
The Journal of Molecular Diagnostics, Vol. 26, No. 5, May 2024
jmdjournal.org
Machine LearningeSupported Diagnosis of

Small Blue Round Cell Sarcomas Using Targeted

RNA Sequencing
Lea D. Schlieben,*yz Maria Giulia Carta,*yz Evgeny A. Moskalev,*yz Robert Stöhr,*yz Markus Metzler,yzx Manuel Besendörfer,{

Norbert Meidenbauer,yzk Sabine Semrau,yz** Rolf Janka,yy Robert Grützmann,yz{zz Stefan Wiemann,xx Arndt Hartmann,*yz

Abbas Agaimy,*yz Florian Haller,*yz and Fulvia Ferrazzi*yz{{
From the Institute of Pathology,* the Departments of Pediatrics,x Pediatric Surgery,{ Internal Medicine 5–Hematology and Oncology,k Radiation
Oncology,** Radiology,yy Surgery,zz and Nephropathology,{{ Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen; the Comprehensive Cancer Center Erlangen-EMN,y Erlangen; the Bavarian Cancer Research Center,z Erlangen; and the
Division of Molecular Genome Analysis,xx German Cancer Research Center, Heidelberg, Germany
Accepted for publication
C

T

h

February 8, 2024.

Address correspondence to
Fulvia Ferrazzi, Ph.D., Depart-
ment of Nephropathology,
Institute of Pathology, Frie-
drich-Alexander-Universität
Erlangen-Nürnberg, Kranken-
hausstr. 8-10, Erlangen 91054,
Germany.
E-mail: fulvia.ferrazzi@uk-
erlangen.de.
opyright ª 2024 Association for Molecular

his is an open access article under the CC B

ttps://doi.org/10.1016/j.jmoldx.2024.02.002
Small blue round cell sarcomas (SBRCSs) are a heterogeneous group of tumors with overlapping
morphologic features but markedly varying prognosis. They are characterized by distinct chromosomal
alterations, particularly rearrangements leading to gene fusions, whose detection currently represents the
most reliable diagnostic marker. Ewing sarcomas are the most common SBRCSs, defined by gene fusions
involving EWSR1 and transcription factors of the ETS family, and themost frequent noneEWSR1-rearranged
SBRCSs harbor a CIC rearrangement. Unfortunately, currently the identification of CIC::DUX4 translocation
events, the most common CIC rearrangement, is challenging. Here, we present a machine-learning
approach to support SBRCS diagnosis that relies on gene expression profiles measured via targeted
sequencing. The analyses on a curated cohort of 69 soft-tissue tumors showedmarkedly distinct expression
patterns for SBRCS subgroups. A random forest classifier trained on Ewing sarcoma and CIC-rearranged
cases predicted probabilities of being CIC-rearranged>0.9 for CIC-rearrangedelike sarcomas and<0.6 for
other SBRCSs. Testing on a retrospective cohort of 1335 routine diagnostic cases identified 15 candidate
CIC-rearranged tumors with a probability >0.75, all of which were supported by expert histopathologic
reassessment. Furthermore, themultigene random forest classifier appeared advantageous over using high
ETV4 expression alone, previously proposed as a surrogate to identify CIC rearrangement. Taken together,
the expression-based classifier can offer valuable support for SBRCS pathologic diagnosis. (J Mol Diagn
2024, 26: 387e398; https://doi.org/10.1016/j.jmoldx.2024.02.002)
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Small blue round cell sarcomas (SBRCSs) are a heteroge-
neous group of mesenchymal neoplasms predominantly
affecting children and young adults. According to the
current World Health Organization classification of soft-
tissue tumors (STTs), SBRCSs are composed of relatively
undifferentiated cells with small blue nuclei and a round to
ovoid cytomorphology in hematoxylin and eosin staining.1

Overlapping histologic and morphologic characteristics
make the routine morphology-based classification of
SBRCSs into specific subgroups a diagnostic challenge.
These subgroups are characterized by different progression
and sometimes treatment strategies, necessitating tumor
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Key Points
� Small blue round cell sarcomas (SBRCSs) are a hetero-
geneous group of tumors with overlapping morphologic
features but divergent genotypes and markedly varying
prognosis.

