2].

The high degree of conservation between GAAPs extends

beyond other poxviruses and mammals to distant eukaryotes

and even prokaryotes (figure 1). For instance, hGAAP shares

38% aa identity and 3 aa difference in length with GAAPs

from Arabidopsis thaliana [2], and vGAAP is quite conserved

with bacterial GAAPs including Candidatus Chloracidobacter-
ium thermophilum and Campylobacter jejuni (30.5% or 27.7%

aa identity, and only 2 or 6 aa difference in length, respect-

ively), as well as a fungal GAAP in Penicillium chrysogenum
(34.4% aa identity) [4]. This conservation is also strictly main-

tained in the hydrophobicity profiles of these GAAPs [4].

This remarkable conservation for such distantly related

organisms supports a highly conserved ancestral structure

and function [4]. Although GAAPs have not been reported

so far in archaea, the extensive list of orthologues is expected

to expand with the availability of newly sequenced genomes,

particularly among prokaryotes. Considering that structure

and activity of ion channels have evolved in prokaryotes

long before the emergence of complex multicellular organ-

isms [72], these novel and largely uncharacterized bacterial

GAAPs merit study and may provide a simpler system,

away from the complexities of inter-compartmentalized

Ca2þ fluxes of organelles, from which to dissect GAAP core

ion channel activity. Given the essential fundamental func-

tions and ancestral origins of GAAP, testing the extent of

conservation of its other functions down the evolutionary

tree could provide answers to other fundamental and essen-

tial cellular pathways such as ion/Ca2þ flux and cell viability

through apoptosis regulation.
2. GAAPs are Golgi ion channel proteins
2.1. GAAP ion channel activity, a core function
GAAP is predominantly a Golgi-resident protein [2]. This was

demonstrated first with anti-GAAP antibody and immuno-

electron microscopy [2] and then by expressing C-terminally

tagged GAAPs [2–4,7,8]. However, as GAAP concentration

increases during ectopic expression, hGAAP and vGAAPs also

become detectable in the ER, presumably as a result of overex-

pression and Golgi saturation [2]. With time, this accumulation

in the ER, a much larger organelle, is probably why GAAP

localization has also been reported in the ER [18,67,73].

vGAAPs from VACV and CMLV form ion channels that

are selective for cations [4]. This discovery remains the first

report of an ion channel encoded by poxviruses. Electrophysio-

logical characterization of single GAAP channels relied on

spontaneous opening of these channels consistent with sugges-

tions that the loss of Ca2þ from intracellular stores following

hGAAP or hBI-1 expression is due to passive leakage [6,23].

GAAPs and hBI-1 inhibit apoptosis, increase cell spreading

and migration speed and reduce the Ca2þ content of intracellu-

lar stores. Whether these effects are independent or the result

of a common core function of these proteins is only now

becoming clearer. Mutagenesis showed that two important

biological effects of vGAAP, apoptosis and migration, are

separable. Residues E207 or E178 are important for cell migration

and adhesion but do not affect the ability of vGAAP to protect
cells from apoptosis. In contrast, D219 is required for the anti-

apoptotic activity of vGAAP but not cell migration and

adhesion, but both functions are susceptible to mutation of

the pore-associated residues E207 and D219 [4] (figure 2). This

suggests that the ion channel activity of GAAPs may constitute

the core function from which cell adhesion, migration and

apoptotic protection are regulated. Consistent with the obser-

vations with GAAPs, mutation of the equivalent D219 residue

in hBI-1 (D213 in hBI-1) attenuates the ability of BI-1 to reduce

the Ca2þ content of the ER [51]. Furthermore, in the bacterial

BI-1 orthologue, BsYetJ, this residue forms part of salt bridges

that regulate pore opening upon protonation [52], suggesting

that Ca2þ regulation and channel activity in BI-1 are also

likely to be linked. However, the separation of major functions

such as inhibition of apoptosis and cell migration has not been

studied in BI-1. Despite having a topology that is broadly remi-

niscent of the a-subunits of eukaryotic voltage-gated channels

[74], GAAPs lack obvious signature motifs related to selectivity

or conductance [4]. This suggests that GAAPs may form chan-

nels with novel structures and may have a unique mechanism

of action.
2.2. Consequences of GAAP oligomerization
Many ion channels are oligomeric proteins and oligomeriza-

tion (homo or hetero) plays an important role in the

regulation of ion flux or channel conductance. Most TMBIM

proteins show several species with differing electrophoretic

mobility during SDS-PAGE suggesting that homo-oligomeriza-

tion is a conserved feature of this family [23,41,50]. Although a

pH-dependent regulation mechanism has been demonstrated

for multiple functions of BI-1, a pH-dependent mechanism for

GAAP activity remains elusive. However, the oligomerization

of vGAAP and hGAAP is dependent on pH, with a more alka-

line pH favouring oligomerization. This is contrary to basal

Golgi pH, which is more acidic than that of the ER. In the
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case of vGAAP, two cysteine residues responsible for direct

