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Simple Summary: The liver responds to systemic inflammation and injury in a coordinated manner,
called the acute phase response. While this normal physiological response aims to restore homeostasis,
malignant transformation coopts this biology to increase the risk for metastasis, immune evasion, and
therapeutic resistance. In this Review, we discuss the importance of acute phase response proteins in
regulating cancer biology and treatment efficacy. We also consider potential strategies to intervene
on acute phase biology as an approach to improve outcomes in cancer.

Abstract: Cancer triggers the systemic release of inflammatory molecules that support cancer cell
metastasis and immune evasion. Notably, this biology shows striking similarity to an acute phase
response that is coordinated by the liver. Consistent with this, a role for the liver in defining cancer
biology is becoming increasingly appreciated. Understanding the mechanisms that link acute phase
biology to metastasis and immune evasion in cancer may reveal vulnerable pathways and novel
therapeutic targets. Herein, we discuss a link between acute phase biology and cancer with a focus
on serum amyloid A proteins and their involvement in regulating the metastatic cascade and cancer
immunobiology.

Keywords: liver; immunotherapy; serum amyloid A; immune cells; metastasis; cancer; acute phase re-
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1. Introduction

Metastasis is the primary cause of mortality in cancer [1]. Unfortunately, once cancer
cells have metastasized, the standard of care most often merely stalls disease progression.
As a result, there remains an unmet need for therapies capable of disrupting the metastatic
process [2]. To this end, research into unraveling the complex and intertwined networks
that support metastasis will be fundamental to informing the development of novel anti-
metastatic strategies and for improving patient outcomes [3–6]. Here, we discuss the role
of serum amyloid A1/2 (SAA) proteins in cancer. SAA are produced by hepatocytes in the
setting of cancer inflammation as acute phase reactants and have been implicated in the
metastatic process [7]. Moreover, SAA proteins associate with resistance to cytotoxic- and
immune-based therapies, raising the possibility that intervening on SAA and their release
by the liver might offer a strategy to improve outcomes for cancer patients.

2. Determinants of the Metastatic Cascade

The metastatic cascade is a multistep process [8]. Beginning with detachment from the
basement membrane and invasion into the surrounding stroma, a cancer cell’s metastatic
journey is fraught with challenges [8]. Each step in the metastatic process is increas-
ingly difficult. As a result, metastasis has been described as largely inefficient with few
disseminated tumor cells (DTC) ever successfully completing the metastatic journey [9].
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Early in malignant cell transformation, DTCs intravasate into the local vasculature at
the primary tumor nest. A DTC must then endure significant stress in circulation, before
extravasating into a distant tissue. Once lodged within the tissue, DTCs are influenced
by their surrounding microenvironment. Notably, this microenvironment can serve as a
protective niche that supports DTC survival and guards against physical and immune
stressors. As a result, the distant organ microenvironment is a key determinant of the fate
of a DTC and its decision to proliferate, lay dormant, or die [10].

Although cancer cell-intrinsic features are important for initiating and supporting
the metastatic cascade [8,11], the tropic nature of metastasis cannot be rationalized by
cell-intrinsic features alone. As observed by Steven Paget in the 1890s, metastasis often
manifests within common tissues such as the brain, bone marrow, lung, and liver [12].
Based on this observation, Paget proposed the “seed and soil” hypothesis which posits
that metastasis relies on the interaction and cooperation between cancer cells (seed) and
a distant organ (soil). Consistent with this, cell-extrinsic features present within distant
organs are fundamental in defining an organ’s receptiveness to metastatic colonization and
outgrowth [8,13]. It is these extrinsic factors that support the capacity of DTCs to complete
the metastatic cascade [5].