� The detection of recurrent gene fusions represents the
most reliable diagnostic marker for SBRCSs. However, it
can be challenging with currently available methods, as in
the case of the CIC::DUX4 translocation events, the most
common CIC rearrangement in sarcomas.

� Bioinformatics analyses of the gene expression profiles
measured via targeted sequencing show that SBRCS
subgroups are characterized by markedly distinct
expression patterns.

� The machine-learning classifier based on gene expression
profiles that is presented here is a valuable tool to support
the pathologic diagnosis of SBRCSs.
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alterations in subsets of SBRCSs, which are characterized
by particular recurrent chromosomal rearrangements and
associated specific gene fusions.2 The tumorigenic activity
of gene fusions is exerted either by the formation of encoded
chimeric fusion proteins or by the aberrant expression of a
normal gene product through hijacking of regulatory ele-
ments of the translocation partner.3,4 Molecular pathologic
identification of characteristic gene fusion events has gained
increasing importance in sarcoma diagnostics,5 and RNA
sequencing (RNA-seq)ebased methods now are used
extensively in the molecular diagnostic routine workup of
STTs.

Ewing sarcomas (ESs) are the most common type of
SBRCSs and harbor gene fusions involving EWSR1 and
transcription factors of the ETS family, predominantly FLI1
(85%) and ERG (10%). In contrast, atypical ES or Ewing-like
sarcomas are a group of undifferentiated round cell sarcomas
that resemble classic ESmorphologically to a variable extent,
but lack the molecular hallmark for ES, the EWSR1::ETS
fusion. Thus far, fourmain types of Ewing-like sarcomas have
been described: CIC-rearranged sarcomas,6 BCOR-rear-
ranged sarcomas,7 sarcomas with a fusion between EWSR1
and a gene not belonging to the ETS family members, and
unclassified round cell sarcomas.8 SBRCSs with CIC rear-
rangement represent the most prevalent group within
noneEWSR1-rearranged SBRCSs. The frequency of CIC-
rearranged sarcomas has been estimated as 3% to 5% of
SBRCSs in both adult and pediatric populations.9,10 From a
clinical perspective, these tumors present most commonly as
deep STTs in the extremities.9 Patients generally are older
than those with classic ES, with a peak incidence in the fourth
decade of life, in contrast to ES, in which an onset in the
second to third decade of life is common.9,11,12 CIC-rear-
ranged sarcomas have a more aggressive behavior when
compared with classic ES, although the available data are
limited to retrospective case reports and case series.9,11,13 The
most common CIC rearrangement events are CIC::DUX4
gene fusions. However, given the complex structure of the
DUX gene locus, which harbors multiple gene copies with
highly similar sequences, both fluorescence in situ hybridi-
zation (FISH)- and next-generation sequencingebased
methods have difficulties in the correct identification of
CIC::DUX4 translocation events.14,15 In particular, an
inability of different RNA-seq approaches to identify the
CIC::DUX4 gene fusion has been observed.15e17 Yet, gene
fusions involving transcription factors are expected to have a
significant effect on gene expression patterns. Indeed, the
CIC::DUX4 fusion protein has been shown to up-regulate the
expression of the polyomavirus enhancer activator 3 (PEA3)
subfamily of ETS transcription factors (eg, ETV1, ETV4, and
ETV5).6 Thus, the up-regulated expression of ETV1, ETV4,
and WT1 have been introduced as diagnostic markers for
CIC-rearranged sarcomas by immunohistochemistry,10,18,19

RNA expression analysis,10,15 and RNA in situ hybridiza-
tion.20 In particular, previous studies have shown that
immunohistochemical stainings for ETV4 and WT1 are
388
helpful diagnostic markers in the workup of SBRCSs, yet not
sufficient to identify all CIC-rearranged cases in a specific
way.18,19 On the other hand, the molecular pathologic
detection of CIC rearrangements, which still represents the
only reliable diagnostic marker, remains challenging.
In this study it was hypothesized that the use of gene

expression profiles extracted from a widely used routine
diagnostic RNA hybrid captureebased next-generation
sequencing panel might offer effective support in the iden-
tification of CIC-rearranged sarcomas and be advantageous
with respect to relying only on the expression of the PEA3
subfamily of ETS transcription factors. Machine learning
methods applied to gene expression profiles have allowed
the successful development of diagnostic and prognostic
tools for different cancer entities. For example, different
breast cancer expression-based classifiers are used in clinical
practice,21,22 and several expression-based signatures have
been proposed for lymphoid neoplasms, such as for pe-
ripheral T-cell lymphoma23 or B-cell lymphomas.24,25 Here,
an expression-based classifier to predict the likelihood of
any given SBRCS of harboring a CIC rearrangement was
developed and tested on a large retrospective cohort of
routine molecular pathology diagnostic cases.

