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Abstract. The adrenergic agonist norepinephrine is 
shown to stimulate endothelium to induce protein S re- 
lease and degradation, leading to diminished anti-co- 
agulant activity and to down-regulation of protein S 
cell surface-binding sites. Norepinephrine-induced re- 
lease of intracellular protein S was blocked by the 
Qtradrenergic antagonist prazosin (10 -7 M) but not by 
the ¢t-adrenergic antagonist propranolol (10 -6 M) or the 
a2-adrenergic antagonist yohimbine (10 -5 M) indicating 
that this response resulted from the specific interaction 
of norepinephrine with a class of ct~-adrenergic recep- 
tors not previously observed on endothelium. Attenua- 
tion of norepinephrine-induced release of protein S by 
pertussis toxin in association with the ADP-ribosyla- 
tion of a 41,000-D membrane protein indicates that 
this intracellular transduction pathway involves a 
regulatory G protein. The observation that protein S 
was released from endothelium in response to maneu- 
vers which elevate intracellular calcium or activate 

protein kinase C suggests that the response may be 
mediated via intermediates generated through the hy- 
drolysis of phosphoinositides. Morphologic studies 
were consistent with a mechanism in which norepi- 
nephrine causes exocytosis of vesicles containing pro- 
tein S. In addition to release of protein S, norepineph- 
rine also induced loss of endothelial cell protein 
S-binding sites, thereby blocking effective activated 
protein C-protein S-mediated factor Va inactivation on 
the cell surface. Norepinephrine-mediated endothelial 
cell stimulation thus results in loss of intracellular pro- 
tein S and suppression of cell surface-binding sites, 
modulating the anti-coagulant protein C pathway on 
the vessel wall. These studies define a new relationship 
between an anti-coagulant mechanism and the auto- 
nomic nervous system, and indicate a potential role for 
an heretofore unrecognized class of ~h-adrenergic re- 
ceptors in the regulation of endothelial cell physiology. 

T 
HE regulatory role of the endothelial cell in coagula- 
tion involves both control of receptor expression on 
the cell surface and release of hemostatically active 

products which play a role in anticoagulant and procoagulant 
mechanisms. These considerations indicate that a potentially 
important link between coagulation and environmental stim- 
uli could involve modulation of endothelial cell coagulant 
properties by circulating mediators. The protein C pathway 
is an anticoagulant mechanism integrally involved in the de- 
fense against thrombosis and closely linked to endothelium 
in terms of its function (9). Endothelium provides receptors 
promoting initiation (9) and propagation (36) of this an- 
ticoagulant mechanism. Propagation involves the binding of 
protein S to the bovine endothelial cell surface which facili- 
tates formation of the activated protein C/protein S complex 
(36). In addition to provision of receptors, endothelium also 
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synthesizes and releases the vitamin K-dependent cofactor, 
protein S (12, 35). Modulation of endothelial cell-protein 
S interaction, induced by a mediator of the host response 
which redirects intracellular regulatory pathways, could thus 
impair function of this antithrombotic system. 

Stimulation of the autonomic nervous system has long 
been associated with a prethrombotic state, Muller-Berghaus 
et al. (27, 28) observed that the generalized Schwartzman 
reaction, which includes prominent thrombotic pathology, 
could be prevented by a-adrenergic blockade. Catechol- 
amines acting via an a-adrenergic mechanism have been 
shown to induce capillary thrombosis in multiple organs 
(23). To explain this apparent relationship between catechol- 
amine stimulation and thrombosis, we tested the hypothesis 
that a-adrenergic stimulation of the vessel wall results in 
modulation of endothelial cell coagulant properties in addi- 
tion to changes in vasomotor tone (24). 

The results of our studies of the endothelial cell-protein S 
interaction indicate that norpinephrine interacts with previ- 
ously undescribed endothelial cell a~-adrenergic receptors 
which are coupled to release and inactivation of intracellular 
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protein S by a GTP-binding protein. Since norepinephrine is 
also shown to decrease expression of protein S-binding sites 
on the endothelial cell surface, the vessel wall is rendered 
deficient not only in endogenous protein S, but also in its 
ability to interact with exogenous protein S. This effect of 
norepinephrine modulating function of the anticoagulant 
protein C pathway defines a new relationship between a ves- 
sel wall anticoagulant property and the autonomic nervous 
system, and indicates an intracellular mechanism by which 
coagulation can respond to environmental stimuli. 

Materials and Methods 

Cell Culture 

Bovine aortic endothelial cells were isolated from calf aortas and cultured 
in minimal essential medium (M.A. Bioproducts, Walkersville, MD) sup- 
plemented with penicillin-streptomycin (50 U/ml-50 gg/ml; M.A. Bio- 
products), glntamine (1%; M.A. Bioproducts) and FCS (10%; Hyclone, 
Sterile Systems, Logan, UT) as described previously (30). For these 
studies, growth medium was supplemented with vitamin KI (10 gg/ml) 
(Aqua MEPHYTON; Merck, Sharp and Dohme, West Point, PA) three to 
4 d before experiments were carded out. Cultures were characterized as en- 
dothelial based on morphologic criteria (30) and immunofluorescence for 
von Willebrand Factor and protein S antigens (15, 35) and a functional assay 
for thrombomodulin (10). Cells were separated for subculture nonenzymati- 
cally with Dulbecco's PBS (calcium and magnesium-free) that contained 10 
mM sucrose and 1 mM EDTA. For experiments, cells from different aortas 
were grown to confluence in 10, 2, or 0.32 cm 2 wells (1.1-1.5 x 105 
cells/cm2). To study release of intracellular protein S from endotbelium 
and binding of exogenous [~25Ilprotein S to monolayers, it was necessary to 
elute protein S already on the cell surface prior to carrying out experiments. 
The following protocol resulted in complete elution of protein S from the 
cell surface. 48 h before experiments, cells were washed four times in 
serum-free medium (minimal essential medium containing penicillin-strep- 
tomycin [50 U/ml-50 p.g/ml], Hepes [10 raM], transferrin [20 p.g/ml] 
[Sigma Chemical Co., St. Louis, MO], insulin [10 p,g/ml; Sigma Chemical 
Co.], vitamin K, [10 gtg/ml], BSA [5 mg/ml; Sigma Chemical Co.]) and 
then maintained in this serum-free medium. Just before carrying out a study, 
cells were washed four times over a period of 1 h with sernm-free medium 
(37°C) to promote dissociation of surface-bound protein S. In pilot studies, 
endothelium was then treated with the same buffer containing dextran sul- 
fate (10 mg/ml) for 5 min at 23°C (this treatment has been previously shown 
to elute cell-bound protein S [36]), the eluate was concentrated 20-fold 
(Speed Vac Concentrator, E. Savant, Farmingdale, NY) and assayed for pro- 
tein S antigen in the radioimmunoassay described below. The endothelial 
cell eluate had no detectable protein S antigen, corresponding to less than 
20 fmole of protein S antigen per 106 cells. This amount of protein S would 
not interfere with [125I]protein S endothelial cell-binding studies or protein 
S release experiments. Similar complete elntion of protein S by this washing 
procedure was observed when [~nI]protein S was added to cultures before 
the first wash. 