The formation of a ‘pro-metastatic niche’ in a distant organ is a fundamental deter-
minant of DTC survival [5,14]. Changes in this niche environment can also signal for
latent metastatic outgrowth by dormant cancer cells [15]. However, the mechanisms that
direct the formation of a pro-metastatic niche can differ between distant organ sites. For
example, the calprotectin heterodimer S100 calcium-binding protein A8 (S100a8) and S100
calcium-binding protein A9 (S100a9) regulates metastatic seeding and outgrowth in the
lung [16] whereas SAA regulate the formation of a pro-metastatic niche in the liver [7,17].
Despite these differences in the initiating signals, the pro-metastatic microenvironment
that forms ultimately converges on similar pro-inflammatory themes with the deposition
of extracellular matrix (ECM) proteins and accumulation of myeloid cells [18]. ECM de-
position within the pro-metastatic niche supports enhanced DTC migration across the
endothelial layer and strengthens the anchoring of DTCs to the local parenchyma [19].
Further, the remodeling of the ECM can expose DTCs to trapped soluble factors necessary
for DTC survival and proliferation. The ECM also supports the recruitment of bone-derived
myeloid cells into the niche [20,21]. Notably, the polarization of these migratory myeloid
cells within the niche helps to establish an immunosuppressive sanctuary and, in doing
so, enables DTCs to evade immune elimination and ultimately heightens their metastatic
potential [18,22]. Overall, the biological state of distant tissues is a critical determinant of
the efficiency of the metastatic cascade.

3. The Acute Phase Response Supports Formation of a Pro-Metastatic Niche

Elements of the pro-metastatic niche bear striking resemblance to inflammatory pro-
cesses that occur during an acute phase response (APR). The APR is a systemic nonspecific
innate reaction that is evolutionarily conserved and occurs as a result of disturbances in
homeostasis such as tissue damage [23,24]. Notably, cues that direct the formation of a
pro-metastatic niche are often members of the acute phase protein (APP) family [23,25]
(Figure 1). APPs are proteins primarily produced in the liver and by hepatocytes in re-
sponse to pro-inflammatory cytokines, such as interleukin (IL)-6 and IL-1β, which are
released in the setting of infection and tissue injury. However, this acute phase response
requires a coordinated effort that involves not only hepatocytes, but also Kupffer cells,
hepatic stellate cells, and liver endothelial cells. Together, APPs produced by these liver-
resident cell populations act to maintain homeostasis and facilitate tissue repair [26–28].
The acute phase response also triggers recruitment of bone marrow-derived myeloid cells
and fibrosis at the site of foreign invasion or tissue injury [25]. Among the acute phase
reactants, proteins of the serum amyloid A family are the most prominent. There are four
isoforms of SAA. Of these, SAA1 and SAA2 dominate and are released mainly by the
liver. In humans, SAA3 is thought to be a pseudogene and has no clear biological role. In
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contrast, SAA4 is constitutively expressed by the liver and its expression is not altered by
inflammatory stimuli [29–31]. Thus, SAA1 and SAA2, together referred to as SAA, are the
main SAA isoforms in humans that are released during the APR.
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In healthy individuals, circulating levels of SAA are detected at low levels. However,
in response to stress or tissue damage, hepatocytes rapidly synthesize and release SAA.
Hepatocytes are the main cellular source of SAA, although in obesity, adipocytes have
also been shown to produce SAA [32–34]. SAA production is triggered by inflammatory
molecules including IL-6, IL-1β, tumor necrosis factor (TNF), as well as microbial by-
products (e.g., lipopolysaccharide, LPS), in a signal transducer and activator of transcription
3 (STAT3) dependent manner [35,36]. Within 4–5 h of triggering the APR, SAA are detected
in the serum and eventually peak at serum concentrations reaching more than 1000-fold
above baseline levels within 24 h [37,38]. This rapid and remarkable increase in SAA in the
serum reflects the central role of SAA in liver biology and in regulating the acute phase
response.

The biological effects of SAA are broad and seek to establish a balance between pro-
moting and dampening inflammation [37]. Initially, SAA were described as an archetypal
component of the acute phase response to infection where they are involved in the op-
sonization and elimination of invading pathogens [39]. For example, SAA are produced
by the liver in response to respiratory and skin infections [40,41]. Upon binding to bacte-
ria, SAA trigger the release of pro-inflammatory cytokines that recruit macrophages and
neutrophils to the site of invasion. Infiltrating neutrophils then release reactive oxygen
species (ROS) to kill bacteria, while recruited macrophages phagocytose the bacteria. The
resolution of the infectious process causes SAA serum levels to return to baseline.