Materials and Methods

Patient Samples

A total number of 1404 tumors analyzed at the Institute of
Pathology (Erlangen, Germany) were used for this study,
including mainly STTs, salivary gland carcinomas, and
kidney tumors. A cohort of 69 STTs with a confirmed
diagnosis by an expert STT pathologist (A.A.) was used for
the development of the machine learning classifier. These 69
STT samples hereafter are referred to as the curated cohort,
whereas the remaining 1335 cases were used as the test
jmdjournal.org - The Journal of Molecular Diagnostics
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ML-Supported Diagnosis of SBRCSs
cohort. The curated cohort comprised 31 tumors within the
morphologic spectrum of SBRCSs: 13 classic ESs with
EWSR1 gene fusions, 3 BCOR-rearranged sarcoma samples
with BCOR gene fusions confirmed by immunostaining, and
15 SBRCSs with morphologic and immunophenotypic
features of CIC-rearranged sarcomas that were negative for
EWSR1 gene rearrangements by FISH. Two of the BCOR-
rearranged samples were two distinct sarcoma samples from
the same patient, 2 years apart. The additional 38 STTs
included 12 synovial sarcomas, 10 solitary fibrous tumors, 6
myxoid liposarcomas, and 10 cases of dermatofibrosarcoma
protuberans. All samples were used in accordance with the
ethical guidelines for the use of retrospective tissue samples
provided by the local ethics committee of the Friedrich-
Alexander-Universität Erlangen-Nuremberg (Ethics Com-
mittee statements 24.01.2005 and 18.01.2012).

Targeted RNA Sequencing

Tumor RNA was isolated from microdissected formalin-
fixed, paraffin-embedded tissues (approximately five sec-
tions, 6- to 8-mm thick) using the RNeasy formalin-fixed,
paraffin-embedded RNA kit (Qiagen, Hilden, Germany).
The quality of RNA samples was assessed using RNA
ScreenTape on a TapeStation 4200 (Agilent, Santa Clara,
CA). Only samples with >30% of RNA fragments
exceeding 200 nucleotides were included for library prep-
aration. Libraries for sequencing were prepared using the
Illumina TruSight RNA Fusion Panel (Illumina, Inc., San
Diego, CA), which enriches for 507 genes frequently
involved in gene fusions26 and covers an approximately
1.44-megabase region. A total of 500 ng RNA was used as
input for library preparation, prepared according to the
manufacturer’s instructions. Amplified libraries were
sequenced either on a MiSeq instrument or on a NextSeq
550 instrument (Illumina) with 151-bp paired-end reads
with generally >3 million reads per sample. Illumina’s
sequenced libraries were preprocessed via the Illumina
RNA-seq Alignment BaseSpace App. Within the Illumina
App, sequencing reads were aligned to the human reference
genome (University of California Santa Cruz, hg19) relying
on the STAR aligner,27 and the Manta gene fusion caller28

was used for gene fusion detection.
Additional libraries for a subset of samples were prepared

with the Archer FusionPlex Sarcoma Kit (Archer, Boulder,
CO) according to the manufacturer’s instructions. Library
was prepared using 250 ng total RNA. Libraries were
sequenced with 151-bp paired-end reads on a MiSeq in-
strument, leading to a minimum of 1.5 million reads per
sample. Sequencing data were analyzed using Archer
Analysis Suite v6.2.7.