After the washing procedure, experiments were carded out in serum-free 
medium by the procedures described below using cells from passage 1 to 
5. Cells which had been maintained in culture for long periods showed de- 
creased responsiveness to norepinephrine and decreased amounts of intra- 
cellular protein S before stimulation. 

Human umbilical vein endothelial cells were grown as described (16). 

Coagulation Factors and Assays 

All purified coagulation factors were of bovine origin. Purification of pro- 
rein S was carried out as described (42) and protein S was radiolabeled by 
the lactoperoxidase method using Enzymobeads (Bio-Rad Laboratories, 
Richmond, CA) as previously described (35). Radioiodinated protein S co- 
migrated with unlabeled material on SDS-PAGE and the specific radioactiv- 
ity was 8,000-12,000 cpm/ng (corresponding to 0.2-0.3 mol ~25I per mole 
of protein S). Preparation of a monospecific rabbit anti-bovine protein S an- 
tiserum was done by standard methods (14) as described previously (35). 
Affinity purified antibody to protein S was prepared using a protein S-affigel 
column as described previously (35) and the radioimmunoassay for protein 
S was carried out by the previously described protocol (33). The limit of 
detection in this assay was 100 pM protein S antigen, which corresponded 

to 80% binding on the standard curve. When necessary, samples were con- 
centrated (Speed Vac Concentrator, Savant, Farmingdale, NY) before assay. 

Protein C was purified and activated as described previously (43). Acti- 
vated protein C was stored at 4°C and used within 48 h of its preparation. 
Factor Va was also purified as described previously (8) and the preparation 
used in this study were recombined from isolated subunits in the presence 
of 10 mM CaC12, overnight at 4°C. Activated protein C/protein S-mediated 
Factor Va inactivation over endothelial cell monolayers was carried out by 
previously described methods (36). Monolayers (2 cm2/well) were pre- 
pared with serum-free medium described above, and then 0.5 ml of 10 mM 
Hepes (pH 7.45) that contained 137 mM NaCI, 4 mM KCI, U mM glucose, 
3 mM CaCI2 and 1 mg/ml BSA was added. Monolayers were incubated at 
room temperature in the presence of protein S (60 nM or as indicated), Fac- 
tor Va (80 nM) and activated protein C (1 riM). An aliquot (25 p.I) was re- 
moved from each well at 10, 30, 60, 120, and 180 s of incubation and assayed 
immediately in a one-stage clotting assay (19) using Factor V-deficient hu- 
man plasma (2) as described previously (34). The rate of Factor Va inactiva- 
tion was determined from the slope of the linear initial portion of a plot of 
Factor Va activity vs. incubation time. Protein S functional activity on phos- 
pholipids was determined using a one-stage Factor Xa coagulant assay and 
barium adsorbed plasma by the method of Walker (43) as modified by others 
(5, 27). This assay measures activated protein C prolongation of the Factor 
Xa coagulant assay which is dependent on protein S. Factor Xa (100 U/mg) 
was prepared as described previously (37) and the barium adsorbed plasma 
was supplemented with purified prothrombin (13 U/mg) (25) to a final con- 
centration of 0.1 mg/ml. Activated protein C was prepared as described 
above. When the anticoagulant activity of endothelial cell protein S was 
tested, endothelium was incubated in buffer containing 0.01% BSA (to facili- 
tate subsequent concentration) and then exposed to norepinephrine. Next, 
samples were concentrated and assayed as described above. Control sam- 
pies consisted of protein S added to the same volume of culture medium and 
treated identically. 

Western blotting of protein S released from endothelium following treat- 
ment of cultures with norepinephrine (see below) was carried out as follows: 
protease inhibitors (2 mM PMSF and 0.3 mM leupeptin) and 5 mM EDTA 
were added to releasates and samples were then immediately prepared for 
reduced SDS-PAGE by the method of Laemmeli (22). Western blotting was 
carried out by a modification of the method of Towbin et al. (39) as de- 
scribed previously (35). After electrophoretic transfer of proteins to the 
nitrocellulose membrane, excess binding sites on the membrane were 
blocked (17) and blots were reacted sequentially with affinity-purified rabbit 
anti-bovine protein S IgG (10 p.g/ml) and [~25I]purified anti-rabbit IgG (1.3 
× 105 cpm/ml). This protocol has been described in detail previously (35). 
Dried blots were subjected to autoradiography at -80°C using Kodak 
X-Omat (XAR 5) film (Eastman Kodak Co., Rochester, NY) and a cronex 
intensifying screen (Dupont Co., Wilmington, DE). Standard proteins were 
run simultaneously for molecular weight determination: myosin heavy 
chain (Mr 200,000), phosphorylase B (Mr 97,400), BSA (M~ 68,000), oval- 
bumin (Mr 43,000), and a-chymotrypsin (M, 25,700) (Bethesda Research 
Laboratories, Bethesda, MD). Controls in which antibody to protein S 
was omitted and only [~25I]anti-rabbit lgG was incubated with nitrocellu- 
lose membranes with immobilized proteins demonstrated no bands (Fig. 6, 
lane E). 

Radioligand-binding studies were carried out as described previously 
(36). In brief, monolayers (0.32 cm2/well) were prepared for experiments 
as described above, and then serum-free medium (50 p.l) containing 
['25I]protein S alone (total binding) or in the presence of an 100-fold excess 
of unlabeled protein S (nonspecific binding) was added for 90 min at 2°C. 
Assays were terminated by three rapid washes at 2°C with the above incuba- 
tion buffer (0.1 ml/wash) and monolayers were eluted with dextran sulfate 
(10 mg/ml). Data from binding experiments were fit to the equilibrium- 
binding equation described by Klotz and Hunston (21) assuming a one-site 
model as described previously for [12SI]protein S-endothelial cell binding. 
A nonlinear least squares program (generously provided by Dr. Greg Rein- 
hart, University of Oklahoma, Norman, OK) was used to obtain the binding 
parameters. A plot of residuals vs. free radioligand for the binding data 
shown in Fig. 7 B indicated that no systematic error was involved in fitting 
the binding to the model used (data not shown). '251-protein S-endothelial 
cell-binding studies were not carried out on cells in more than passage 5 
in culture since cells in later passages and sprouting endothelial cells (31) 
showed variably decreased binding. 