protein oligomerization were identified [8]. Using Förster reson-

ance energy transfer (FRET), it was shown that a vGAAP

double cysteine mutant (C9S/C60SvGAAP) was unable to oligo-

merize in native Golgi membranes of live cells. Although no

oligomerization was detectable by FRET, this mutant retained

its anti-apoptotic activity and its effect on intracellular Ca2þ

stores, proving that monomeric vGAAP is functional. There-

fore, a model where the oligomeric state provides an on–off

switch for GAAP activity is highly unlikely. However, an altera-

tion of conductance or ion flux might be influenced by

oligomerization and this remains to be tested electrophysiologi-

cally using the monomeric GAAP mutant. Surprisingly, the

cysteine residues responsible for vGAAP oligomerization are

absent from hGAAP, suggesting a different oligomerization

mechanism for hGAAP that is independent of cysteines.

BI-1 and GAAP oligomerization are at least partially pH-

dependent. An acidification of the cytosol results in increased

oligomerization of BI-1, and BI-1-expressing cells show more

Ca2þ release from stores under acidic conditions, but there is

still no proof that the two are directly linked [23]. Amino acid

residues required for BI-1 oligomerization have not been

identified and so no monomeric BI-1 mutant is available to

test if oligomerization is essential for its ion channel function.

Although a BI-1 C-terminal peptide, which lacks all the

regions identified in hGAAP that are required for oligomeri-

zation, is able to conduct ions across a membrane [75], its

actual oligomeric state is unknown.

Interaction between different members of the TMBIM

family has been reported, namely between BI-1 and GRINA,

suggesting that a possible hetero-oligomerization of different

TMBIM members could be relevant for TMBIM activity or

regulation [41]. A limitation of this approach is the fact that
most protein–protein interaction data were obtained from co-

immunoprecipitation assays, and TMBIM proteins are highly

susceptible to co-precipitate with any membrane protein or

highly abundant proteins due to their high degree of hydro-

phobicity [4]. Even under very stringent conditions, it was

possible to co-precipitate GAAP with several membrane and

soluble proteins, some of which do not even localize at the

Golgi. Therefore, no convincing protein interactions have so

far been detected with any of the GAAPs. To address this

issue, more robust techniques such as FRET [76], protein com-

plementation assays [77] or two-hybrid assays [78] could be

used to investigate TMBIM protein–protein interactions.
2.3. GAAP topology is unique among mammalian and
viral ion channels

Owing to the highly hydrophobic nature of ion channels,

which makes them experimentally difficult proteins to work

with, the majority of channel structures have remained

unsolved. The first ion channel structure solved was the pro-

karyotic KcsA Kþ channel in 1998 [79], and thereafter ion

channel structure has been a rapidly growing field.

Structurally, the simplest of all known prokaryotic and

eukaryotic channels consists of two transmembrane segments

(2TM) (figure 3, green), separated by a selectivity filter and

pore-forming loop known as the P-region. This basic motif,

which is adopted for instance by the eukaryotic Kþ inward

rectifier (Kir) and the prokaryotic Kþ channel (KcsA), is

thought to form the basic building block from which the diverse

other ion channel types have evolved [74,80,81]. This structure

has been expanded with the addition of four transmembrane

(TM) segments (figure 3, blue) to form the 6TM arrangement
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(named S1–S6) of most eukaryotic channels, such as voltage-

gated Kþ channels (Kv), and forms the structural basis for

Naþ and Ca2þ voltage-gated channels (Nav and Cav, respect-

ively) [80–82]. Typically, S4 contains the voltage sensor, while

S5–S6 contain the selectivity filter. Duplication and fusion

events using a combination of the 2TM precursor unit and the

6TM structure are thought to have therefore given rise to the

larger channel structures shown in figure 3.

Although the evolution of Kþ channels has been traced

back to the prokaryotic world as a 2TM structure, phyloge-

netic studies have usually excluded ion channels of viral

origin based on the assumption that viruses may have

acquired host genes by horizontal gene transfer [74,80]. How-

ever, phylogenomic evidence that some viral genes, including

viral Kþ channel-encoding genes, did not originate from their

hosts [83,84] has highlighted the importance of including

viral ion channels in these evolutionary analyses. This is par-

ticularly relevant to large algae-infecting viruses such as

chloroviruses, which lack aa similarity between viral and

host proteins or of close orthologues in databases, thus raising

the question of the true donor organism(s) of these genes

[83,84]. With the subsequent inclusion of viral Kþ channels in

these evolutionary studies, viral ion channels with the 2TM

configuration, such as the chlorella virus Kcv channel, have

been added to the list of progenitor-like channels (figure 3)

[85]. These chloroviruses-encoded Kþ channels have even

been hypothesized by phylogenetic analysis as the closest

channels to the evolutionary ancestor of all Kþ channel proteins

[85], consistent with evidence that some large DNA viruses

may have predated or coexisted with the last universal

common ancestor of bacteria, archaea and eukarya [86–88].