FISH Analysis

Freshly cut tissue sections were used for the detection of
CIC gene locus rearrangements using a commercial probe
The Journal of Molecular Diagnostics - jmdjournal.org
according to the manufacturer’s instructions (Zytolight
SPEC CIC Dual Color Break Apart Probe, Z-2285-50;
Zytovision GmbH, Bremerhaven, Germany). A CIC-rear-
ranged sarcoma (CIC_R_11) from the curated cohort was
used as a positive control, whereas a BCOR-rearranged
sarcoma (BCOR_02) from the curated cohort was used as a
negative control. Fifty nuclei were counted per case. A
signal was considered to be rearranged if the distance be-
tween the green and orange signals was at least the size of a
single signal. A case was considered rearranged if >20%
of the signals were rearranged. Image acquisition and high-
resolution microscopy were performed using a LSM800
confocal laser scanning microscope equipped with an
Airyscan detector (Zeiss, Oberkochen, Germany) and the
ZEN 2.3 (blue edition) software with Airyscan image
processing.
Expression Data Analysis

Illumina targeted RNA-seq data were analyzed within the R
version 4.1.2 (R Foundation for Statistical Computing,
Vienna, Austria, https://www.R-project.org)/Bioconductor
version 3.13 environment,29 starting from the raw counts
obtained via the Illumina RNA-seq Alignment BaseSpace
App. First, only the curated cohort samples were considered.
Relying on the DESeq2 package version 1.34.0,30 size
factor normalization was performed for the raw counts and
variance-stabilized transformed (VST) counts were ob-
tained. A variance-stabilizing transformation is a data
transformation such that the variance of transformed values
is approximately independent of the mean.31 The use of
VST counts facilitates visualization and analyses of gene
expression such as clustering or classification, which
generally work better with variables with similar distribu-
tions. In this study, VST counts were used as the expression
measure. Principal component analysis was performed on
the VST counts of the 100 genes with the highest variance
across all samples and the plot of the first two principal
components was generated with ggplot2 v.3.3.6.32 Expres-
sion heatmaps were generated with the pheatmap package 1.
0.12 using mean-centered VST counts (ie, VST counts from
which, for each gene, the mean VST count across samples
was subtracted). Dot plots of the VST counts of single genes
were generated using ggplot2. Differential expression
analysis of SBRCS samples was performed, relying on the
DESeq2 package, starting from the raw count data of only
the SBRCS samples. Genes with a Benjamini-Hoch-
bergeadjusted P value smaller than 0.01 were considered
differentially expressed.

Random Forest Classifier

A random forest (RF) classifier33 was trained using the
randomForest version 4.7-1.1 package.34 To build the
training data set, only the CIC-rearranged and ES samples
389
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Figure 1 Unsupervised expression data analysis. A: Principal component (PC) analysis plot based on the expression [variance-stabilized transformed (VST)
counts] of the 100 genes with the highest variability across the 69 soft-tissue tumors of the curated cohort. B: Expression heatmap of the same top 100
variable genes. Gene expression values in the heatmap are mean-centered VST counts and are color-coded so that red represents up-regulation and blue
represents down-regulation. DFSP, dermatofibrosarcoma protuberans; MLS, myxoid liposarcoma; SFT, solitary fibrous tumor.
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contained in the curated cohort were considered. The
associated raw gene counts were transformed into VST
counts and the top 100 variable genes (ie, the 100 genes
with the highest variance based on their VST counts) were
identified. The VST counts of these 100 genes were used as
training data for the RF classifier, with the number of trees
set to 100 and the number of genes randomly sampled at
each tree split set to 10. Gene importance was assessed by
the mean decrease in the Gini index35 and used to select a
subset of top important genes to be explored further. The
Gini index is a measure of the impurity of a node in a tree,
which equals 0 when all samples associated to a node
belong to one class, and reaches the maximum
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(corresponding to 0.5 in a binary setting) when the classes
are represented equally. During training of a tree, the ability
of the expression value of a gene to separate samples
belonging to the two classes is assessed via the decrease in
the Gini index. Thus, in a RF, the overall mean decrease in
the Gini index of a gene offers a measure of the gene’s
discriminative power. Given the small size of the training
set and the presence of multiple genes likely to be able to
discriminate well between the two classes, to assess the
stability of the top important genes, another nine RFs were
trained, each time using a different random seed to ensure
different random initializations as well as reproducibility.
Then, the median, as well as the minimum and maximum,
coma
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transformed counts) dot plots of selected genes showing up-regulation in
OR-r., BCOR-rearranged sarcoma; CIC-r., CIC-rearranged sarcoma; CIC-r.-like,
id liposarcoma; SFT, solitary fibrous tumor.
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Figure 3 Expression-based classifier to predict the probability of being CIC-rearranged. Histopathologic hematoxylin and eosin stain of an exemplary CIC-
rearranged (A) and Ewing sarcoma (B) sample. Dot plots of out-of-bag probabilities of being CIC-rearranged in the training set (C) and predicted probabilities
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Table 1 Candidate CIC-Rearranged Cases Identified by the Classifier

