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ABSTRACT

Immunotherapy has been introduced into cancer treatment methods, but different problems 
have restricted the efficacy of these protocols in clinical trials such as the presence of 
various immunomodulatory factors in the tumor microenvironment. Adenosine is an 
immunosuppressive metabolite produced by the tumor to promote growth, invasion, 
metastasis, and immune evasion. Many studies about adenosine and its metabolism in 
cancer have heightened interest in pursuing this treatment approach. It seems that targeting 
the adenosine pathway in combination with immunotherapy may lead to efficient antitumor 
response. In this review, we provide information on the roles of both adenosine and CD73 
in the immune system and tumor development. We also describe recent studies about 
combination therapy with both purinergic inhibitors and other immunotherapeutic methods.
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INTRODUCTION

Both chemotherapy and radiotherapy continue to be used as routine cancer treatment 
protocols, even though cancer is considered the second leading cause of death worldwide 
(1). Immunotherapy is a new approach and potential treatment for various cancers. 
Immunotherapeutic strategies aim to inhibit tumors by suppressing tumor tolerance 
mechanisms and augmenting the immune response that enable both identify and 
destruction of cancerous cells. Although the first series of cancer vaccines were shown to 
be safe and significantly induced specific immune responses, these vaccines were unable 
to provide effective results in the clinic (2-4). Tumors employ several mechanisms to 
escape immune responses by producing a variety of tumor-derived factors that could exert 
immunosuppressive effects to promote both invasion and metastasis (5).

Clinical trials recently changed to combination protocols of a tumor vaccine with other 
protocols such as anti-cancer drugs or radiation therapy. The rationale for this approach 
is that radiotherapy or chemotherapy may help tumor vaccines exert their desired effects. 
This approach aligns with the concept of conventional anti-cancer therapies and may be in 
accordance with therapeutically appropriate antitumor immune responses (6,7).
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In 1863, Virchow was the first to discuss the relationship between inflammation that is 
promoted by cancerous tissue and tumor genesis (8). Inflammatory compounds contain 
reactive oxygen species and nitrogen intermediates, prostaglandins, growth factors, 
inflammatory cytokines, chemokines, and adenosine. All of these inflammatory entities 
are involved in tumor development by stimulating different mutations, resisting apoptosis, 
inducing angiogenesis, and facilitating a survival benefit to a sensitive cell (8,9).

In a cancer response, immune cells have binary actions with the potential to either remove or 
induce malignancy (10,11). Cancer cells use the help of immune cells, like tumor-associated 
macrophages (TAMs), NKT cells, Tregs, and myeloid-derived suppressor cells (MDSCs) to 
generate locally in tumor-bearing hosts. Treg-mediated immunosuppression is both one 
of the principal tumor immune-evasion mechanisms and a crucial barrier to successful 
tumor immunotherapy (11-13). MDSCs are a population of myeloid cell progenitors that 
differentiated to macrophages, dendritic cells (DCs), or other granulocytes. These MDSCs 
execute suppressive functions on T cell responses through nitric oxide, reactive oxygen 
species, prostaglandin E2 (PGE2), adenosine, and TGF-β production while also inducing 
Treg and anti-inflammatory responses (14,15). It has become apparent that efficient cancer 
treatments need a different application, which mainly targets multiple pro-tumorigenic 
pathways and disrupts immunosuppressive networks (2).

Adenosine is a purine nucleoside with different well-known functions in various 
pathophysiological processes that is released from cells or generated extracellular (7,16). 
Adenosine can prevent immune cells involved in anti-tumor responses and stimulate the 
development of immunosuppressive cells such as Treg and MDSCs by adenosine receptors 
binding (17,18). Adenosine and its receptors attracted researchers' attention in cancer 
pathology studies and create new research area in therapy purposes (19,20). Here, we discuss 
both the pharmacologic and immunologic inhibition of adenosine metabolism, which along 
with other immunotherapies, can induce effective anti-tumor responses.