Release of Protein S from Endothelium 
Confluent endothelial cell monolayers (10.0 cm2/well) were washed as de- 
scribed above and equilibrated with serum-free medium consisting of mini- 
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Figure L Norepinephrine induced release 
of endothelial cell protein S. (A) Time 
course. Confluent monolayers of en- 
dothelium (passage 2) were prepared as 
described under Materials and Methods 
and incubated at 37°C with serum-free 
medium alone (o) or serum-free medi- 
um containing norepinephrine (×) (10 -5 
M). At the indicated times, aliquots of 
culture supernatant were withdrawn, con- 
centrated if required, and assayed for pro- 
tein S antigen. Data shown represent  
protein S antigen released per  106 cells 
(the mean and SEM) vs. incubation time. 
Maximal  protein S release (60 min) rep- 
resented 80% of  the total intraceUular 
protein S (380 + 40 fmole/lO 6 cells). 
The latter number  was obtained by as- 
saying detergent extracts o f  untreated 
control  cultures after eluting surface 

bound protein S. Details of experimental procedures are described under Materials and Methods. (B) Dose dependence. Confluent monolayers 
of  endothel ium (passage 3) were prepared as descr ibed under Materials and Methods,  and incubated at 37°C for 60 min with serum-free 
medium alone (o) ,  serum-free medium containing the indicated concentrat ion of  the ('y) s tereoisomer  of  norepinephrine (X), or  serum- 
free medium containing the indicated concentrat ion of  (d) s tereoisomer of  norepinephrine (o) .  Protein S antigen in the supernatant (mean 
+ S E M )  is plotted vs. the added concentrat ion of  norepinephrine.  

mum essential medium, 10 mM Hepes (pH 7.4) and 5 mg/ml BSA (1.0 ml). 
Then antagonists, either yohimbine (Squibb), prazosin (Squibb) or propran- 
olol (Sigma Chemical Co.), were added and followed 5 min later by norepi- 
nephrine (Sigma Chemical Co.; the designation norepinephrine represents 
the [7] stereoisomer). Where indicated, (d) norepinephrine was used in 
place of ['y] norepinephrine. When experiments were carried out with per- 
tussis toxin (List Biologicals, Campbell, CA), the latter was added to the 
serum-containing growth medium 24 h before norepinephrine and cells 
were maintained in complete medium until norepinephrine was added in 
serum-free medium. After the addition of norepinephrine, cultures were in- 
cubated for the indicated times at 37°C and samples of supernatant were ob- 
tained and tested for protein S antigen (using the radioimmunoassay) or 
functional activity (using the coagulant assay) as described in the above sec- 
tion. Studies with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate 
(Consolidated Midland, Brewster, NY) or 1-oleoyl-2-acetyl-rac-glycerol 
(Sigma Chemical Co.) were carried out by the same protocol except they 
were added to cultures at the indicated final concentrations in place of 
norepinephrine. The same protocol was also followed when the calcium 
ionophores A2318"/ (Calbiochem-Behring, La Jolla, CA) and Ionomycin 
(Calbiochem-Behring) were added to cultures. Ionophores were prepared 
as described previously (35). The final concentration of organic solvent was 
less than or equal to 0.01%. Total cell-associated protein S was determined 
by solubilizing endothelium for 20 min at 25°C in 0.5 ml of 0.02 M Tris 
(pH 7.4), 0.1 M NaC1 that contained Nonidet P-40 (1%), EDTA (5 mM), 
PMSF (2 mM) and leupeptin (0.3 mM). 

Immunolocalization of Protein S 

Immunofluorescent localization of protein S was performed as previously 
described (35). Cells were prepared for immunoelectron microscopy as out- 
lined by Dunphy et al. (7) with the following modification: monolayers 
grown in 35-ram dishes were fixed in 2% paraformaldehyde and 0.05% 
glutaraldehyde in PBS for 15 min, scraped from the dish with a rubber 
policeman, and fixation continued for an additional 30 min. Cell pellets 
were subsequently washed in PBS containing 50 mM NI-I4CI, 0.05% Sapo- 
nin and 0.1% BSA three times (10 min/wash), dehydrated in a graded series 
of ethanol solutions, embedded in Lowicryl and U.V. polymerized at -20°C 
for 24 h followed by an additional 48 h polymerization at room temperature. 
Thin sections were collected on formvar-coated nickel grids, washed in 
deionized water and incubated with 1% normal sheep serum in 0.1% Tris 
buffer containing 0.01% Tween 20 for 15 min at 37°C. After this blocking 
step, sections were incubated with affinity purified rabbit anti-protein S in 
the above buffer for 1 h at 37°C and binding sites of anti-protein S IgG were 
displayed with 15-nm gold-conjugated goat anti-rabbit immunoglobulin 
(Janssen Pharmaceutica, Beerse, Belgium). After labeling with second anti- 
body, grids were washed in water, stained with aqueous uranyl acetate and 

lead citrate, and viewed in a Philips 300 electron microscope. Sections in- 
cubated with gold-conjugated anti-rabbit immunoglobin alone or with 
preimmine serum followed by gold-conjugated anti-rabbit immunoglobulin 
did not stain. 

ADP Ribosylation of G Proteins by Pertussis Toxin 
Endothelial cells from control cultures or those pretreated with pertussis 
toxin were harvested in sucrose (250 nM), PMSF (0.1 mM), EDTA (10 
mM), Tris (50 mM) buffer and homogenized with a Teflon-coated pestle. 
The pellet sedimenting after centrifugation at 40,000 g for 45 min was 
resuspended at a concentration of 1.5 mg/ml in the above buffer and stored 
at -80°C until use. ADP-ribosylation was performed as described previ- 
ously (4) with minor modifications. Pertussis toxin was activated by incuba- 
tion with 10 mM DTT for 10 min at 30°C. Endothelial cell membranes (25 
pg) were incubated in buffer (0.1 ml) containing 50 mM K3PO4, 10 U 
aprotinin, 0.2 mM GTP, 20 mM thymidine, 5 mM ADP-ribose, 20 mM ar- 
ginine, 1 mg/ml dimyristoyl phosphatidylcholine, 0.1% Lubrol, 10 p.M 
[32P]-NAD (18-54 Ci/nunol) and 2.5 I.tg pertussis toxin for 20 min at 
30°C. The reaction was terminated by the addition of 20 p.l of 10% SDS. 
Samples were treated with N-ethylmaleimide as described by Sternweis and 
Robishaw (38). Electrophoresis was performed on slab gels (resolving gel, 
9 %; stacking gel, 5 % acrylamide) at 300 V for 3 h. The gels were subjected 
to autoradiography at -80°C using Kodak XRP-5 film and the concentra- 
tion of G protein was calculated from the specific activity of the [32P]NAD 
and the number of counts in the 41,000-D band cut from the gel. 