The first described viral ion channel is the M2 protein

from influenza virus A [89]. Since then, other ion channels

encoded by viruses have been discovered and are grouped

within a family of viral ion channels known as viroporins.

These are typically much shorter than cellular ion channels

encompassing between 50 and 120 aa and contain no more

than 1–3 TM regions that homo-oligomerize often into tetra-

mers, thus constituting minimalistic versions of ion channels

[90,91]. For instance, the 97 aa M2 protein contains a single TM

[92] that assembles into a homo-tetrameric Hþ-permeable pore
important for viral entry [93,94]. Once the virus is taken into

the endosome, acidification of the virion interior mediated by

M2 promotes virus uncoating and the release of viral RNA

into the host cell [95]. Another example is the 94 aa viral Kþ

channel, Kcv, from chlorella virus 1 (Paramecium bursaria
Chlorella virus 1, PBCV-1) that resembles the 2TM bacterial

channels Kir and KcsA [96,97]. The two putative TM regions

of Kcv are separated by a 44 aa pore region that contains the

TXXTXGFG signature pore sequence of Kþ channels [97].

PBCV-1 induces the rapid depolarization of the infected cells,

and this is believed to be the result of Kcv channel incorporation

into the host membrane and mediating Kþ efflux from the cell

[98]. Other examples of viral ion channels include Vpu from

human immunodeficiency virus-1, p7 from hepatitis C virus,

VP4 from poliovirus and 3a from severe acute respiratory

syndrome-associated coronavirus (SARS-CoV) (figure 4).

In contrast, the topology of GAAP is unlike any other

viral ion channel described hitherto and contains some key

differences with known eukaryotic or prokaryotic ion chan-

nels outside of the TMBIM/LFG family. GAAPs have short

inter-membrane loops ranging from 3 to 11 aa, with the lar-

gest membrane-free region being a short cytosolic tail of

approximately 35 aa at the N terminus [3,4]. Topology map-

ping, by the insertion of peptide epitopes into different inter-

TM loops or at the N or C terminus of GAAP, indicated that

GAAPs have both the N and C termini in the cytosol, 6 TMDs

and an additional C-terminal hydrophobic region or loop

(figures 1, 4 and 5) [3]. On the other hand, the high-resolution

structure of YetJ from Bacillus subtilis (BsYetJ), a bacterial

orthologue of hBI-1 and hGAAP (with about 20% aa identity)

interpreted to form a Hþ-regulated Ca2þ channel, revealed a

seventh TMD, located at the core of the structure [52]. The

origin of the difference in the apparent organization of this

hydrophobic region 7 between GAAPs and BsYetJ is not

clear. It is possible that attaching a tag such as the hemaggluti-

nin (HA) epitope, despite being short (9 aa), at the C terminus

of GAAPs induced an aberrant topology, although GAAP

tagged in this way retained its function as a regulator of apop-

tosis, adhesion, migration and Ca2þ homeostasis [3,4,7,8]. It is

also possible that the C terminus of GAAP is in equilibrium

between two states, one of which is favoured by the addition
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of a C-terminal tag and the other by the crystallization con-

ditions used to solve the structure of BsYetJ, a related highly

hydrophobic protein. Alternatively, there may be genuine

differences in the membrane topologies of GAAPs and the

distantly related hBI-1 bacterial protein.

The identification of vGAAP residues important for the pore

(E207 and D219), their conservation among distantly related

proteins and topological data suggest that the C-terminal hydro-

phobic loop probably lines the channel pore (figure 2) [4].

Therefore, GAAPs differ from the 6TM consensus of Kþ channels,

in which the pore region is located between TM5 and 6, in that the

pore region of GAAPs is shifted further towards the C terminus

(figure 3). Likewise, the crystal structure of BsYetJ is structurally

different to any known ion channel [52]. Even in terms of size,

237 aa and 6–7 TM regions, GAAP is approximately threefold

larger than that of any other viroporin (figure 4).

Considering that GAAP topology and the location of its

pore region does not fit well within the current structural con-

sensus of ion channel evolution, this suggests that GAAP may

have evolved from a modified branch of the 2TM Kir-like pre-

cursor unit or from a different precursor (figure 3). GAAPs

present a novel type or sub-type of ion channel structure,

unlike any known viroporin in size, structural complexity

and function (figures 3 and 4). Viral GAAP therefore represents

a novel class (type III) of viral channels (figure 4).

The majority of viroporins have been associated with viral

entry, assembly or release [99] and serve as ideal anti-viral drug

targets. The same is true for many mammalian and prokaryotic

channels implicated in disease pathology. However, issues

relating to target specificity can often give rise to important

side-effects and acquired drug resistance, as seen, for instance,

with the M2-targeting compound amantadine [100,101]. Con-

sequently, more detailed electrophysiological, structural and

functional properties of channels are of particular value for

improved targeted drug development.
3. Why GAAPs confer such broad-ranging
protection against apoptotic stimuli

Considering that apoptotic regulators are mostly localized in

the cytosol, the ER or the mitochondria, the Golgi represents

an unconventional location within the cell from which to

regulate apoptosis. In an attempt to address whether Golgi

localization is required for its anti-apoptotic functions, a range
of mutations (single aa substitution, short sequence changes,

truncations and chimaeras) were introduced to alter GAAP

localization. However, this has only yielded inconclusive

results (unpublished data), probably reflecting the tight

interplay between protein structure and function.