MOLECULAR BIOLOGY OF ADENOSINE

There are low levels of adenosine in unstressed tissues under physiological conditions, but 
they can rapidly rise in response to hypoxia-ischemia, inflammation, or trauma (21). When 
adenosine is released from intracellular sources into the extracellular space, it acts as an 
‘alarm’ or danger signal. In addition, through its effects on cell surface receptors, it triggers 
numerous cellular responses that target tissue homeostatic mechanisms (22).

Adenosine is produced by the ectoenzyme CD73 from AMP, which is generated by the 
ectoenzyme CD39 from ATP. Adenosine fulfills its biological functions via four subtypes of 
adenosine receptors (A1, A2A, A2B, and A3), which belong to the G-protein-coupled family 
of receptors (23).

Adenosine receptors' mechanisms of action are inhibition or stimulation of adenylyl-
cyclase to decrease or increase amounts of intracellular cyclic AMP (cAMP).Both A1 and A3 
receptors decrease cAMP levels, whereas A2A and A2B increase cAMP contents. Adenosine 
receptors activate MAPK pathways and, in some cells, A1, A3, and A2B receptors direct 
phosphatidylinositol 3-kinase (PI3K) or Gq/phospholipase C (PLC) pathways (Fig. 1). 
The biological activity of adenosine is regulated by an ecto-adenosine deaminase, which 
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converts adenosine into inosine molecules. Between these adenosine receptors, the A2A 
receptor plays a definitive role in the regulation of inflammatory responses. Different studies 
presented evidence about the activity of A2A receptor agonists as both anti-inflammatory and 
immunosuppressive mediators (24).

EFFECTS OF ADENOSINE ON THE IMMUNE SYSTEM

T cells
Extracellular adenosine via the A2A receptor can inhibit both activation and proliferation 
of CD4+ T cells and has been proposed not only to prevent Th type 1 (Th1) responses in 
vivo, but also, to prepare induction of Treg (25). T cells cultured in the presence of an A2A 
receptor agonist could neither proliferate nor generate IL-2, TNF-α, and IFN-γ. Other 
immunosuppressive roles of adenosine A2A receptor antagonists include the up regulation 
of T-cell negative regulatory molecules such as CTLA4, PD-1, and down regulation of the co-
stimulatory molecule CD-40L. Stimulation of A2A with agonist induced T-cell tolerance and 
promoted Tregs and lymphocyte-activation gene 3 expression (26).

Tregs
A2A receptor stimulation enhanced fork head box P3 (FoxP3) mRNA and the 
immunosuppressor function of CD4+ FoxP3+cells. Since Tregs selectively co-express both 
CD39 and CD73, they may represent new specific markers of Tregs. Recent studies examined 
the relationship between the transcription factor FOXP3 and CD39, and found that FOXP3 up 
regulates the expression of CD39 (27).

A2A receptor stimulation in mixed-lymphocyte cultures raised the number of CD4+ FoxP3+ 
cell populations with superior immunoregulatory potency, while activation of effector T cells 
was mainly reduced so that this mechanism may be in accordance with the addition of Tregs 
within the tumor's microenvironment (28,29).
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Figure 1. Adenosine signaling pathways. 
AC, adenylate cyclase; EPAC, exchange protein activated by cyclic AMP; PI3K, phosphatidylinositol 3-kinase; PKA, 
protein kinase A; PLC, phospholipase C.
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Recently, Di Gennaro et al. (30) established that Treg isolated from different sites (peripheral 
blood, lymph nodes, and tumor infiltrating lymphocytes) of melanoma patients in stage 
III–IV, mediated immunosuppression by adenosine molecule. This study divided Tregs 
subsets with different CD39/CD73 expression into CD39+CD73− natural Tregs, CD39+CD73+ 
induced Tregs, CD39−CD73+ Tregs, and CD39−CD73– Tregs. The CD39−CD73− subset is unable 
to generate adenosine and its immunoregulatory activation might be exerted by secretion of 
TGF-β and/or IL-10, or cell-contact mechanisms (30).