Sample
identifier

Predicted
probability of
being CIC-rearranged

Identified
candidate
fusion

Age, years/sex/
localization

Initial diagnosis in
pathology report

C1 0.99 None 64/F/lower jaw Unclassified highly malignant epithelioid neoplasm
C2 0.98 None 38/M/thoracic wall Ewing-like sarcoma, most likely CIC-rearranged
C3 0.97 None 54/M/tongue Undifferentiated round cell sarcoma, NOS
C4 0.94 None 19/F/upper arm Unclassified highly malignant round and spindled cell

sarcoma
C5 0.94 None 32/F/neck Ewing-like sarcoma, most likely CIC-rearranged
C6 0.93 None 25/F/thoracic wall Ewing-like sarcoma, most likely CIC-rearranged
C7 0.92 None 48/F/lower arm Ewing-like sarcoma, most likely CIC-rearranged
C8 0.89 None 21/F/foot Ewing-like sarcoma, most likely CIC-rearranged
C9 0.87 None 42/M/arm Unclassified epithelioid soft tissue neoplasm of unknown

histogenesis
C10 0.86 CIC::NUTM1 44/F/neck CIC::NUTM1 rearranged neoplasm
C11 0.85 None 34/F/knee Ewing-like sarcoma, most likely CIC-rearranged
C12 0.84 None 17/F/retroperitoneum Unclassified small round cell sarcoma
C13 0.82 None 25/F/leg Ewing-like sarcoma, most likely CIC-rearranged
C14 0.82 None 65/F/arm Ewing-like sarcoma, most likely CIC-rearranged
C15 0.8 None 14/F/axilla Unclassified highly malignant epithelioid neoplasm

The table columns show sample identifier, predicted probability of being CIC-rearranged, identified gene fusion during primary routine pathology workup,
age, sex, anatomic localization, and initial diagnosis in the pathology report.
F, female; M, male.

ML-Supported Diagnosis of SBRCSs
variable importance (mean decrease in the Gini index) of the
top identified genes was calculated across the 10 trained
RFs. In addition, for each of the top genes, the number of
RFs (minimum number of RFs Z 1, maximum number of
RFs Z 10) in which the gene was found within the top
important genes corresponding to each RF was assessed.
Internal assessment of the RF classifier performance
occurred via out-of-bag evaluation.33 Indeed, because each
decision tree in a RF typically is trained on a bootstrap
sample of the training set, out-of-bag evaluation utilizes, for
each sample, the predicted classes by the decision trees that
did not use the sample during training. For each sample, a
classification (CIC-rearranged or Ewing) is provided by
each tree in the RF. The predicted probability of being CIC-
rearranged [hereafter indicated as prob(CIC-rearranged)] is
taken equal to the proportion of trees in the RF classifying
the case as CIC rearranged.

Afterward, the RF model was used to calculate the pre-
dicted prob(CIC-rearranged) for all samples of the curated
cohort not included in the training. Finally, the RF model
was used to obtain predictions on the 1335 test cases. In
both cases, the transformed counts to be used for the RF
prediction were obtained for each sample as follows: first,
raw counts were normalized using the size factor estimated
using the gene-wise geometric means calculated on the
training data as pseudo-reference sample; then, VST counts
were obtained using the dispersion function pre-estimated
on the training data. For each case of the test cohort,
prob(CIC-rearranged) was assessed, and a probability cut-
off value chosen on the basis of the distribution of all
probability values was used to select candidate CIC-rear-
ranged cases. The stability of the predicted probabilities for
The Journal of Molecular Diagnostics - jmdjournal.org
the candidate cases was explored by assessing the range of
their predicted probabilities across the 10 trained RFs, as
well as by assessing whether the median probability was
higher than the selected cut-off value.