SAA mediates its effects by signaling through a range of distinct receptors, including
toll like receptor (TLR)2, TLR4, formyl peptide receptor 2 (FPR2), scavenger receptor class
B member 1 (SR-B1), receptor for advanced glycosylated end products (RAGE), and P2X
purinoceptor 7 (P2X7R) (Figure 2) [37]. Structural studies show that SAA is non-pathogenic
when it exists as a hexamer bound to high density lipoprotein (HDL) [42,43]. However,
upon dissociation from HDL and aggregation into amyloid fibrils, SAA signals through its
cognate receptors and induces the expression of anti-inflammatory cytokines that aim to
resolve acute inflammation [29,44,45]. Notably, these receptors are expressed across a broad
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range of cell types derived from both hematopoietic and non-hematopoietic origins which
illustrates the complexity of biological effects that SAA may produce. However, in contrast
to the role of SAA in the acute setting, chronic conditions like inflammatory disorders,
including rheumatoid arthritis, Crohn’s disease, and type 2 diabetes, lead to sustained
and high serum levels of SAA [46,47]. Here, pro-inflammatory cues trigger the initial
release of SAA but without a resolution of the inflammatory process, SAA production by
the liver persists and supports a state of chronic inflammation. Similarly, this process can
provoke an inflammatory response that inadvertently supports cancer development and
metastasis [48,49]. To this end, formation of a pro-metastatic niche in the liver has been
shown to be reliant on SAA [7]. Thus, cancer can co-opt acute phase biology to support
metastasis.
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encompasses six hallmarks associated with the acute phase response induced by cancer. Also shown
are serum amyloid A (SAA) proteins which are released during the acute phase response and
receptors that SAA proteins engage to support these hallmarks.

4. SAA and Their Role in Supporting Liver Metastasis

SAA can act as a chemoattractant to facilitate tissue infiltration by monocytes and
neutrophils [50]. Consistent with this, SAA produced in the setting of cancer facilitate
the recruitment of myeloid cells to the liver. This cellular remodeling of the liver estab-
lishes a pro-metastatic niche environment supportive of the seeding and colonization of
DTCs [7,13].

After lodging in the capillary bed of a distant organ, DTCs must anchor to the en-
dothelial layer and extravasate into the tissue parenchyma to escape from circulation [51].
This is accomplished by mimicking leukocyte transendothelial migration, whereby cir-
culating cells are captured by clusters of vascular cell adhesion molecules (V-CAM) and
intercellular cell adhesion molecules (I-CAM) displayed by the cell junctions of activated
endothelial cells present within the pro-metastatic niche [52,53]. To this end, SAA have the
capacity to alter the liver vasculature to stimulate transendothelial migration. For example,
SAA released from rheumatoid arthritis synoviocytes have been shown to interact with
SR-B1 and FPR2 expressed on endothelial cells to induce the nuclear factor of kappa light
polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) degradation, and upregulation
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of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) expression. Freed
from IκBα, nuclear translocation of RELA (p65) then directs NF-κB signaling to increase
the expression of ICAM-1 and VCAM-1 on hepatic vascular endothelium. Upregulation of
these cell adhesion molecules facilitates monocyte and neutrophil adhesion to the vessel
wall and their subsequent migration into the liver [54,55]. However, this activation of
endothelium can also have deleterious effects. Specifically, SAA are central to the patho-
genesis of uremia-induced atherosclerosis, a disease characterized by the stiffening and
narrowing of the arteries [56]. The accumulation of free SAA protein on the arterial wall
at the site of pathogenic lipoprotein invasion directs phagocyte migration by promoting
expression of VCAM-1 on arterial endothelial cells [57,58]. Consequently, this process
engenders the accumulation of foam cells and, thus, the formation of an atherosclerotic
plaque [55,58]. Binding of SAA to RAGE within these atherosclerotic lesions then triggers
the migration of vascular smooth muscle cells to further enable phagocyte transendothelial
migration. This ultimately forms a pro-inflammatory feedback loop that manifests as the
pathologic characteristics observed in atherosclerosis [56]. Similarly, SAA can promote
myeloid cell transendothelial migration into the liver and in doing so, instruct the forma-
tion of a pro-metastatic niche which subsequently supports DTC extravasation into the
liver [52,53].