Results 

Incubation of endothelial cell monolayers with norepineph- 
rine led to a time-dependent release of protein S into the cul- 
ture medium (Fig. 1 A). Norepinephrine-induced release of 
protein S reached an apparent maximum after 20 min and the 
amount of protein S released in the supernatant was 
~65-80% of the total cell-associated protein S as deter- 
mined by radioimmunoassay. Protein S released from en- 
dothelium in response to norepinephrine probably originated 
in an intracellular pool since monolayers were grown in 
serum-free medium and were carefully prepared for studies 
in a manner which eluted previously bound protein S (see 
Materials and Methods). Further support for this hypothesis 
comes from immunofluorescence studies using affinity 
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Figure 2. Immunofluorescent localization of protein S in endothelium: the effect of norepinephrine. Control monolayers (a) display dense 
cytoplasmic staining for protein S in the perinuclear Golgi region and also a finely punctate endoplasmic distribution. Treatment of en- 
dothelial cells with norepinephrine (10 -5 M) (b) results in markedly reduced endoplasmic staining and the virtual loss of juxtanuclear stain- 
ing. Incubation of monolayers with norepinephrine in the presence of prazosin (10 -6 M)  (c) effectively prevents loss of the cytoplasmic 
staining for protein S. Bar, 10 p.m. 

purified anti-bovine protein S IgG (Fig. 2). Before norepi- 
nephrine treatment, monolayers display a punctate endoplas- 
mic distribution of protein S which is concentrated in the 
perinuclear Golgi region (Fig. 2 a). After exposure to nor- 
epinephrine (10-5-10 -6 M) for 30-60 min, discrete cytoplas- 
mic staining is markedly reduced and the intense staining for 
protein S in the perinuclear region is virtually extinguished 
(Fig. 2 b). This loss of cytoplasmic staining of protein S is 
paralleled by an increase of protein S (as measured in culture 
supernatants by radioimmunoassay and in cells by im- 
munofluorescence microscopy) relative to the total intracel- 
lular pool is somewhat variable, the response of isolates from 
a single aorta is quite constant over one to five passages in 
culture. 

Norepinephrine-stimulated protein S release was maximal 
by 10 -5 M and half-maximal at 10 -7 M (Fig. 1 B). This 
effect of norepinephrine was mediated exclusively by an 
13radrenergic mechanism. The 13-adrenergic agonist iso- 
proterenol did not stimulate protein S release and the a-adren- 
ergic antagonist propranolol (10 -6 M) (Fig. 3, III) did not 
inhibit the effect of norepinephrine on endothelial cell pro- 
tein S. Absence of a 13-adrenergic effect modulating protein 
S release indicates that the response to norepinephrine prob- 
ably does not result from the intracellular accumulation of 
cAMP, a known consequence of a-adrenergic stimulation 
(4). Stimulation of protein S release by norepinephrine was 
inhibited by ¢t-adrenergic antagonists with a hierarchy indi- 
cating ¢t~-adrenergic receptor subselectivity (Fig. 3, IV-V). 
Norepinephrine-induced protein S release was completely 
blocked by a low concentration of the al-adrenergic antag- 
onist prazosin (10 -7 M) but not by the ¢t2-adrenergic antag- 
onist yohimbine (10 -5 M). Stereoselectivity for the ~,-isomer 
of norepinephrine also was observed, as d-norepinephrine 
(up to 10 -5 M) had no effect on protein S release (Fig. 1 B, 
o). These data indicate that norepinephrine stimulates pro- 

tein S release through an interaction with a heretofore un- 
recognized class of tl~-adrenergic receptors on endothelium. 
Studies with bovine endothelial cells and immunofluores- 
cence to assess von Willebrand factor failed to show a change 
after exposure of cultures to norepinephrine (data not 
shown). Furthermore, norepinephrine did not stimulate re- 
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Figure 3. Norepinephrine-induced protein S release: effect of an- 
tagonists. (A) Confluent monolayers ofendothelium (passage 1) were 
prepared for studies as described under Materials and Methods, and 
incubated at 37°C with serum-free medium alone (l-H) or serum- 
free medium containing either propranolol (10 -6 M) (III), yohim- 
bine (10 -5 M) (/V) or prazosin (10 -7 M) (V) for 5 min. Then 
norepinephrine (10 -6 M) was added (II-V) and all cultures were in- 
cubated for a further 60 min at 37°C. Aliquots of culture superna- 
rant were assayed for protein S antigen and the mean +SEM is 
shown. Neither propranolol, yohimbine nor prazosin alone had an 
effect on endothelial cell protein S release (data not shown). 
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Table L Effect of Norepinephrine on Release of yon Willebrand Factor and Protein S by Cultured Human Endothelium* 

Addition Final concentration von Willebrand factor released Protein S released 

ngHO 6 cells ngHO 6 cells 

0 0 8.1 + 2.6 4.1 + 3.6 
PMA 20 ng/ml 95.1 + 1.6 ND 
Norepinephrine 0.1 ~tM 8.0 + 6.5 14.8 5- 4.7 
Norepinephrine 1.0 o.M 7.9 5- 2.7 ND 

* Confluent monolayers of human endothelium were incubated at 37°C with serum-flee medium alone (no addition) or in the presence of the indicated concentra- 
tions of either PMA (12-O-tetradecanoyl-phorbol-13-acetate) or norepinephrine. An aliquot of culture supernatant was then withdrawn and assayed for von Wille- 
brand factor antigen (30) or human protein S antigen (Hessing et al., manuscript in preparation). The mean and SEM are shown. ND, not done. 

lease of von Willebrand factor (Table I) from human endo- 
thelial cells although protein S release was observed. These 
studies indicate that release of protein S in response to nor- 
epinephrine is a specific response rather than a component 
of a generalized release reaction and occur in the human sys- 
tem as well. 

To further characterize the morphological correlates of 
norepinephrine-induced protein S release, immunoelectron 
microscopic studies were carried out (Fig. 4). Using gold- 
conjugated antibody to rabbit immunoglobulin, the intracel- 
lular distribution of protein S was determined on sections of 
Lowicryl-embedded cell pellets. In an earlier study (35), a 
portion of the intracellular poor of protein S was found to be 
localized in a population of cytoplasmic vesicles in the Golgi 
region and at the cell periphery which are morphologically 
distinct from Weibel-Palade bodies. This contrasts with the 

intracellular distribution of von Willebrand Factor which is 
thought to be stored in Weibel-Palade bodies and released 
from them after stimulation (40). After incubation of en- 
dothelium with norepinephrine, the number of protein S 
positive vesicles in the cytoplasm is considerably decreased 
(Fig. 4) and there is a concomitant increase in the number 
of vesicles at the cell surface, presumably in the process of 
fusion. Additionally, extracellular protein S can be observed 
in close proximity to both the luminal and abluminal cell sur- 
faces after norepinephrine stimulation (Fig. 4 b). 