Results

Detection of Gene Fusions via Targeted RNA
Sequencing

Gene fusions were analyzed in a curated cohort of 69 STT
samples, including 31 SBRCSs and 38 other types of STTs
(Supplemental Table S1), via targeted RNA-seq (Illumina).
In all 38 STTs, RNA-seq revealed the expected gene fusion
given their histopathologic diagnosis. Specifically, 8 and 4
of the 12 synovial sarcomas, respectively, were identified to
harbor a SS18::SSX1 and SS18::SSX2 gene fusion, all 10
solitary fibrous tumors had a NAB2::STAT6 gene fusion, all
6 myxoid liposarcomas had a FUS::DDIT3 gene fusion, and
all 10 dermatofibrosarcoma protuberans showed a
COL1A1::PDGFB gene fusion.

The 31 SBRCS samples included 13 classic ESs, 3
BCOR-rearranged sarcoma samples with positive BCOR
immunostaining, and 15 SBRCSs with morphologic fea-
tures of CIC-rearranged sarcomas. Targeted RNA-seq
allowed the identification of gene fusions in all 13 ESs,
with 10 samples harboring a EWSR1::FLI1 gene fusion, and
the other 3 samples harboring a EWSR1::ERG, EWSR1::-
FEV, and FUS::ERG gene fusion, respectively. All three
BCOR-rearranged sarcoma samples harbored a
BCOR::CCNB3 gene fusion. However, no fusion was
detected for the 15 SBRCSs with morphologic features of
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CIC-rearranged sarcomas. These SBRCSs additionally were
analyzed by a second RNA-seq panel (Archer). The use of
this panel allowed identification of a CIC::DUX4 gene
fusion in 10 samples, which thus were classified as CIC-
rearranged sarcomas. In addition, a CIC rearrangement was
confirmed by FISH in one case (CIC_R_11) (Supplemental
Table S1) with available paraffin material. No fusion could
be identified for the five remaining SBRCSs with the second
RNA-seq panel. Because these samples had morphologic
features of CIC rearrangement, they are hereafter referred to
as CIC-rearranged-like sarcomas. Furthermore, a CIC rear-
rangement was found by FISH in two of these CIC-rear-
ranged cases (CIC_R_like_01 and CIC_R_like_05)
(Supplemental Table S1) with available paraffin material,
while there was no sufficient paraffin material for additional
FISH analysis in the three other cases.

STT Subtypes Show Distinct Gene Expression Profiles

To explore whether the expression profiles measured with the
Illumina TruSight targeted RNA-seq panel could be used to
support the identification of CIC-rearranged sarcomas, un-
supervised analyses of the SBRCS expression profiles were
performed. A plot of the first two components obtained by
principal component analysis of the expression of the top 100
variable genes revealed that tumor entities clustered accord-
ing to diagnosis (Figure 1A). Notably, the five SBRCSs with
morphologic features of CIC rearrangement clustered
together with the 10 CIC-rearranged tumor samples. In
addition, hierarchical clustering analysis of the expression
profiles of the same 100 genes confirmed that tumor samples
with the same diagnosis clustered together (Figure 1B).
Furthermore, CIC-rearranged sarcomas and CIC-rearranged-
like sarcomas displayed remarkably similar expression pro-
files characterized by up-regulation of the expression of
PEA3 transcription factor genes (ETV1, ETV4, ETV5) and
WT1. At the single-gene level, several STT entities were
characterized by up-regulated genes involved in the respec-
tive gene fusion (eg, there was a high expression of CCNB3
in BCOR-rearranged sarcomas, of PDGFB in dermatofi-
brosarcoma protuberans, and of SSX1 in synovial sarcomas)
(Figure 2). Similarly, CIC-rearranged sarcomas and CIC-
rearranged-like sarcomas showed a distinct and similar up-
regulated expression of the known CIC::DUX4 target genes
ETV1, ETV4, andWT1 (Figure 2). Yet, up-regulation was not
always seen in all cases of one STT entity or was not entirely
specific to one entity. Thus, the expression pattern of a larger
number of genes might be more predictive.