DCs
DCs are professional Ag-presenting cells that up take Ags then process and present them 
to T cells. Therefore, DCs act as a connection between the innate and the adaptive immune 
systems (31). Activation of the A2A receptor in mature DCs leads to diminished IL-12, IL-6, 
and IFN-α but increases IL-10 secretion, so that it switches their cytokine pattern from a 
pro-inflammatory to an anti-inflammatory type (32).Adenosine actually controls TNF-β 
and IL-12 production; whereas it intensifies the production of IL-10 from LPS matured DCs. 
Adenosine matured DCs had a weakened ability to induce the differentiation of Th1 from 
naïve CD4+ T lymphocytes (33). DCs that generated in the presence of adenosine have altered 
function and produce high amounts of pro-inflammatory, angiogenic, immune suppressor, 
and tolerogenic components including IL-6, IL-8, and IL-10, cyclooxygenase-2, VEGF, TGF-β, 
and indoleamine-2, 3-dioxygenase; and promote tumor growth, if given to animal models 
(34). N-ethylcarboxamidoadenosine (adenosine analog) and forskolin (cAMP elevating-agent) 
skewed DCs differentiation to tolerogenic or regulatory subsets, which produced different 
immunosuppressor materials, and expressed myeloid/monocytic lineage markers. These 
types of DCs could not prime Ag-specific responses by CD8+ T-cells (35).

MDSCs
Cells with immunosuppressive properties have been stabilized and are called MDSCs. In 
mice; these cells display a population of myeloid cell lineages with both monocytic and 
granulocytic morphology and are usually distinguished by CD11b and Gr-1 markers (36). 
CD11b+Gr-1+ cells accumulate in the tumor microenvironment and lymphoid organs and are 
considered major contributors to tumor immunotolerance (37).

This observation indicates that MDSCs express high levels of the CD73 molecule, which is linked 
to high amounts of ecto-5′-nucleotidase enzymatic activity. This result suggested that targeting 
CD73 might reduce the population of MDSCs within the tumor medium and overcome their 
inhibitory condition (38). Ryzhov et al. (39) indicated that TGF-β signaling could induce the 
maturation of tumor-infiltrated MDSCs into terminally differentiated myeloid mononuclear 
cells (TDMMCs). These cells presented high levels of cell surface CD39 and CD73 and had a 
capacity of adenosine production. Also, deletion of the TGF-β receptor reduced TDMMCs' 
numbers, tumor growth rate, and metastasis (39). A study has shown that adenosine promotes 
MDSC function with the activation of A2B receptors, administration of A2B antagonist inhibited 
the accumulation of tumor-infiltrating MDSCs and enhanced Th1-like responses in the tumor 
environment and significantly delayed tumor growth (17). It was also demonstrated that A2B 
blockade raised the number of CD11b+Gr1+ cells in tumors and exclusion of MDSCs in mice 
significantly decreased VEGF production especially through A2B receptors (40).

NK cells
Adenosine prevents the capability of activated NK cells to destroy tumor cells and Perforin- and 
FasL-mediated cytotoxicity (41). Also, it was demonstrated that adenosine could be a main 
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factor in blocking the ability of lymphokine-activated killer cells to kill tumor cells (42). Beavis 
et al. (43) suggested that the A2A antagonist has an anti-metastatic effect because it enhanced 
NK cell function. Hatfield and colleagues (44) established that hyperoxic therapy has an anti-
metastatic impact, which was related to the hypoxia-adenosinergic immunosuppression of NK 
cells. A subset of NK cell peripheral blood CD16−CD56bright NK cells, produce high amounts of 
CD38-mediated adenosine and inhibit CD4+ T cell proliferation, and act as regulatory cells (45). 
NKT cells are a population of T lymphocytes, which are presented NK-associated molecules, 
such as NK1.1 and TCR on the surface. Like Treg, NKT cells express both ecto-nucleotidases 
CD39 and CD73, and expression of both enzymes plays a role in the regulatory functions of 
these cells. In addition, a subset of NKT cells termed invariant NKT cells requires adenosine 
A2A activation to generate both IL-4 and IL-10 (46).