These data, indicating that norepinephrine-induced pro- 
tein S release is a distinct pathway, led us to examine intracel- 
lular mechanisms involved in mediating this ~h-adrenergic 
response. There is compelling evidence implicating regula- 
tory GTP-binding proteins in signal transduction at the 
al-adrenergic receptor (33). Certain G proteins are targets 

Figure 4. Immunoelectron microscopic localization of protein S in endothelium after norepinephrine stimulation. Control and norepinephrine- 
(10 -5 M) stimulated monolayers were fixed and embedded in Lowicryl as described under Materials and Methods. Protein S was local- 
ized in sections using an affinity purified rabbit antibody to protein S and visualized with gold conjugated goat anti-rabbit antisera. Control 
endothelial cells (a) display gold particles in discrete cytoplasmic vesicles and in cistemae of the endoplasmic reticulum. Most sections 
show only an occasional vesicle fusing with the plasma membrane. After exposure to norepinephrine (10 -5 M) (b) numerous cytoplasmic 
vesicles can be seen in the process of fusion with the plasma membrane and the number of cytoplasmic reactive vesicles is sharply decreased. 
Cells incubated with gold-conjugated secondary antibody alone did not stain (not shown). Bar, 100 nM. 

Brett et al. Endothelium, Norepinephrine, and Protein S 2113 



Figure 5. The effect of pertussis 
toxin on norepinephrine-stimulated 
release of endothelial cell protein 
S. (.4) Correlation between inhibi- 
tion of norepinephrine-stimulated 
protein S release and ADP-ribosyl- 
ation of the 41,000-D protein. Con- 
fluent monolayers (passage 4) were 
incubated in the first stage (line I) 
with serum-containing medium 
alone (0) or in the presence of the 
indicated concentration of pertussis 
toxin for 24 h at 37°C. Cultures 
were then washed with buffer con- 
taining dextran sulfate and, in the 
second stage (line IlL they were 
incubated at 37°C for 60 rain with 
serum-free medium alone (0) or 
with norepinephrine at 10 -4 M 
(NE). Aliquots of culture superna- 
rant were withdrawn, concentrated 
if required, and assayed for protein 
S antigen. The mean and SEM are 
shown. (Gel inseO An autoradio- 
gram of membrane proteins ex- 

posed to [32P]-NAD in the presence (lanes 1-4) or absence (lane 5) of pertussis toxin from control cultures (lanes 1 and 5) and cultures 
preincubated with pertussis toxin (lane 2, 0.1 ng/ml; lane 3, 1.0 ng/ml; lane 4, 10 ng/ml) for 24 h. The 41,000-D membrane protein is 
specifically ADP-ribosylated by pertussis toxin and can be distinguished from a second slightly lower molecular weight band which is 
labeled in a pertussis toxin-independent fashion. In this experiment, the amount of G protein ADP-ribosylated by pertussis toxin in control 
cultures was 471 fmol/mg membrane protein. Pre-exposure to pertussis toxin (10 ng/ml) for 24 h resulted in ADP-ribosylation and inactiva- 
tion of 98 % of the pertussis toxin substrate. The bar shown between lanes 4 and 5 represents protein S released from cultures treated with 
pertussis toxin alone. (B) Immunofluorescence of endothelial cell protein S. Endothelial cell monolayers pre-incubated with pertussis toxin 
(10 ng/ml) in complete growth medium for 24 h before exposure to norepinephrine (10 -5 M) display an immunofluorescent distribution 
of protein S that is indistinguishable from controls. (Compare with Fig. 2 a.) Bar, 10 tim. 

for pertussis toxin-catalyzed ADP-ribosylation in which 
ADP-ribose is transferred to them from NAD (30). These G 
proteins, when ADP-ribosylated by pertussis toxin, lose their 
ability to couple receptors to their effector systems. The loss 
of a receptor function after exposure of cells to pertussis 
toxin constitutes strong evidence for the role of G proteins 
in the transduction of the signal from the receptor to the bio- 
chemical effector mechanism. Using this strategy, the effect 
of pertussis toxin on release of protein S from endothelium 
was examined (Fig. 5). Addition of pertussis toxin (10 ng/ml) 
to cultures for 24 h did not change levels of intracellular pro- 
rein S or stimulate release of protein S antigen compared 
with untreated controls. However, norephinephrine-induced 
protein S release was inhibited progressively as the concen- 
tration ofpertussis toxin in the pre-treatment culture medium 
was increased (Fig. 5 A). At a pertussis toxin concentration 
of 10 ng/ml, the effect of norepinephrine to release protein 
S was completely abolished. Pertussis toxin catalyzed the 
ADP-ribosylation of a 41,000-D protein in endothelial cell 
plasma membranes which comigrates on SDS-PAGE with 
the regulatory G protein (Fig. 5 A, gel inset). Pre-incubation 
of endothelial cell cultures with pertussis toxin results in 
ADP-ribosylation of this 41,000 D protein by endogenous, 
unlabeled cellular NAD to an extent dependent upon the 
concentration of pertussis toxin. Only substrate, not ADP- 
ribosylated by cellular NAD in membranes from these ceils 
is available for in vitro ADP-ribosylation when subsequently 
exposed to pertussis toxin in the presence of exogenous 

[32p]NAD. This inverse relationship between the extent of 
ADP-ribosylation of the G protein during the initial pretreat- 
ment interval and the amount of radioactivity that can be in- 
corporated in the subsequent in vitro ADP-ribosylation reac- 
tion was used to determine that the concentration at which 
pertussis toxin achieved maximal ADP-ribosylation of the 
41,000-D substrate with cellular NAD was 10 ng/ml (Fig. 5 
A, gel inset). This concentration of pertussis toxin, which 

Table II. Phorbol Ester-Induced Release of 
Endothelial Cell Protein S* 

Final Protein S 
Addition concentration released 

fmole/l& cells 
Ionophore A23187 5 p.M 300 + 50 
Ionomycin 10 I.tM 310 + 40 
12-O-tetradecanoyi-phorbol-13-acetate 16 nM 270 ± 50 
12-O-tetradecanoyl-phorbol-13-acetate 1.6 nM 100 + 20 
l-oleoyl-2-acetyl-rac-glycerol 125 tiM 240 + 30 
l-oleoyl-2-acetyl-rac-glycerol 2.5 ttM 70 + 20 
None 0 20 + 10 