SAA have been implicated in the deposition and remodeling of ECM proteins [7,18]
which are key determinants of the migratory capacity of DTCs [7,18]. ECM remodeling
in the pro-metastatic niche is supported by recruited neutrophils. In colorectal cancer,
elevated levels of systemic tissue inhibitors of metalloproteinases (TIMP) metallopep-
tidase inhibitor 1 (TIMP-1) trigger hepatic stellate cells to release chemokines, such as
C-X-C motif chemokine 12 (CXCL12), that recruit neutrophils to the liver [59]. Infiltrating
neutrophils subsequently release extracellular traps (NETs) containing matrix metallopro-
teinases (MMPs) that cleave components of the extracellular matrix. In doing so, they
release matrikines, peptides liberated by partial proteolysis of the ECM, that then signal
for further recruitment of neutrophils to the liver and increased deposition of fibronectin
and versican. This newly remodeled ECM then acts to provide additional anchors for DTC
migration into the liver parenchyma [60–62]. Notably, this biology is analogous to the
known role of SAA in directing ECM remodeling and enhanced leukocyte migration to sites
of acute inflammation. For example, SAA can activate smooth muscle cells through TLR2
and in doing so, stimulate an increase in matrix metalloproteinase-9 (MMP9) expression, a
known matrix metalloproteinase with the ability to degrade ECM proteins and to trigger
further ECM remodeling through the recruitment of inflammatory myeloid cells [63,64].
Moreover, it has been shown that SAA and its attachment to the ECM can act as a scaffold
that may support cell migration across the endothelial barrier. Specifically, CD4+ T-cells
exhibit enhanced adhesion to immobilized SAA-ECM complexes in vitro [65,66]. Leuko-
cyte binding to these complexes promotes increased TNF release, a cytokine known to be
involved in endothelial cell modulation and the attraction of neutrophils and monocytes
to sites of activation [67–69]. Taken together, these data suggest a central role for SAA
in coordinating ECM remodeling which then supports the recruitment of inflammatory
leukocytes and in doing so, establishes a pro-metastatic niche.

5. A Role for SAA in Coordinating the Inflammatory Response to Cancer

A hallmark of cancer is its ability to evade immune elimination. Immune escape is
facilitated by multiple mechanisms including loss of tumor antigens, decreased cancer
cell immunogenicity, and formation of an immune suppressive microenvironment [70]. In
addition, systemic factors can influence the fitness of the immune system and in doing
so, contribute to immune evasion [71–73]. In this regard, the liver is well-recognized for
its capacity to promote immune tolerance [74]. Hepatic immune tolerance involves the
triggering of T cell anergy, effector T cell elimination, the induction of regulatory T cells,
and coordination of an immunosuppressive myeloid response [75–77]. Notably, the liver
has been implicated in regulating immune surveillance in cancer [78]. This finding has
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spawned new research into understanding mechanisms by which the liver coordinates
immune evasion.

The liver is a frequent site of metastasis and liver metastasis associates with decreased
efficacy of immunotherapy [78–80]. This clinical observation suggests a role for the liver
in regulating the efficacy of immunotherapy. Consistent with this, elevated acute phase
proteins released by the liver associate with decreased efficacy of immunotherapy. For
instance, a retrospective study of melanoma patients treated with immune checkpoint
inhibitors targeting CTLA-4 and PD1 showed that decreased overall survival was associated
with elevated baseline levels of IL6, high neutrophil-to-lymphocyte ratio, and elevated
C-reactive protein (CRP) levels [81,82]. Elevated levels of CRP detected prior to treatment
also associate with decreased progression-free and overall survival in patients with lung
cancer receiving anti-PD1 therapy [83,84]. Similarly, a retrospective study found that
baseline levels of SAA were prognostic for response to upfront anti-PD1 therapy in patients
with advanced non-small cell lung cancer [85]. Overall, these retrospective studies suggest
a direct biological influence of the liver on immune surveillance in cancer.