Macrophages
The stimulation of adenosine receptors affects cytokine production by macrophages; it shows that 
the adenosine pathway mediates inhibition of TNF-α release mainly via A2A and A2B receptors 
(47). Activation of A2A receptors primarily has multiple inhibitory effects on the M1 macrophage 
subset, while adenosine receptors induce the M2 macrophage subset by up regulating the 
expression of several markers such as arginase 1, tissue inhibitor of matrix metalloproteinase 1, 
and macrophage galactose-type C lectin 1 (48). Several lines of evidence also support this idea that 
adenosine can increase VEGF secretion by macrophages through the activation of A2A receptors 
(49). Cekic et al. (50) investigated A2A expression on myeloid cells, specifically TAMs, and found 
indirectly mediated suppression of T cells and NK cell in the tumor microenvironment.

Neutrophils
It has been shown that stimulation of neutrophils by adenosine prevented attachment to 
vascular endothelial cells and damage to the endothelium by these cells (51). In addition, 
other studies found that the mechanisms of this inhibition by adenosine were through both 
selectin and integrin molecules (52,53). Adenosine decreased secretion of oxygen radicals 
and other inflammatory mediators by neutrophils. Also, adenosine via A2A receptors 
diminished both the phagocytosis and apoptosis of neutrophils. Results of investigation 
indicate that cAMP-protein kinase A (PKA)-independent pathways are responsible for 
neutrophil inhibition by adenosine A2A receptors (Fig. 2) (54-56).

ADENOSINE IN TUMORS ENVIROMENT

Extracellular amounts of adenosine in tumor tissues are higher than in normal tissues 
because of accumulation of ATP in the case of ischemia, damage, and stress. As mentioned 
previously, alteration of ATP to adenosine by the enzymatic activity of CD39 and CD73 in 
tumor tissues eventuates in immune response inhibition (57,58). On the other hand, hypoxic 
media, which exist in the tumor medium, enhanced the breakdown of adenine nucleotides to 
adenosine (59). Binding of the transcription factor, hypoxia-inducible factor 1-alpha (HIF-1α), 
to the hypoxia response element containing the promoter region of the CD73 gene, induced 
transcription and protein expression (60,61). Adenosine acting as an anti-inflammatory 
mediator down regulates the functions of infiltrating immune cells, thus preventing tissue 
destruction but this mechanism leads to tumor progression (62).

The expression of CD73 has been unregulated in many types of cancers, such as ovarian 
carcinoma (63), melanoma (64), prostate cancer (65), breast cancer (66), colon cancer 
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(67), head and neck cancer (68,69), leukemia (70), hepatocellular carcinoma (71), and 
glioblastoma (72). Many studies reported that CD73 expression in cancer is connected with 
several outcomes, such as progression, poor prognosis, metastasis, and weak response to 
chemotherapy agents (72-74).

One of the new areas of interest in cancer research is MicroRNAs. Short non-coding RNAs 
bind to the 3′-untranslated regions of different genes and regulate their expression (75). Xie 
et al. demonstrated that miR-30a is a negative regulator of CD73 expression in colorectal 
cancer cells and leads to apoptosis and growth inhibition of tumor cells (76).

Different studies have shown that both expression and enzymatic activity of ecto-5′-nucleotidase 
(CD73) are elevated in various metastatic carcinomas (77-79). Beavis et al. (43) explained that 
metastatic capability of CD73+ tumors is mediated by an NK cell-dependent mechanism. Recently, 
one study established that a BRA mutation is associated with increased CD73 expression in 
melanoma patients. In addition, adenosine enhanced lymph node pigmentation and promoted 
lymph node metastasis. Also, combining BRAF and A2A receptor inhibition decreased tumor 
growth rate and metastasis in experimental BRAF-mutant melanoma (80).