* Confluent monolayers of endothelium (passage 5) were prepared as de- 
scribed under Materials and Methods. Then, they were incubated at 37°C with 
serum-free medium alone (no addition) or in the presence of the indicated con- 
centrations of either A23187, lonomycin, 12-O-tetradecanoyl-phorbol- 13-ace- 
tate or 1-oleoyl-2-rac-glycerol for 45 min. An aliquot of culture supernatant 
was then withdrawn and assayed for protein S antigen. The mean and SEM are 
shown. 
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Figure 6. Western blotting of 
protein S released by endothe- 
lium following exposure to nor- 
epinephrine. Confluent mono- 
layers of endothelium (passage 
4) were prepared for experi- 
ments as described under Ma- 
terials and Methods, and in- 

cubated at 37°C with serum-free medium containing norepineph- 
rine (10 -5 M) for 60 min. The culture medium was withdrawn, 
protease inhibitors were added and then samples were prepared for 
reduced SDS-PAGE (10%). After electrophoresis and Western 
blotting, immunoreactive material was visualized using first, 
affinity purified rabbit antibody to protein S (10 ~tg/ml) and second, 
an affinity purified [~25I]anti-rabbit IgG. Details of the procedure 
are described under Materials and Methods. (Lane A) Protein S 
purified from bovine plasma, was applied to gel (5 ltg); (lane B) 
purified protein S (5 Ixg) was applied to the gel and excess protein 
S (500 Ixg/ml) was incubated with the blots simultaneously with the 
antibody to protein S; (lane C) protein S-containing releasate (50 
~tl) from norepinephrine treated endothelium was applied to the gel; 
(lane D) protein S-containing releasate (50 ~tl) from endothelium 
was applied to the gel and excess protein S (500 I~g/ml) was in- 
cubated with the blots simultaneously with antibody to protein S; 
(lane E) protein S-containing releasate (50 ~tl) was applied to the 
gel and the antibody to protein S was omitted. The latter control 
indicates that second antibody ([~25I]anti-rabbit immunoglobulin) 
binding required the presence of the first antibody. When blots were 
exposed to the film for several additional days, weak higher molecu- 
lar weight bands were also observed. 

resulted in complete ADP-ribosylation, corresponds closely 
to the concentration necessary for maximal inhibition of 
norepinephrine-stimulated protein S release, implicating a G 
protein that is a substrate for pertussis toxin in ~tl-adren- 
ergic dependent release of protein S from endothelium. Con- 
sistent with this data, immunofluorescence studies for pro- 
tein S in endothelial cells that were preincubated with 
Pertussis toxin (10 ng/ml) and stimulated with norepineph- 
rine (10 -5 M) showed intense staining and a cytoplasmic dis- 
tribution of protein S (Fig. 5 C) quite similar to unstimulated 
controls (Fig. 2 A). This contrasts with the weak staining of 
control endothelium stimulated with norepinephrine (10 -5 
M) (Fig. 2 B). 

at-Adrenergic catecholamines exert their effects in many 
tissues through the G protein-mediated hydrolysis of mem- 
brane phosphoinositides resulting in the generation of at 
least two intracellular second messengers (11). Inositol-tri- 
phosphate rapidly mobilizes calcium from an intracellular 
non-mitochondrial store while diacylglycerol activates the 
ubiquitous phospholipid-dependent, calcium-activated pro- 
tein kinase C. A previous study (35) has demonstrated that 
maneuvers which increase cytosolic calcium, such as ex- 
posure of cultures to the calcium ionophores A23187 and 
ionomycin, mimic the effect of norepinephrine to release in- 
tracellular protein S from endothelium (see also Table II). In 
the present investigation, 12-O-tetradecanoyl-phorbol-13- 
acetate, a phorbol ester known to bind to and activate protein 
kinase C (20), was found to also induce release of protein 
S from endothelium (Table II). Furthermore, because 12-0- 
tetradecanoyl-phorbol-B-acetate potentially can activate a 
variety of cellular processes in addition to protein kinase C, 
1-oleoyl-2-acetyl-rac-glycerol (a synthetic diglyceride capa- 

ble of permeating the plasma membrane and activating pro- 
tein kinase C in a more specific fashion) (18) was tested. 
1-Oleoyl-2-acetyl-rac-glycerol also released protein S from 
endothelium (Table II). These results are compatible with re- 
lease of protein S from endothelium via a mechanism involv- 
ing intracellular processes activated by the intermediates 
generated through phosphoinositide hydrolysis. 

We next assessed the significance of norepinephrine-in- 
duced perturbation of cellular physiology for the protein C 
anticoagulant mechanism. To examine the nature of protein 
S released from endothelium in response to norepinephrine, 
serum-free culture medium was concentrated and subjected 
to Western blotting with the anti-bovine protein S antibody 
(Fig. 6). Protein S purified from bovine plasma showed a sin- 
gle major band with Mr 76,000 (lane A), whose appearance 
could be blocked by the addition of excess free protein S to 
the reaction mixture (lane B). In contrast, the norepineph- 
rine-induced endothelial cell releasate showed a range of 
more rapidly migrating material, Mr 33,000-52,000 with a 
major band Mr 43,000 (lane C). The material in these bands 
was inununoreactive with the anti-protein S antibody and the 
appearance of these bands was also blocked by adding excess 
free protein S (lane D). These more rapidly migrating bands 
probably represent cleaved forms of protein S and their pres- 
ence suggests that protein S released in response to norepi- 
nephrine is proteolyzed. This appearance of multiple cleaved 
forms of endothelial cell protein S after exposure to norepi- 
nephrine contrasts with the previously described more ho- 
mogeneous nature of protein S released from endothelium 
constitutively (36). This led us to examine the anticoagulant 
activity of protein S released from endothelium in response 
to norepinephrine. The endothelial cell releasate from 109 
cells was pooled, concentrated and its functional activity, in 
terms of activated protein C cofactor activity compared to 
that of protein S purified from bovine plasma. Compared 
with protein S purified from plasma, nine-times more pro- 
tein S released from endothelium was required to achieve the 
same anticoagulant effect: 70 nM protein S derived from 
plasma and 600 nM protein S from endothelial cell releasate 
resulted in a clotting time of 22 s. This result is consistent 
with the presence of functionally inactive cleaved forms of 
protein S in the endothelial cell releasate. Under the culture 
conditions used in this study, Fair et al. (12) has found that 
protein S from human endothelial ceils has comparable an- 
ticoagulant activity to that of protein S purified from plasma, 
on a per weight basis. We observed similar results with pro- 
tein S constitutively released from bovine endothelial cells 
(data not shown). Thus, endothelial cell protein S released 
in response to norepinephrine has decreased functional ac- 
tivity compared with protein S constitutively released by the 
cells. 