The release of SAA by the liver triggers hepatic inflammation that contributes to the
formation of an immune sanctuary that supports the capacity of DTCs to evade immune
elimination. Recently, the presence of cancer cells in the liver has been found to derail tumor
immunity and the efficacy of immunotherapy in an antigen-specific manner [86]. Consistent
with this, immature myeloid cells in the liver are known for their capacity to exert immune
suppressive effects [87]. For example, monocyte-derived macrophages have been shown to
trigger tumor antigen-specific T cell apoptosis in the liver via Fas/FasL interaction and in
doing so, impair the efficacy of immunotherapy in mouse models of cancer [78]. In addition,
arginase I released by neutrophils causes L-arginine catabolism leading to impaired T cell
function [88]. The release of reactive oxygen species and nitrogen species by myeloid cells
can also inhibit T cell functions by diminishing T cell proliferation and compromising T
cell receptor activity [89]. Importantly, the immunosuppressive biology of myeloid cells is
instructed by signals received from the surrounding microenvironment [90,91]. As such,
myeloid cells may be fine-tuned by soluble factors released within the liver. For example,
SAA have been shown to drive neutrophil differentiation by activating the TLR/myeloid
differentiation primary response protein (MyD88) signaling pathway which then instructs
neutrophils with a suppressive phenotype characterized by the expression of IL-10, an
anti-inflammatory cytokine that is also involved in tissue repair [92,93]. Thus, SAA are
not only fundamental to fueling the initial inflammatory response but also for shaping its
phenotype.

The pleiotropic nature of SAA is informed, at least in part, by its unique structural
properties. For example, SAA1 exists as a hexamer with binding sites for HDL and
heparin. As a multimer, SAA1 can trigger the induction of pro-inflammatory cytokines,
such as IL-6, TNF, and IL-1β. The multimerization and amyloid fibril formation of free
SAA1 monomers is facilitated by key amino acid residues at the N and C terminals of
the SAA1. Consequently, the removal of these residues ablates the ability of SAA1 to
multimerize [94,95]. As a monomer, SAA1 lacks the capacity to interact with FPR2 to
induce the release of pro-inflammatory cytokines by myeloid cells. Instead, myeloid
cells respond to SAA1 monomers by activation of TLR2-dependent p38-MAP Kinase
(MAPK) phosphorylation and release of IL-10 and C-C motif chemokine ligand 17 (CCL17).
Together, these cytokines drive heightened arginase I activity and efferocytosis of apoptotic
neutrophils [96]. For instance, mice co-treated with a SAA1 monomer and a lethal dose
of LPS demonstrate a reduced expression of pro-inflammatory cytokines and improved
survival [97]. Thus, the structure of SAA contributes to its ability to instruct the phenotype
of an immune response.

Finally, the activation of the acute phase response may spoil immune surveillance
in cancer. Immune activation against DTCs is reliant on “licensing” of dendritic cells
(DC) which cross-present tumor antigens for priming of tumor-reactive CD8 T cells and
natural killer (NK) cells [98,99]. However, inflammatory molecules, such as IL-6, derail DC
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generation and skew the differentiation of immature myeloid cells away from DCs and
toward macrophages [100]. IL-6 also promotes a systemic and progressive deficiency in DCs
in pancreatic carcinoma that is mediated, at least in part, by increased apoptosis [101]. In
addition to the potential direct effects of IL-6 on DC biology, IL-6 also triggers the release of
acute phase proteins by hepatocytes which may impinge on DC biology. For instance, CRP
reduces the capacity of DCs to promote antigen-specific T cell expansion [102]. SAA have
also been shown to inhibit DC differentiation via activation of TLR2 and FPR2 [103]. Here,
SAA signaling in bone marrow cells results in decreased expression of transcription factor
PU.1 (PU.1) and CCAAT/enhancer-binding protein alpha (C/EBPα), key transcription
factors involved in DC differentiation [103–105]. TLR2 signaling in mature DCs also results
in DC dysfunction in the setting of cancer [106]. Taken together, SAA and the acute phase
response triggered by cancer may thwart the productivity of cancer immunosurveillance.