Previous studies found that if the activity of CD73 in cancer cells were inhibited, angiogenesis 
of the tumor would decrease, suggesting that this enzyme is involved in tumor angiogenesis 
(81,82). Moreover, knockdown of CD73 expression in a breast tumor model diminished their 
metastatic potential for lung tissue (66).
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Both CD39 and CD73 represent by the endothelial cells and can, therefore, be an origin of 
adenosine production. In addition, the presence of hypoxia in tumors increases the expression 
of both CD39 and CD73 on endothelial cells and leads to an increase in adenosine levels. The 
genetic or pharmacological deletion of CD39 and CD73 results in defects in the generation 
of tumor neovascularization (83). Further mechanistic investigations showed that adenosine 
can regulate the production of pro-and anti-angiogenic factors in tumor cells (84,85). Indeed, 
adenosine induces the secretion of VEGF, IL-8, and angiopoietin 2 by several human cancer cell 
lines through A2B or A3 receptors (86). A2B receptor stimulation promotes the release of VEGF 
by host immune cells that infiltrated the tumor. Ryzhov et al (39). showed tumor-infiltrating 
CD45+ immune cells, by engaging A2B receptors, involved in VEGF production in a mouse 
lung carcinoma model. Deletion of Cd39/Entpd-1 in mice not only disrupted the angiogenesis 
process but also delayed the development of melanoma tumors. These data indicated that 
CD39/ENTPD-1 expression was associated with the formation of new vessels and tumor 
growth (87). The described pro-angiogenic roles of CD73 might be related to sustaining an 
immunosuppressive network in the tumor microenvironment.

Recent evidence proposed that mesenchymal stem cells (MSCs) in the tumor site play essential 
roles in the progression, invasion, metastasis, and induction of epithelial-to-mesenchymal 
transition of malignant cells. These cells are distinguished by 3 markers including CD73, 
CD105, and CD90; so, they might be a good source of adenosine generation (88). Although, the 
expression of CD39 on MSCs was not reported, other CD39+ cells like Treg can produce AMP in 
tumors (89). Also, some studies indicated that cancer derived MSCs can inhibit the function of 
antitumor-effective immune cells through adenosine production (90,91).

ADENOSINE INHIBITION AND CANCER TREATMENT

Monoclonal Abs
Cancer treatment using monoclonal Abs has been demonstrated as one of the most 
successful therapeutic approaches in several tumors in the last 20 years (92).Several 
preclinical studies showed that pharmacological blockade of CD73, as well as treatment with 
anti-CD73 monoclonal Abs, is effective in preventing both tumor growth and metastatic 
spread in animal models (65,72). One study argued that anti-human CD73 Abs, which 
targeted adhesion and catalytic activity of CD73, could inhibit the development of metastasis 
in a breast cancer model (93). The study by Allard et al. showed that blockade of CD73 with 
a monoclonal Ab significantly diminished tumor VEGF production, and prevented tumor 
angiogenesis in vivo (83). MEDI9447 is a human, high-affinity Ab that inhibits the hydrolysis 
of CD73 to AMP. An in vivo study showed that MEDI9447 could impair the suppression of 
immune effector cells by adenosine and lead to tumor growth inhibition. Moreover, blockade 
of CD73 with MEDI9447 resulted in elevated Ag presentation and enhanced lymphocyte 
activation; and therefore, led to higher production of inflammatory cytokines such as 
IFN-γ, IL-1β, and TNF by Th1 cells (94). Young et al. identified that targeting A2A receptor 
antagonism in association with an anti-CD73 Ab that employs Fcγ receptors, limited tumor 
development and metastasis. This study demonstrated that combined inhibition of CD73 and 
A2A receptor is more effective than inhibition of either alone (16).

Pharmacological inhibitors
Different adenosine receptor antagonists have been developed for numerous therapeutic 
applications, such as cardiovascular, inflammatory, and neurodegenerative diseases without 
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any unwanted side effect (95,96). Many studies showed that pharmacologic inhibition 
of adenosine especially through A2A and A2B, or CD73 and CD39 are clinically useful 
treatments in cancer (Table 1). Also, there are some studies about effect of A1 and A3 agonist 
on tumor development. It is established that specific agonist of A1 and A3 receptor could 
delay melanoma growth in CD73 knockout mice but increased angiogenesis (85).

Short interfering RNA (siRNA)
siRNA is used to regulate gene expression in various therapeutic approaches (106). Zhi and 
colleagues (82) demonstrated that blocking CD73 by siRNA suppressed CD73 gene and 
protein expression in the breast cancer cell line MB-MDA-231, leading to inhibition of both 
growth and metastasis inhibition in vivo. In another study by this group, CD73 siRNA delayed 
breast cancer growth both in vivo and in vitro by arresting the cell cycle in the synthesis phase 
and inhibited the apoptosis pathway (107). Jadidi-Niaragh et al. (108) designed CD73-siRNA 
encapsulated into chitosan-lactate nanoparticles, which were applied to inhibit CD73 
molecules in an animal model of human metastatic breast cancer.