When compared with other TMBIM members, GAAP is the

broadest anti-apoptotic inhibitor (table 1). Cells overexpressing

vGAAP or hGAAP and challenged with a variety of intrinsic

and extrinsic pro-apoptotic stimuli showed an increased resist-

ance to programmed cell death [2]. However, the mechanism

behind such a broad range of protection is unclear. Perhaps,

given the central role of Ca2þ in apoptosis, it is likely that

modulation of Ca2þ by GAAP plays a role in this process

[4,6,7]. The fact that GAAP overexpression reduces the Ca2þ

filling state of the ER and Golgi suggests that apoptosis protec-

tion may derive from reduced release of Ca2þ from intracellular

stores upon pro-apoptotic stimuli, leading to a reduced entry of

Ca2þ in the mitochondria and thus delaying and hampering

apoptosis [6] (figure 5). The mechanism by which GAAP and

other TMBIM family members control apoptosis requires

further analysis and it is possible that the anti-apoptotic

activity of these proteins constitutes a secondary effect of

their regulation of Ca2þ.
4. GAAP-mediated regulation of cell
motility and adhesion

Several cellular processes are affected when TMBIM protein

expression is manipulated. In addition to protecting cells

from apoptotic stimuli and modulating the content of intra-

cellular Ca2þ stores, overexpression of vGAAP and hGAAP

increases cell migration, adhesion and spreading [4,7]. Store-

operated calcium entry (SOCE) is enhanced by hGAAP overex-

pression and leads to greater activation of calpain 2 near the

plasma membrane (PM), probably by binding free Ca2þ enter-

ing the cell from the extracellular space [7] (figure 5). Active

calpain 2 accelerates the turnover of focal adhesions thereby

contributing to the observed increased cell migration, adhesion

and spreading phenotypes [7]. Conversely, the opposite

phenotype is observed upon hGAAP knock down [7].

The effects of GAAP on cell motility are consistent with the

described role of GAAP as a cation-selective channel [4]. When

a residue that affects the ion channel conductance (E207) of

vGAAP was mutated, the impact of protein overexpression
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on cell migration was lost, demonstrating the importance of the

ion channel activity for GAAP-induced cell migration [4].

The detailed mechanism by which GAAP stimulates

SOCE remains unclear. Considering the localization of

GAAP within the Golgi and its ability to modulate the Ca2þ

content of both the Golgi and the ER, several mechanisms are

possible: (i) the depletion of luminal Golgi Ca2þ may affect

the Ca2þ content of the ER and activate the typical SOCE path-

way involving Orai1 and stromal interaction molecule 1

(STIM1); (ii) GAAP induces an alteration in Orai1 and/or

STIM1 proteins; and (iii) GAAP within the Golgi contributes

directly to SOCE activation via an unknown Golgi SOCE

sensor(s). Positioning of the Golgi to the rear of the nucleus

has been proposed to be important in regulating polarization

and directed cell migration (reviewed in [102]). Whether or

not hGAAP participates in Golgi positioning and polarization

during cell migration by affecting the activation and/or local-

ization of calpain 2, SOCE-related proteins or by any other

mechanism is unknown.

Two other members of the TMBIM family (TMBIM6/BI-1

and TMBIM2/LFG) can also affect cellular mechanisms

involved in cell migration and adhesion. Interestingly,

increased expression of both BI-1 and LFG correlated with

increased metastasis [36,63]. BI-1 overexpression induces

cell migration by directly interacting with actin and by pro-

moting actin polymerization [25]. Like GAAP, BI-1 induces

SOCE, and this is dependent on the C-terminal lysine resi-

dues involved in actin binding [25], suggesting a possible

link with cytoskeletal remodelling.
In a neuroblastoma (NBL) cell model, LFG repression

resulted in reduced cell adhesion, increased sphere growth

and enhanced migration [36]. Similarly, LFG knockdown

increased the in vivo metastatic potential of SH-SY5Y and

altered the expression profiles of several genes involved in

cell adhesion and migration [36]. This supports a role for

TMBIM members as cell motility regulators and possibly as

players in tumour progression and metastasis.
5. Future perspectives
Despite much progress, it remains unclear whether the mul-

tiple functions of GAAP are linked or separate. The specific

inhibition of ion channel activity by pharmacological inhibi-

tion or by mutagenesis could provide an interesting tool to

dissect the mechanisms involved in each of GAAP’s described

functions. Data to date suggest that all GAAP-dependent func-

tions rely on its ion channel activity, but contributions from the

regulation of other Golgi ion channels or Golgi resident pro-

teins remain possible. Generation of a GAAP knockout

mouse (if viable) would shed some light on the important in
vivo functions of GAAP as well as possible interactions with

other TMBIM family members. All published TMBIM gene

knockout mice are viable [41,47,103]. However, the importance

of GAAP for cell viability increases the likelihood of lethality

in vivo. Double TMBIM knockout mice lethality has also

been suggested due to possible complementary functions of

these proteins. Therefore, generation of conditional knockout

http://www.oncomine.com
http://www.oncomine.com
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mice in future will help to dissect the role of GAAP in vivo in

homeostasis and disease models.