6. Determinants of Disseminated Tumor Cell Outgrowth

DTCs that successfully extravasate into a distant organ will either proliferate, die, or
enter a state of dormancy. Cellular dormancy is an advantageous strategy utilized by DTCs
to survive in a distant organ while adapting to the newfound microenvironment [107].
DTCs may lie dormant for decades before metastatic outgrowth is observed [15]. This
clinical observation suggests the need for a secondary cue to trigger awakening and
overt metastasis [108]. Consistent with this, local inflammation in the lung triggered by
tobacco smoke has been shown to signal the recruitment of neutrophils and their release
of neutrophil extracellular traps (NETs) which then support DTC awakening [109]. NETs
are scaffolds of chromatin that contain proteases from the neutrophil’s secretory granules,
including neutrophil elastase, cathepsin G, and MMP9 [110]. The release of NETs in
tissues is intended to trap pathogenic invaders and mediate killing with the associated
proteases. However, these proteases can also cleave the extracellular matrix that surrounds
a dormant cancer cell. For instance, sequential cleavage of basement laminin by neutrophil
elastase and then MMP9 reveals a neo-epitope that activates integrin signaling in dormant
DTCs leading to their awakening [109]. This biology demonstrates the critical role of the
surrounding local microenvironment in defining the fate of a DTC.

The precise role of SAA in regulating DTC dormancy is unknown. However, SAA
have been shown to facilitate the formation of a microenvironment in the liver supportive
of DTC proliferation [7]. In non-malignant settings, SAA trigger the inflammasome cascade
by signaling through TLR2, TLR4, and P2X7R that are expressed by resident Kupffer cells.
This signaling prompts assembly of the NOD-like receptor family pyrin domain containing
3 (NLRP3) inflammasome and release of IL-1β into the liver microenvironment. In doing
so, IL-1β can reinforce SAA release by hepatocytes causing further activation of the inflam-
masome cascade in resident macrophages as well as monocytes and neutrophils that are
subsequently recruited to the liver. As a result, a feed forward cycle is established [95,111].
As part of this cycle, SAA activates neutrophils via FPR2 to release IL-8 which signals for
further neutrophil recruitment [112]. SAA signaling via TLR2 on migratory myeloid cells
and granulocytes also results in granulocyte colony-stimulating factor (G-CSF) secretion,
which amplifies the neutrophil response in the liver [113,114]. Overall, the liver inflamma-
tion that ensues in response to SAA release bears striking resemblance to the necessary
elements needed to awaken DTCs.

7. SAA and Other Acute Phase Proteins Are Prognostic Tumor Biomarkers

Elevated acute phase proteins detected in the serum of patients with cancer are associ-
ated with poor prognosis. This relationship between inflammation and clinical outcome is
described using the modified Glasgow Prognostic Score (mGPS), which combines the levels
of acute phase proteins including CRP and albumin [48,115,116]. Elevated CRP (>10 mg/L)
and decreased albumin levels (<35 g/L) correspond to a higher mGPS score that is tumor
histology agnostic and correlates with cachexia, systemic inflammation, and poor outcome
to cancer therapy [117]. In addition to CRP and albumin, hepcidin is an acute phase protein
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that is increased in the liver in response to IL-6 released in the setting of inflammation.
Hepcidin is a peptide hormone involved in the regulation of iron metabolism [118]. Im-
portantly, hepcidin suppresses the capacity of ferroportin to export iron for erythropoiesis
and as a result, is implicated in the pathogenesis of anemia of chronic disease including
anemia of cancer [119–121]. Elevated hepcidin levels have also been shown to correlate
with poor prognosis for patients with pancreatic carcinoma, urothelial cancer, and renal
cell carcinoma [122,123].