SIMULTANEOUS REMOVAL OF ADENOSINE AND 
CANCER IMMUNOTHERAPY
Because of the robust nature of the immune system such as its ability for memory and 
specificity, it is anticipated that cancer immunotherapy can achieve total, long-lasting 
remissions and cancer rejection with few or no side effects (109).

However, the presence of different factors with immunosuppressive capacity in the tumor 
microenvironment is a formidable obstacle in effective cancer immunotherapy. The presence 
of these factors indicated that immune regulatory cells such as Tregs, MDSCs, NKT cells, 
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Table 1. The effects of adenosine A2A and A2B receptors antagonist on animal cancer models
Target Drug Tumor Effect Ref
A2AR ZM241385, Caffeine Lung Enhanced antitumor effect of CD8+ T cells (97)

Caffeine Melanoma Limitation of tumor neovascularization and increased apoptosis (97)
SCH58261 Ovary Prolong the survival of tumor-bearing mice (63)

Breast Increase of doxorubicin activity against tumor cells (73)
Melanoma Inhibition of metastasis (43)

Breast Inhibition of metastasis (43)
Melanoma Inhibition of metastasis (16)
Melanoma Inhibition of tumor growth, induction tumor infiltration of NK and CD8+ cells (80)

A2BR ATL801 Breast Inhibition of tumor growth and metastasis (98)
ATL801 Bladder Inhibition of tumor growth and Inducing T cell immune response (98)
PSB1115 Melanoma Inhibition of tumor growth and Inducing T cell immune response (17)

CVT-6883 Lung Decrease of VEGF and cAMP production (99)
CD73 APCP Breast Inhibition of tumor migration (43)

Melanoma Enhanced tumor regression by production of Th1 cell-associated and Th17 cell-associated 
cytokines and CD8+ T cell infiltration in the tumor microenvironment.

(100)

Melanoma Inhibition of tumor growth (101)
Ovary Increased survival of tumor-bearing mice (63)

Melanoma Inhibition of lung metastasis (74)
Breast Decrease of micro vessel formation in tumors (83)
Breast Inhibition of tumor growth (102)

Melanoma Inhibition of tumor growth (103)
Melanoma Inhibition of tumor growth and angiogenesis (104)
Melanoma Inhibition of tumor metastasis (16)

Glioblastoma Inhibition of tumor growth, migration and invasion (105)
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and TAMs are the important immunoregulatory cells that disrupt effective responses against 
tumors (9,110).

Additionally, multiple soluble components such as HIF-1α, VEGF, and PGE2, inhibitory 
cytokines like IL-10 and TGF-β, and adenosine can also debilitate the efficacy of anti-tumor 
responses (9,111). Therefore, the reduced amount of adenosine in the tumor medium may 
improve the effectiveness of cancer vaccine immunotherapy.

The progress in tumor biology regarding both the conception and potency of immune 
system-based cancer vaccines may derive from evidence demonstrating that genetic deletions 
of the A2A receptor or the blockade of A2A receptor signaling by A2A receptor antagonists 
both restored suppression of anti-tumor T cells and induced tumor rejection (97).

Components which target the A2A receptor pathway can induce antitumor immunity by limiting 
results of extracellular adenosine generated from tissues and Tregs. This observation provides 
considerable evidence for the high expression of both CD39 and CD73 ectoenzymes on Tregs, 
MDSCs, and MSCs that secrete adenosine and have various therapeutic applications (112).

T cell-based therapy and adenosine
T lymphocytes are the effector arms in the response to cancer and immunosurveillance. 
Accordingly, numerous therapeutic approaches have been generated to augment effector T 
cells against tumors (113). Ohta et al. (97) found that adoptively transferred CD8+ T cells in 
mice that received ZM241, 385 (A2A receptor antagonists) decreased metastasis in a CL8-1 
melanoma model. In a study by Jin et al. (63) inhibition of the A2A adenosine receptor with the 
antagonist (SCH 58261and caffeine) rescued tumor-specific immune response and enhanced 
the efficacy of adoptive T-cell therapy. The combination of SCH58261 and adoptive T-cell 
therapy significantly could improve survival in mice compared with T-cell therapy or SCH58261 
alone (63). Wang et al. (103) showed that a combination of T-cell immunotherapy with a CD73 
inhibitor (APCP) inhibited tumor growth in a melanoma model compared with immunotherapy 
or APCP treatment alone. In this study, treatment with anti-CD73 and T-cell therapy in a 
peritoneal ovarian model increased survival of mice and was more effective than mono-therapy.