Although much is known about the roles of GAAP in the

cell, the exact role for GAAP during poxvirus infection remains

unclear. vGAAP expression by VACV strain Evans did not

affect virus replication or spread in cell culture but reduced

the virulence of this VACV strain following infection in mice

[2]. The infection with a virus lacking vGAAP was character-

ized by enhanced infiltration of leucocytes into the infected

tissue, showing that vGAAP is immunomodulatory. A com-

parison of four different anti-apoptotic proteins encoded by

VACV showed that, in comparison, vGAAP is not a potent

anti-apoptotic protein when expressed during viral infection,

making it unlikely that its anti-apoptotic activity explains

fully its effect on virulence [104].

TMBIM1, 2, 3 and 4 can all be found in Golgi membranes,

but most of their role(s) in this organelle remain elusive. Shed-

ding light on the processes in which these proteins are involved

could help to dissect and understand Golgi functions. One of

the central questions about the Golgi revolves around the

spatial organization of the signals arriving at and originating

from this organelle. How GAAP that is localized in the Golgi

can activate Ca2þ entry from the extracellular space that

occurs at the PM remains unclear. Golgi-originated stress sig-

nals and sensors involved in organelle-initiation of apoptosis

have been proposed to mediate this, but no specific protein

has been identified in this context thus far [105–107].

Given the fact that hGAAP can protect cells from apoptosis,

promote cell viability, and upregulate cell adhesion and

migration, it is possible that hGAAP has a role in tumour

progression. Cell hyper-proliferation within confined,

nutrient-poor environments triggers a variety of apoptotic

stresses, thus anti-apoptotic genes are important contribu-

tors of cancer progression. In addition, activation of SOCE,

calpain 2 activity, and alterations in the migration and

attachment capabilities of cancer cells to other cells or the
extracellular matrix are typical hallmarks of carcinoma

progression to higher-grade malignancies [108–110].

Significant upregulation of hGAAP mRNA has been

detected in brain and lung tumours. In glioblastoma multi-

forme, high hGAAP mRNA levels are associated with poor

outcome [43], and the dysregulation of hGAAP in non-small

cell lung carcinoma samples led to hGAAP being proposed

as a novel candidate prognostic marker for this disease in

non-smoking patients [44]. An analysis of currently available

microarray studies via the Oncomine platform indicates that

hGAAP is over-expressed (figure 6a), with greatest frequency

(figure 6b) in cancers of the brain and prostate, and under-

expressed with unusual frequency in colorectal cancers

(figure 6b). Unlike a previous report [18], this analysis

showed that the pattern of hGAAP dysregulation among

cancer tissues aligns with that of hBI-1, and this may become

clearer as more studies include both BI-1 and hGAAP probes.

BI-1 is also upregulated in some glioma [60] and lung cancers

[59,61], as well as prostate [58,62] and breast cancer [56,57].

FAIM2/LFG/TMBIM2 overexpression also correlates with

high primary breast tumours grades [38], and low LFG levels

correlate with poor overall survival of NBL patients [36].

As GAAP confers resistance to a wide range of apoptotic

stresses in vitro, including the anti-cancer drugs cisplatin and

doxorubicin [2], it would be important to determine whether

hGAAP correlates with resistance to chemotherapy and/or

with poor prognosis, and thus represents an important

indicator and therapeutic target.

Competing interests. We declare we have no competing interests.

Funding. G.C. was supported by the Isaac Newton Trust. Work in
M.P.’s laboratory was funded by the Medical Research Council and
BBSRC. N.S. was supported by the Portuguese Foundation for
Science and Technology (Fundação para a Ciência e a Tecnologia).
Work in G.L.S.’s laboratory was funded by the Medical Research
Council and the Wellcome Trust (085295); and G.L.S. is a Wellcome
Trust Principal Research Fellow.
References
1. Gubser C, Smith GL. 2002 The sequence of
camelpox virus shows it is most closely related to
variola virus, the cause of smallpox. J. Gen. Virol.
83, 855 – 872. (doi:10.1099/0022-1317-83-4-855)

2. Gubser C, Bergamaschi D, Hollinshead M, Lu X, van
Kuppeveld FJM, Smith GL. 2007 A new inhibitor of
apoptosis from vaccinia virus and eukaryotes.
PLoS Pathog. 3, e17. (doi:10.1371/journal.ppat.
0030017)