Like other acute phase proteins released by the liver, SAA have also been found to
be prognostic across many solid cancers. For instance, elevated serum levels of SAA in
patients with non-small cell lung cancer and colorectal cancer associate with liver metas-
tasis [7]. SAA have also been identified as a biomarker for monitoring tumor relapse in
nasopharyngeal cancer (NPC) [124]. Levels of SAA also correlate with outcomes in patients
with advanced melanoma and when combined with CRP show prognostic potential for
identifying patients with high-risk early-stage melanoma [125]. Further, SAA associate
with poor outcomes to treatment in patients with newly diagnosed advanced pancreatic
carcinoma [126]. Taken together, SAA and other acute phase proteins released by the liver
have prognostic implications in cancer.

8. Future Considerations

The liver is vital to normal human physiology. It is responsible for supporting
metabolism, immunity, digestion, and detoxification among many other functions. The
liver is also a critical sensor of inflammation and coordinates an acute phase response aimed
at restoring homeostasis. However, in the setting of cancer inflammation, this response by
the liver results in pathology that can manifest in anemia, cachexia, immune dysfunction,
and metastasis. As discussed in this Review, chronic release of acute phase proteins by
the liver predicts treatment resistance and a poor prognosis. Mechanisms underlying the
role of the liver in cancer pathogenesis are beginning to be understood. However, future
studies will need to consider how to intervene on liver pathophysiology in the setting of
cancer (Figure 3). One approach is to intervene on the triggers of liver inflammation. For
example, blocking IL-6 signaling in hepatocytes has been shown to prevent the formation of
a pro-metastatic niche in the liver and to restore the ketogenic response that is impaired in
the setting of cachexia [7,127]. However, other factors including the gut microbiome [128]
may also disrupt normal liver biology with clinical implications. To this end, it is possible
that multiple determinants of liver inflammation will need to be controlled.

A second approach to intervening on liver biology is to provoke the resolution of
inflammation in the liver. For example, macrophages are well recognized for their role in
promoting liver fibrosis but are also essential for fibrosis resolution [129]. In this regard,
myeloid activating agents (e.g., CD40 agonists) have been shown to induce macrophages
with anti-fibrotic properties capable of remodeling the tumor microenvironment [130,131].
CD40 agonists are also known to induce liver inflammation [132,133], although their role
in remodeling the pro-metastatic niche and liver fibrosis remains ill-defined. Alterna-
tively, hepatocytes represent a novel therapeutic target based on their pivotal role in the
production of acute phase proteins including SAA. In mouse models of cancer, STAT3
activation in hepatocytes is necessary for the acute phase response. Consistent with this,
genetic deletion of STAT3 selectively in hepatocytes blocks the formation of the acute phase
response and the subsequent formation of a pro-metastatic niche [7]. However, it is not
known whether intervening on STAT3 once the acute phase response has initiated will
trigger resolution and a return to normal liver homeostasis. Thus, while determinants
involved in the resolution of liver pathology have been identified in non-malignant settings,
the capacity to resolve liver pathology triggered by cancer is unknown.
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Figure 3. Strategies for intervening on the liver acute phase response in cancer. Inflammatory factors including IL-6, IL-1β,
and microbial products (e.g., LPS) trigger the acute phase response in the liver leading to the release of acute phase proteins
by activated hepatocytes, hepatic stellate cells, endothelial cells, and myeloid cells. Chronic release of acute phase proteins
then mediate pathology by supporting inflammation, immune dysfunction (e.g., T cell apoptosis), alterations in metabolism
(e.g., iron metabolism), and fibrosis. Shown are three potential approaches to intervene on the liver acute phase response by
(1) blocking the activity of inflammatory factors that trigger liver inflammation (e.g., with blocking antibodies against IL-6),
(2) restoring liver homeostasis by provoking a restorative immune response or disrupting the release of acute phase proteins
by liver resident cells (e.g., via STAT3 inhibition), and (3) intervening on acute phase protein signaling by neutralizing acute
phase proteins or inhibiting their interaction with downstream receptors (e.g., with TLR inhibitors).