T lymphocytes, which were modified genetically to express a chimeric Ag receptor (CAR), 
have been successful in the treatment of some malignancies especially; hematologic cancers 
(114,115). Beavis et al (116). showed that activation of the CAR unregulated expression of the 
A2A receptor. Also, genetic or pharmacological blockade of the A2A receptor increased CAR 
T-cell efficacy remarkably when associated with PD-1. This protocol leads to IFN-γ production 
of CD8+ CAR T-cells and induction of CD8+ and CD4+ CAR T-cells. This study showed that the 
A2A receptor pathway restricts the activity of patient-derived CAR T cells because CAR T cells 
that were also A2A receptor-deficient had a significantly better therapeutic influence than did 
the wild-type of CAR T (Fig. 3A) (116).

DC immunotherapy and adenosine
DCs are the primary target of different protocols of cancer immunotherapy because they can 
induce an effective and specific tumor immune response (117). In our study, we used an A2A 
adenosine receptor antagonist (SCH58261) and a APCP in combination with a DCs vaccine 
in a 4T1 breast cancer model. Combination therapy with SCH, APCP, and DC reduced tumor 
growth and VEGF production, improved survival of tumor-bearing mice, and induced specific 
antitumor immune responses (118).

9/19https://doi.org/10.4110/in.2019.19.e23

Blockage of Adenosine in Tumor

https://immunenetwork.org

https://immunenetwork.org


Jadidi-Niaragh et al. (108) examined CD73-specific siRNA-loaded chitosan-lactate nano-
particles with DC vaccine in 4T1 breast cancer model that led to reduced expression of CD73 on 
tumor cells, tumor growth, metastasis, and improved mice survival (119). Already, this nano-
particle suppressed the expression of the CD73 molecule on tumor cells, in vitro (Fig. 3B).

As mentioned previously, activities of HIF-1α have a direct relationship to the adenosine 
pathway. The combination of HIF-1α inhibition and the DC vaccine also provided a cytotoxic 
T cell response, IFN-γ production, and increased efficacy of immunotherapy (120).

Immune check point blockade and adenosine
Immune check point blockades have good results in cancer treatment such as anti-
CTLA-4 (ipilimumab) and anti-PD-1/PDL-1 (nivolumab, MK-3475/MPDL3280A, MDX-1105). 
Allard et al. (57) study can reveal that blockade of CD73 reinforced therapeutic activity 
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of immune checkpoint inhibitors anti-CTLA-4 and anti-PD-1 monoclonal Abs. It proved 
that combination therapy in mice with the A2A receptor antagonist (SCH) and anti-PD-1 
monoclonal Abs substantially reduced both experimental and spontaneous metastases, and 
prolonged the survival of mice when compared with monotherapy. This study suggested that 
inhibition of metastasis was dependent on NK, T CD8+, IFN-γ, and perforin (76).

Beavis et al. utilized co-blockade of PD-1 and adenosine receptor 2A in cancer treatment led 
to the significant expression of IFN-γ and Granzyme B by tumor-infiltrating CD8+ T cells, 
growth inhibition of CD73+ tumors, and extension of survival in mice. This study suggested 
that adenosine receptor 2A antagonists could improve the efficacy of anti-PD-1 monoclonal 
Abs in cancer therapy (77).

A recently published study has shown that combination therapy with anti-CD73 andanti-PD-1 
improved survival, induced both an Ab-mediated response and an infiltration by T CD8+ cells 
in a murine ovarian cancer model (Fig. 3C) (4).