3. Carrara G, Saraiva N, Gubser C, Johnson BF, Smith
GL. 2012 Six-transmembrane topology for Golgi
Anti-apoptotic Protein (GAAP) and Bax Inhibitor 1
(BI-1) provides model for the Transmembrane Bax
Inhibitor-containing Motif (TMBIM) family. J. Biol.
Chem. 287, 15 896 – 15 905. (doi:10.1074/jbc.M111.
336149)

4. Carrara G, Saraiva N, Parsons M, Byrne B, Prole DL,
Taylor CW, Smith GL. 2015 Golgi anti-apoptotic
proteins are highly conserved ion channels that
affect apoptosis and cell migration. J. Biol. Chem.
290, 11 785 – 11 801. (doi:10.1074/jbc.M115.
637306)
5. Mariotti M, Smith TF, Sudmant PH, Goldberger G.
2014 Pseudogenization of testis-specific Lfg5
predates human/Neanderthal divergence. J. Hum.
Genet. 59, 288 – 291. (doi:10.1038/jhg.2014.6)

6. de Mattia F et al. 2009 Human Golgi antiapoptotic
protein modulates intracellular calcium fluxes. Mol.
Biol. Cell 20, 3638 – 3645. (doi:10.1091/mbc.E09-
05-0385)

7. Saraiva N, Prole DL, Carrara G, Johnson BF, Taylor
CW, Parsons M, Smith GL. 2013 hGAAP promotes
cell adhesion and migration via the stimulation of
store-operated Ca2þ entry and calpain 2. J. Cell Biol.
202, 699 – 713. (doi:10.1083/jcb.201301016)

8. Saraiva N, Prole DL., Carrara G, de Motes CM,
Johnson BF, Byrne B, Taylor CW, Smith GL. 2013
Human and viral Golgi anti-apoptotic proteins
(GAAPs) oligomerize via different mechanisms and
monomeric GAAP inhibits apoptosis and modulates
calcium. J. Biol. Chem. 288, 13 057 – 13 067.
(doi:10.1074/jbc.M112.414367)

9. Petryszak R et al. 2016 Expression Atlas update—
an integrated database of gene and protein
expression in humans, animals and plants. Nucleic
Acids Res. 44, D746 – D752. (doi:10.1093/nar/
gkv1045)

10. Uhlén M et al. 2015 Tissue-based map of the
human proteome. Science 347, 1260419. (doi:10.
1126/science.1260419).

11. Lee S, Jo M-J, Lee J-E, Koh S-S, Kim S-Y. 2007
Identification of novel universal housekeeping genes
by statistical analysis of microarray data. J. Biochem.
Mol. Biol. 40, 226 – 231.

12. Moss B. 1968 Inhibition of HeLa cell protein
synthesis by the vaccinia virion. J. Virol. 2,
1028 – 1037.

13. Shors T, Keck JG, Moss B. 1999 Down regulation of
gene expression by the vaccinia virus D10 protein.
J. Virol. 73, 791 – 796.

14. Parrish S, Moss B. 2007 Characterization of a second
vaccinia virus mRNA-decapping enzyme conserved
in poxviruses. J. Virol. 81, 12 973 – 12 978. (doi:10.
1128/JVI.01668-07)

15. Parrish S, Resch W, Moss B. 2007 Vaccinia virus D10
protein has mRNA decapping activity, providing a

http://dx.doi.org/10.1099/0022-1317-83-4-855
http://dx.doi.org/10.1371/journal.ppat.0030017
http://dx.doi.org/10.1371/journal.ppat.0030017
http://dx.doi.org/10.1074/jbc.M111.336149
http://dx.doi.org/10.1074/jbc.M111.336149
http://dx.doi.org/10.1074/jbc.M115.637306
http://dx.doi.org/10.1074/jbc.M115.637306
http://dx.doi.org/10.1038/jhg.2014.6
http://dx.doi.org/10.1091/mbc.E09-05-0385
http://dx.doi.org/10.1091/mbc.E09-05-0385
http://dx.doi.org/10.1083/jcb.201301016
http://dx.doi.org/10.1074/jbc.M112.414367
http://dx.doi.org/10.1093/nar/gkv1045
http://dx.doi.org/10.1093/nar/gkv1045
http://dx.doi.org/10.1126/science.1260419
http://dx.doi.org/10.1126/science.1260419
http://dx.doi.org/10.1128/JVI.01668-07
http://dx.doi.org/10.1128/JVI.01668-07


rsob.royalsocietypublishing.org
Open

Biol.7:170045

13
mechanism for control of host and viral
gene expression. Proc. Natl Acad. Sci. USA 104,
2139 – 2144. (doi:10.1073/pnas.0611685104)

16. Strnadova P, Ren H, Valentine R, Mazzon M,
Sweeney TR, Brierley I, Smith GL, Mossman KL.
2015 Inhibition of translation initiation by protein
169: a vaccinia virus strategy to suppress innate and
adaptive immunity and alter virus virulence. PLoS
Pathog. 11, e1005151. (doi:10.1371/journal.ppat.
1005151)