A third approach is to block acute phase proteins and their interaction with down-
stream receptors involved in mediating pathology and amplifying the acute phase response.
In support of this strategy, the genetic deletion of SAA has been shown to prevent formation
of a pro-metastatic niche in the liver [7]. However, it remains unclear whether blocking the
interaction of SAA with its cognate receptors will be effective in the setting of an ongoing
acute phase response. Further, clinical grade reagents capable of inhibiting SAA are cur-
rently lacking. However, one strategy being studied is to use a 5-MER peptide (MTADV,
methionine-threonine-alanine-aspartic acid-valine) derived from a pro-inflammatory CD44
variant. MTADV was found to bind to SAA in vitro and disrupt SAA aggregation as well
as reduce colitis in an experimental model of inflammatory bowel disease [134]. Another
approach is to intervene on SAA biology using antagonists that target SAA receptors. For
example, SRB1 is a receptor for a SAA and a target for ITX 5061, which is an antiviral drug
designed to inhibit SRB1 dependent hepatitis C virus entry into cells [135]. Similarly, SAA
binds and activates FPR2 which is used by influenza to increase viral replication. Preclinical
inhibitors of FPR2 have shown potential for blocking FPR2 [136]. SAA also interacts with
RAGE and in doing so, triggers the secretion of tissue factor by monocytes which can be
suppressed using RAGE antagonists [137]. Clinical grade inhibitors of RAGE are under
evaluation in inflammatory diseases [138]. In addition, SAA activates the NLRP3 inflam-
masome via the P2X7 receptor leading to IL-1β secretion by macrophages [95]. Clinical
grade P2X7 receptor antagonists have been evaluated as a treatment for Crohn’s Disease,
rheumatoid arthritis, and neuroinflammatory disorders [139]. Finally, SAA bind to both
TLR2 and TLR4 causing immune activation. Clinical grade inhibitors against both TLR2
and TLR4 have been developed [140]. Together, strategies to disrupt SAA biology may
hold promise but the ability of SAA to signal through multiple receptors on many cell
types represents a significant clinical challenge. To this end, a multi-faceted approach
may be necessary wherein acute phase proteins, such as SAA, are targeted in concert with
strategies that aim to intervene on the triggers of liver inflammation and to re-establish
normal liver homeostasis.
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Inflammatory networks induced by SAA and other acute phase proteins released
by the liver may also have implications for patient stratification. Strategies to optimize
patient selection of cancer therapies remains a major challenge [141]. Retrospective studies
have shown that SAA and other acute phase proteins hold promise as prognostic biomark-
ers [124–126]. The acute phase response is a critical determinant of the cancer inflammation
cycle and may act as rheostat to control immune homeostasis and risk for disease pro-
gression or relapse in patients [142]. Thus, we propose that monitoring the acute phase
response in patients may ultimately prove to be informative for personalizing therapy to
manage not only cancer but also its sequalae such as anemia and cachexia.

9. Conclusions and Outlook

SAA is a pleotropic cytokine, acting as a critical determinant of the biology of a wide
range of human conditions including autoimmunity, infection, cardiovascular disease, and
cancer. Here, we discussed an emerging role for SAA in cancer. SAA is released during
an acute phase response and triggers inflammation aimed at re-establishing homeostasis.
However, in the setting of cancer, the chronic release of SAA may undermine immune
surveillance and foster the metastatic cascade thereby promoting disease progression.
Consistent with this, SAA correlates with resistance to immunotherapy and poor prognosis
overall. However, the precise mechanisms by which SAA coordinates liver metastasis and
its impact on immune evasion in cancer remain to be elucidated. Nonetheless, the central
role of SAA in instructing liver biology and promoting metastasis raises the possibility
that it may be a therapeutic target. In this regard, the complex biology and structure
of SAA poses many challenges. Notably, SAA signals through multiple receptors and
can influence the biology of a wide range of cell types [143]. Future studies will need to
address mechanisms leading to SAA release by the liver in the setting of cancer, strategies
capable of intervening on SAA-directed biology, and the precise role of SAA in regulating
the efficacy of cancer therapy. Together, this knowledge will guide the development of
novel treatments focused on restoring liver homeostasis as an approach to improve patient
outcomes in cancer.
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