A number of clinical trials are investigating adenosine receptor antagonists or anti-CD73 and check 
point inhibitors. Novartis/Palobiofarma is testing a class of A2Areceptor antagonists PFB509 and 
PDR001 (anti-PD-1) in a Phase I trial in patients with advanced non-small cell lung cancer (NSCLC) 
(121). CPI-444, a small oral molecule, is an antagonist of the A2A receptor. Corvus Pharmaceuticals 
is studying single-agent therapy with CPI-444 for renal cell carcinoma (RCC) and in combination 
with atezolizumab (anti PD-L1 monoclonal Ab) for both RCC and NSCLC (122). Another study is in 
phase 1b with the combination of AZD4635 (A2A receptor antagonist) and durvalumab (anti-PD-L1 
Ab) for NSCLC, metastatic castrate-resistant prostate carcinoma, and colorectal carcinoma (CRC) 
(123). In addition, combination therapy withMEDI9447 (anti-CD73) and MEDI4736 (human anti-
PD-L1 IgG1 Ab) in advanced solid tumors, which are selected between adults, is being examined 
(124). Also, Corvus Pharmaceuticals designed a clinical trial to determine the efficacy of CD73 
inhibitor (CPI-006) alone or in combination with an A2A receptor antagonist (CPI-444) and an 
anti-PD-1 Ab in several advanced solid tumors (Table 2) (125).

CONCLUSION

Different treatments were defined by targeting important pathways or particular molecules 
that are essential for both tumor cell development and invasion. Many recent studies offer 
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Table 2. Clinical trials with adenosine pathway inhibitors combined with an immune check inhibitor in cancer
Target Drug Company Study 

phase
Tumor Combination agent Code

A2AR PFB509 Novartis/
Palobiofarma

I, Ib NSCLC PDR001 (anti-PD-1) NCT02403193

CPI-444 Corvus 
Pharmaceutical

I, Ib NSCLC, Melanoma, renal cell carcinoma, TNBC, 
colorectal cancer, bladder cancer

MPDL3280A atezolizumab 
(anti-PD-1)

NCT02655822

AZD4635 AstraZeneca I NSCLC, metastatic castrate-resistant prostate 
carcinoma, colorectal cancer

MEDI4736, durvalumab 
(anti-PD-L1)

NCT02740985

PFB509 (NIR178) Novartis Ib Solid tumors and non-Hodgkin lymphoma PDR001 (anti-PD-1) NCT03207867
CD73 MEDI9447 MedImmune I Selected solid tumor MEDI4736, durvalumab 

(anti-PD-L1)
NCT02503774

CPI-006 Corvus 
Pharmaceutical

I NSCLC, RCC, colorectal cancer, TNBC, cervical cancer, 
ovarian cancer, pancreatic cancer, endometrial cancer, 
sarcoma, SCC of head and neck, bladder cancer, 
metastatic castrate-resistant prostate carcinoma

CPI-004 (A2AR antagonist), 
pembrolizumab (anti-PD-1)

NCT03454451

SCC, squamous cell carcinoma; TNBC, triple-negative breast cancer.

https://immunenetwork.org
http://clinicaltrials.gov/ct2/show/NCT02403193
http://clinicaltrials.gov/ct2/show/NCT02655822
http://clinicaltrials.gov/ct2/show/NCT02740985
http://clinicaltrials.gov/ct2/show/NCT03207867
http://clinicaltrials.gov/ct2/show/NCT02503774
http://clinicaltrials.gov/ct2/show/NCT03454451


combination therapies that present suitable options in cancer immunotherapy for patients. 
Also, blocking any suppressor molecule or cell in the tumor microenvironment will increase 
the performance of different immunotherapeutic methods. The CD39/CD73 purinergic 
pathway can now be distinguished as one of the most substantial immunosuppressive 
regulatory mechanisms in the tumor medium. It is essential to try to develop approaches 
to reduce adenosine receptors and CD73 expression on both tumor and immune cells for 
subsequent adoptive immunotherapy. It seems that further studies are necessary to assess 
anti-tumor immune responses and design an effective targeted therapy to both disrupt 
and modulate the immunosuppressive network. These studies may suggest new strategic 
direction as well as provide insight for innovative approaches to overcome specific difficulties 
encountered in cancer therapy.
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