17. Smith GL, Benfield CTO, Maluquer de Motes C,
Mazzon M, Ember SWJ, Ferguson BJ, Sumner RP.
2013 Vaccinia virus immune evasion: mechanisms,
virulence and immunogenicity. J. Gen. Virol. 94,
2367 – 2392. (doi:10.1099/vir.0.055921-0)

18. Rojas-Rivera D, Hetz C. 2015 TMBIM protein family:
ancestral regulators of cell death. Oncogene 34,
269 – 280. (doi:10.1038/onc.2014.6)

19. Lisak DA, Schacht T, Enders V, Habicht J, Kiviluoto S,
Schneider J, Henke N, Bultynck G, Methner A. 2015
The transmembrane Bax inhibitor motif (TMBIM)
containing protein family: tissue expression,
intracellular localization and effects on the ER Ca2þ-
filling state. Biochim. Biophys. Acta 1853, 2104 –
2114. (doi:10.1016/j.bbamcr.2015.03.002)

20. Zhou J, Zhu T, Hu C, Li H, Chen G, Xu G, Wang S,
Zhou J, Ma D. 2008 Comparative genomics and
function analysis on BI1 family. Comput. Biol. Chem.
32, 159 – 162. (doi:10.1016/j.compbiolchem.2008.
01.002)

21. Hu L, Smith T, Goldberger G. 2009 LFG: a candidate
apoptosis regulatory gene family. Apoptosis 14,
1255 – 1265. (doi:10.1007/s10495-009-0402-2)

22. Xu Q, Reed J. 1998 Bax inhibitor-1, a mammalian
apoptosis suppressor identified by functional
screening in yeast. Mol. Cell 1, 337 – 346. (doi:10.
1016/S1097-2765(00)80034-9)

23. Kim H et al. 2008 Bax inhibitor-1 Is a pH-
dependent regulator of Ca2þ channel activity in
the endoplasmic reticulum. J. Biol. Chem.
283, 15 946 – 15 955. (doi:10.1074/jbc.
M800075200)

24. Chae H-J, Ke N, Kim H-R, Chen S, Godzik A,
Dickman M, Reed JC. 2003 Evolutionarily conserved
cytoprotection provided by Bax inhibitor-1
homologs from animals, plants, and yeast. Gene
323, 101 – 113. (doi:10.1016/j.gene.2003.09.011)

25. Lee G-H et al. 2010 Bax inhibitor 1 increases cell
adhesion through actin polymerization: involvement
of calcium and actin binding. Mol. Cell. Biol. 30,
1800 – 1813. (doi:10.1128/MCB.01357-09)

26. Shukla S, Fujita K, Xiao Q, Liao Z, Garfield S,
Srinivasula SM. 2011 A shear stress responsive gene
product PP1201 protects against Fas-mediated
apoptosis by reducing Fas expression on the cell
surface. Apoptosis 16, 162 – 173. (doi:10.1007/
s10495-010-0556-y)

27. Zhao H, Ito A, Sakai N, Matsuzawa Y, Yamashita S,
Nojima H. 2006 RECS1 is a negative regulator of
matrix metalloproteinase-9 production and
aged RECS1 knockout mice are prone to aortic
dilation. Circ. J. 70, 615 – 624. (doi:10.1253/circj.
70.615)
28. Zhao H et al. 2006 RECS1 deficiency in mice induces
susceptibility to cystic medial degeneration. Genes
Genet. Syst. 81, 41 – 50. (doi:10.1266/ggs.81.41)

29. Yoshisue H et al. 2002 Large scale isolation of non-
uniform shear stress-responsive genes from cultured
human endothelial cells through the preparation of
a subtracted cDNA library. Atherosclerosis 162,
323 – 334. (doi:10.1016/S0021-9150(01)00735-3)

30. Orlando G et al. 2016 Variation at 2q35 (PNKD and
TMBIM1) influences colorectal cancer risk and
identifies a pleiotropic effect with inflammatory
bowel disease. Hum. Mol. Genet. 25, 2349 – 2359.
(doi:10.1093/hmg/ddw087)

31. Fernández M, Segura MF, Solé C, Colino A, Comella
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98. Neupärtl M et al. 2008 Chlorella viruses evoke a
rapid release of Kþ from host cells during the early
phase of infection. Virology 372, 340 – 348. (doi:10.
1016/j.virol.2007.10.024)

99. Ouyang B, Chou J. 2013 The minimalist
architectures of viroporins and their therapeutic
implications. Biochim. Biophys. Acta 1838,
1058 – 1067. (doi:10.1016/j.bbamem.2013.09.004)

100. Oxford J, Galbraith A. 1980 Antiviral activity of
amantadine: a review of laboratory and clinical
data. Pharmacol. Ther. 11, 181 – 262. (doi:10.1016/
0163-7258(80)90072-8)
101. Stouffer AL et al. 2008 Structural basis for the
function and inhibition of an influenza virus proton
channel. Nature 451, 596 – 599. (doi:10.1038/
nature06528)