The role of protein S in the protein C anticoagulant mecha- 
nism includes its function as a nonenzymatic cofactor for the 
binding of activated protein C to endothelium (36). Although 
initially we reasoned that release of protein S from en- 
dothelium would potentiate the protein C pathway by provid- 
ing additional cofactor to facilitate interaction of activated C 
with cellular surfaces, the considerably decreased activity of 
the protein S released in response to norepinephrine sug- 
gested a different impact on the coagulation mechanism. 
Loss of endogenous protein S from endothelium with the 
elaboration of cleaved forms into the fluid phase would ap- 
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pear to locally compromise this anticoagulant mechanism. 
To further test this hypothesis, the binding and anticoagulant 
activity of protein S on norepinephrine-treated endothelium 
was studied (Fig. 7). Since assembly of functional activated 
protein C/protein S complex on the surface of bovine en- 
dothelial cells requires expression of specific cell surface 
binding sites, radioligand-binding studies were carried out 
with [125I]protein S and norepinephrine-stimulated en- 
dothelium. To perform these binding studies, two issues had 
to be addressed. Since norepinephrine stimulates release and 
potential cleavage of protein S, this pool of endogenous pro- 
tein S, which could occupy the receptors, had to be removed 
and cleavage of the [~5I]protein S added to endothelium had 
to be prevented. Removal of endogenous protein S was ac- 
complished by extensive washing of the cultures as described 
under Materials and Methods. When norepinephrine-stim- 
ulated endothelium was incubated with [~25I]protein S for 60 
min at 37°C, the precipitability of the tracer in trichloroace- 
tic acid was decreased suggesting degradation had occurred. 
This led us to perform radioligand-binding studies at 2°C. 
At this lower temperature there was no evidence of tracer 
degradation based on precipitability of the tracer in trichlo- 
roacetic acid and identical migration on SDS-PAGE. Under 
these conditions, norepinephrine induced a dose-dependent 
decrease in [~25I]protein S-endothelial cell interaction (Fig. 
7 A). The affinity of protein S for the endothelial cell-bind- 
ing site is 12 nM. When the effect of norepinephrine on en- 
dothelial cell-protein S interaction was tested at a [~2SI]pro- 
tein S concentration of 60 nM (Fig. 7 A), a decrease in 
specific binding was observed. These results, which used a 
high (5 x Kd) but subsaturating concentration of protein S, 
could reflect an effect of norepinephrine to decrease either 
the number or affinity of protein S binding sites. Experi- 
ments were carried out to distinguish between these possibil- 
ities. Protein S binding to endothelium was tested over a wide 
range of [~25I]protein S concentrations (including concentra- 
tions which resulted in saturation of protein S binding sites) 
(Fig. 7 C). When endothelium was exposed to norepineph- 
rine at 10 -7 M, there was no significant change in the affin- 
ity of binding (12 nM vs. 15 nM for control and norepineph- 
rine-treated cultures, respectively), whereas a substantial 
decrease in the number of binding sites was observed (9.8 x 
104 vs. 4.5 x 104 sites/cell for control and norepinephrine- 
treated cultures, respectively). Addition of high concentra- 
tions of norepinephrine (10 -5 M) resulted in undetectable 
[~25I]protein S-endothelial-cell binding, presumably due to 
total loss of functional protein S-binding sites. We previ- 
ously demonstrated that lack of binding of [125I]protein S to 
norepinephrine-treated endothelium was not due to modi- 
fication of the tracer by the stimulated endothelium, since 
there was no evidence of cleavage (see above). The integrity 
of the tracer was established by demonstrating that [~I]pro- 
tein S exposed to norepinephrine-treated cultures, when dia- 
lyzed extensively to remove catecholamine, bound effec- 
tively to fresh endothelial cell cultures (data not shown). 
Furthermore, endothelium treated with norepinephrine in 
the presence of prazosin (Fig. 7 A) maintained the ability to 
bind [125I]protein S. Taken together, these data indicate that 
norepinephrine induces a decrease in the total number of 
binding sites available for exogenous [~25I]protein S through 
an ct-adrenergic-dependent mechanism. 

Figure 7. Norepinephrine-induced down-regulation of endothelial 
cell protein S binding sites. (A) Confluent monolayers of en- 
dothelium (passage 5) were incubated either in serum-free medium 
alone (0), in the presence of the indicated concentration of norepi- 
nephrine (I, 10 -s M; II, 10 -7 M; III, 10 -6 M; IV, 10 -5 M) or nor- 
epinephrine (10-6 M) plus prazosin (10 -7 M) (V) for 60 min at 
37°C. Cultures were prepared for binding studies as described un- 
der Materials and Methods. Wells were then incubated with ~25I- 
protein S alone (60 nM) (total binding) or in the presence of unla- 
beled protein S (2 ltM) (nonspecific binding) for 90 min at 2°C. 
Cultures were washed, solubilized, and counted. The mean of 
specific binding, the difference of total and nonspecific binding, is 
shown. In each case the SEM was less than 15%. (B) The 
[~2~I]protein S-binding experiment in part A was repeated in the 
presence of activated protein C (1 nM), and the incubation time was 
2 min at room temperature. The mean is shown and SEM was less 
than 15%. (C) Endothelial cell monolayers were incubated in 
serum-free medium alone (•)  or in the presence of norepinephrine 
(10 -5 M [o] or 10 -7 M [i]) for 90 min at 37°C. Binding of 
[125I]protein S was then studied as described in A except that the 
indicated free concentration of [~25I]protein S was present. Specific 
binding is plotted vs. free [~25I]protein S. Data were analyzed by 
the nonlinear least squares program and the curve ( - )  indicates the 
best fit line. Nonspecific binding accounted for 15-22 % of the total 
binding. Parameters of [125I]protein S-endothelial cell binding in 
the absence of norepinephrine were: Kd, 12 + 2 nM and 9.8 + 1.7 
x 104 molecules found per cell at saturation. In the presence of 
norepinephrine (10 -7 M), the Kd was about the same, 15 nM, but 
the number of sites was clearly decreased, 4.5 x 104 sites/cell. 

Since the functional unit of the protein C pathway is the 
activated protein C/protein S complex, it was important 
to understand the effect of norepinephrine on binding of 
[t25I]protein S to endothelium in the presence of activated 
protein C (Fig. 7 B). In a previous study (36), we observed 
that activated protein C enhanced the affinity of protein S for 
the endothelial cell surface without changing the total num- 
ber of binding sites. In the presence of 1 nM activated protein 
C, the Kd of [~25I]protein S for endothelial cell-binding sites 
falls from 12 to 0.2 nM. Thus, 60 nM [~25I]protein S, in the 
presence of activated protein C (1 nM), is in excess of the 
concentration necessary to saturate protein S-binding sites. 
In the presence of activated protein C (Fig. 7 B), a decrement 
in protein S binding to endothelium incubated with norepi- 
nephrine was seen, analogous to that observed in the absence 
of activated protein C. Since cell surface protein S-binding 
sites facilitate assembly of activated protein C/protein S com- 
plex formation on bovine endothelium (36), we expected that 
the loss of these sites on norepinephrine-stimulated cells 
would be paralleled by inhibition of Factor Va inactivation. 
To carry out Factor Va inactivation studies, conditions under 
which degradation of protein S would not occur had to be 
identified (as described above for binding studies). Incuba- 
tion of [~25I]protein S with norepinephrine-stimulated en- 
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Figure 8. Norepinephrine-in- 
duced attenuation of endothe- 
lial cell-dependent Factor Va 
inactivation. Endothelium (pas- 
sage 4) was incubated either in 
serum-free medium alone (o), 
or in the presence of norepi- 
nephrine (NE) and/or prazo- 
sin at the indicated concentra- 

tion for 60 min at 37°C. Then, endothelium was pre-incubated for 
2 min at room temperature in the presence (cross-hatched bars) or 
absence (open bars) of protein S (60 nM) and activated protein C 
(1 nM) followed by addition of Factor Va. Aliquots were removed 
to determine the rate of Factor Va inactivation. Details of ex- 
perimental procedure are described under Materials and Methods. 
The mean is shown and SEM was less than 15 % in each case. 