102. Bornens M. 2008 Organelle positioning and cell
polarity. Nat. Rev. Mol. Cell Biol. 9, 874 – 886.
(doi:10.1038/nrm2524)

103. Hurtado de Mendoza T, Liu F, Verma I. 2015
Anti-apoptotic Role for Lifeguard in T
cell mediated immune response. PLoS One
10, e0142161. (doi:10.1371/journal.pone.
0142161)

104. Veyer D, Maluquer de Motes C, Sumner RP, Ludwig
L, Johnson BF, Smith GL. 2014 Analysis of the anti-
apoptotic activity of four vaccinia virus proteins
demonstrates that B13 is the most potent inhibitor
in isolation and during viral infection. J. Gen.
Virol. 95(Pt 12), 2757 – 2768. (doi:10.1099/vir.0.
068833-0)

105. Li T et al. 2016 GOLPH3 mediated Golgi stress
response in modulating N2A cell death upon
oxygen-glucose deprivation and reoxygenation
injury. Mol. Neurobiol. 53, 1377 – 1385. (doi:10.
1007/s12035-014-9083-0)
106. Hicks S, Machamer C. 2005 Golgi structure in
stress sensing and apoptosis. Biochim. Biophys. Acta
1744, 406 – 414. (doi:10.1016/j.bbamcr.2005.03.
002)

107. Reiling J, Olive AJ, Sanyal S, Carette JE,
Brummelkamp TR, Ploegh HL, Starnbach MN,
Sabatini DM. 2013 A CREB3-ARF4 signalling
pathway mediates the response to Golgi stress and
susceptibility to pathogens. Nat. Cell Biol. 15,
1473 – 1485. (doi:10.1038/ncb2865)

108. Yang S, Zhang JJ, Huang X-Y. 2009 Orai1 and STIM1
are critical for breast tumor cell migration and
metastasis. Cancer Cell 15, 124 – 134. (doi:10.1016/
j.ccr.2008.12.019)

109. Chen Y-F, Chiu W-T, Chen Y-T, Lin P-Y, Huang H-J,
Chou C-Y, Chang H-C, Tang M-J, Shen M-R. 2011
Calcium store sensor stromal-interaction molecule 1-
dependent signaling plays an important role in
cervical cancer growth, migration, and angiogenesis.
Proc. Natl Acad. Sci. USA 108, 15 225 – 15 230.
(doi:10.1073/pnas.1103315108)

110. Hanahan D, Weinberg R. 2011 Hallmarks of cancer:
the next generation. Cell 144, 646 – 674. (doi:10.
1016/j.cell.2011.02.013)

http://dx.doi.org/10.1074/jbc.M003663200
http://dx.doi.org/10.1074/jbc.M003663200
http://dx.doi.org/10.1016/S0014-5793(03)00777-4
http://dx.doi.org/10.1016/S0014-5793(03)00777-4
http://dx.doi.org/10.1126/science.287.5458.1641
http://dx.doi.org/10.1016/j.virol.2007.10.024
http://dx.doi.org/10.1016/j.virol.2007.10.024
http://dx.doi.org/10.1016/j.bbamem.2013.09.004
http://dx.doi.org/10.1016/0163-7258(80)90072-8
http://dx.doi.org/10.1016/0163-7258(80)90072-8
http://dx.doi.org/10.1038/nature06528
http://dx.doi.org/10.1038/nature06528
http://dx.doi.org/10.1038/nrm2524
http://dx.doi.org/10.1371/journal.pone.0142161
http://dx.doi.org/10.1371/journal.pone.0142161
http://dx.doi.org/10.1099/vir.0.068833-0
http://dx.doi.org/10.1099/vir.0.068833-0
http://dx.doi.org/10.1007/s12035-014-9083-0
http://dx.doi.org/10.1007/s12035-014-9083-0
http://dx.doi.org/10.1016/j.bbamcr.2005.03.002
http://dx.doi.org/10.1016/j.bbamcr.2005.03.002
http://dx.doi.org/10.1038/ncb2865
http://dx.doi.org/10.1016/j.ccr.2008.12.019
http://dx.doi.org/10.1016/j.ccr.2008.12.019
http://dx.doi.org/10.1073/pnas.1103315108
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1016/j.cell.2011.02.013

	Golgi anti-apoptotic protein: a tale of camels, calcium, channels and cancer
	Introduction: the transmembrane BI-1-containing motif/Lifeguard family and the ancestral GAAP
	Discovery and origins of GAAPs
	Human GAAP: a housekeeping gene essential for cell survival
	Why do some orthopoxviruses express a viral GAAP?
	GAAPs within the TMBIM and Lifeguard family: an evolutionary perspective
	Why is GAAP highly conserved?

	GAAPs are Golgi ion channel proteins
	GAAP ion channel activity, a core function
	Consequences of GAAP oligomerization
	GAAP topology is unique among mammalian and viral ion channels

	Why GAAPs confer such broad-ranging protection against apoptotic stimuli
	GAAP-mediated regulation of cell motility and adhesion
	Future perspectives
	Competing interests
	Funding
	References