dothelium for 120 s at room temperature, the time required 
for Factor Va inactivation studies, did not lead to cleavage or 
degradation of the tracer. Thus, under these conditions 
changes in the rate of Factor Va inactivation are not due to 
degradation of protein S. Factor Va inactivation rates on 
norepinephrine-stimulated endothelium decreased in a dose- 
dependent manner and this effect of norepinephrine was 
blocked by prazosin (Fig. 8). As noted in a previous study 
(36), rapid Factor Va inactivation on bovine endothelium in 
the presence of low levels of activated protein C (as in Fig. 
8) requires protein S. Exposure of endothelium to norepi- 
nephrine blocks the protein S-mediated enhancement of Fac- 
tor Va inactivation (compare hatched and open bars in Fig. 
8). The conditions for the functional protein S assay in Fig. 
8 and the [t25I]protein S-binding assay (Fig. 7 B) are identi- 
cal, allowing for a close comparison of these experiments. 
Taken together, the data support the concept that cell-bound 
protein S plays a central role in mediating endothelial 
cell-dependent Factor Va inactivation and that this antico- 
agulant mechanism does not function effectively after endo- 
thelium is exposed to norepinephrine. 

Discussion 

Evidence for an association between the autonomic nervous 
system and thrombosis has been demonstrated in previous 
animal experiments (23, 24, 28, 29). The data presented here 
demonstrate that norepinephrine can stimulate at-adren- 
ergic receptors on the endothelial cell surface resulting in re- 
lease of cleaved protein S from endothelium and decrease of 
protein S cell surface-binding sites involved in assembly of 
the activated protein C/protein S complex on endothelium. 

Previous studies have established the presence of a-adren- 
ergic receptors (33) as well as a a-adrenergic responsive ade- 
nylate cyclase activity (4) in endothelium, although the role 
of this receptor in endothelial cell physiology is unclear. 
Other studies have shown that endothelium has an a:-recep- 
tor which appears to modulate the contractile response of 
smooth muscle (1). The results of the present study indicate 
that cultured bovine aortic endothelial cells also possess an 
aradrenergic catecholamine response. The full conse- 
quences of at-receptor stimulation for endothelial cell physi- 
ology is unclear at this time, but modulation of the pro- 

tein S-endothelial cell interaction and alteration of the 
cytoskeleton (6, 44, and our unpublished observation; Brett 
et al., 1987) by norepinephrine are two documented ex- 
pressions of al-adrenergic catecholamine activation. The 
a~-adrenergic mechanism in endothelium shares certain 
fundamental properties with ¢tradrenergic receptor-stimu- 
lated protein S release involves a G protein that is a substrate 
for pertussis toxin (Fig. 5). Because several functionally and 
immunologically distinct G proteins with similar molecular 
masses can be ADP-ribosylated by pertussis toxin (32), the 
specific identity of the regulatory G protein lined to the en- 
dothelial cell a~-adrenergic receptor is not yet known. 
However, the observation that maneuvers which elevate cyto- 
solic calcium ion concentration or activate protein kinase C 
(Table I) mimic the response to norepinephrine suggests that 
the intracellular signaling mechanism activated by at-adren- 
ergic receptors in endothelium involves G protein-mediated 
hydrolysis of phosphoinositides and generation of inositol- 
trisphosphate and diacylglycerol. Preliminary data, indicat- 
ing that norepinephrine does stimulate metabolism of phos- 
phoinositides in endothelium are consistent with this hypoth- 
esis. Increase in calcium ion concentration due to products 
of phosphoinositide hydrolysis may then promote exocytosis 
of protein S-containing vesicles. Although other endothelial 
cell products may be released by norepinephrine, this path- 
way appears to be relatively selective for protein S since von 
Willebrand Factor release was not observed. Stimulation of 
¢tl-adrenergic receptors leading to protein S release thus 
constitutes a new type of endothelial cell release reaction. 

During studies to define constitutive synthesis and release 
of protein S by bovine endothelium, the functional activity 
of endothelial cell protein S was evident (35). Our expecta- 
tion was that norepinephrine-stimulated protein S release 
would lead to an outpouring of functional protein S into the 
intravascular space. Western blotting (Fig. 6) and functional 
studies of the endothelial cell releasate, however, indicate 
that protein S in culture supernatants is cleaved and has con- 
siderably attenuated anticoagulant activity. The mechanisms 
involved in norepinephrine-mediated cleavage of protein S 
are not yet clear, but modulation of cellular proteolytic ac- 
tivities probably plays a role. Previous studies have shown 
that quiescent endothelium binds and promotes the anticoag- 
ulant function of protein S (36). Furthermore, pilot experi- 
ments indicate that norepinephrine does not directly cleave 
protein S. The nature and mechanism of induction of this cel- 
lular proteolytic activity responsible for inactivation of pro- 
tein S remains to be established. In this context, human plate- 
lets have recently been shown to bind and cleave protein S 
leading to its inactivation (27). A similar process may occur 
on norepinephrine-stimulated endothelium, although protein 
S released by endothelium appears to be more extensively 
degraded (Fig. 6) than protein S inactivated by platelets. In 
addition to inactivation of much of the protein S released 
by endothelium, after exposure to norepinephrine, protein 
S-endothelial cell binding was considerably decreased even 
when studied after elution of previously bound protein S and 
under conditions where cleavage of added protein S was not 
observed. Taken together, norepinephrine-induced modula- 
tion of endothelial cell mechanisms can effectively block the 
anticoagulant function of protein S in relation to the vessel 
wall. When these results are placed in the perspective of 
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previous observations concerning activation of the proco- 
agulant Factor XII (26) and induction of stasis (24) during 
ct-adrenergic stimulation, the thrombogenic potential of nor- 
epinephrine becomes apparent. 

These studies define a new, potentially important relation- 
ship between the coagulation mechanism and the autonomic 
nervous system, and point to a possible role for ¢q-adren- 
ergic receptors in endothelial cell physiology. Norepi- 
nephrine-induced modulation of the endothelial cell-protein 
S interaction, both at the level of release of intracellular pro- 
tein S and loss of functional cell surface receptors, represents 
a rapid mechanism through which the coagulation mecha- 
nism can respond to environmental stimuli. These observa- 
tions in a cultured cell model may relate to the in vivo situa- 
tion as suggested by the results of a pilot infusion study in 
calves. A calf infused with norepinephrine in the presence 
of the 13-blocker propranolol showed a fivefold rise in plasma 
protein S antigen (after 1 h) compared with an animal treated 
with propranolol alone. Although the source of this protein 
S antigen is not clear, norepinephrine-induced release of en- 
dothelial cell protein S is certainly a possibility based on the 
studies described in this work. 
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