Differential gene expression analysis between the
different SBRCS groups confirmed that CIC-rearranged and
CIC-rearranged-like sarcomas showed similar expression
profiles that were markedly different from the other
SBRCSs. Indeed, 68 genes were differentially expressed
between CIC-rearranged and BCOR-rearranged sarcomas
(adjusted P < 0.01) (Supplemental Table S2), and 137 be-
tween CIC-rearranged and ESs (adjusted P < 0.01)
The Journal of Molecular Diagnostics - jmdjournal.org
(Supplemental Table S3). In both comparisons, ETV1,
ETV4, and WT1 were among the differentially expressed
genes, showing up-regulation in CIC-rearranged sarcomas.
Instead, only one gene (LINC00982) was differentially
expressed (adjusted P < 0.01) (Supplemental Table S4)
when comparing the CIC-rearranged sarcomas with the
CIC-rearranged-like sarcoma samples.

Machine LearningeBased Prediction of CIC-Rearranged
Cases

To explore the possibility of using gene expression profiles
to support the diagnosis of SBRCSs, a gene expression-
based classifier was trained. Because in the pathologic di-
agnostics the most critical differential diagnosis is between
CIC-rearranged sarcoma (Figure 3A) and ES (Figure 3B),
and these are the two most frequent SBRCSs, the classifier
focused on these two SBRCSs. An RF classifier was trained
on the expression profiles of the top 100 variable genes
identified considering the CIC-rearranged and ES samples
of the curated cohort. The predicted out-of-bag probabilities
of being CIC-rearranged were greater than 0.85 for all CIC-
rearranged samples and less than 0.3 for all Ewing samples
(Figure 3C). Thus, the classifier could effectively support
the differential diagnosis between CIC-rearranged and ESs.
Results showed that only 39 genes had an importance
(assessed via the mean decrease in the Gini index) greater
than zero. Of these 39 genes used by the RF classifier, the
top 20 important ones (ie, those with the highest mean
decrease in the Gini index) included several of the genes
identified as differentially expressed when comparing CIC-
rearranged versus ESs, including ETV4, ETV1, and WT1
(Figure 3E). The stability of these 20 top predictors was
assessed by considering their importance measure obtained
in nine additional RFs. Despite fluctuations in the variable
importance measure, 15 of 20 genes were among the top 20
predictors in at least eight RFs, 4 of 20 genes were among
the top 20 predictors in five to seven RFs, and only 1 gene
was not found in the top 20 predictors in other RFs. To
explore the possibility of using the classifier to identify
candidate CIC-rearranged cases in a more varied SBRCS
cohort, the RF was used to predict the probability of being
CIC-rearranged for all other samples in the curated cohort.
The predicted probabilities were greater than 0.9 for all five
CIC-rearranged-like sarcoma samples and less than 0.6 for
all other samples (Figure 3D). This validation suggested that
the RF classifier effectively supports the identification of
candidate CIC-rearranged sarcomas.

To test the classifier, a large collection of 1335 tumor
samples was used, mainly including STTs, salivary gland
carcinomas, and kidney tumors. These samples were
analyzed during routine diagnostics at the Institute of Pa-
thology (Erlangen, Germany) using the same Illumina
TruSight Panel. On the basis of visual inspection of the
distribution of predicted probabilities of being CIC-rear-
ranged, a probability threshold of 0.75 was adopted to
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identify 15 samples as candidate CIC-rearranged cases
(Figure 4A and Table 1). The predicted probabilities
appeared stable because the 15 samples had a median pre-
dicted probability of being CIC-rearranged higher than 0.75
over the 10 trained RFs (Supplemental Figure S1A), and a
predicted probability higher than 0.75 in most of the RFs
(Supplemental Figure S1B). For 14 of these cases no
candidate gene fusion was identified during routine di-
agnostics, whereas 1 case harbored a CIC::NUTM1 gene
fusion. Careful review of these cases by STT expert pa-
thologists (A.A. and F.H.) showed that all cases were
compatible with a diagnosis of CIC-rearranged sarcoma. In
addition, in eight of the cases a diagnosis of most likely
CIC-rearranged sarcoma already had been made based on
histomorphology and immunohistochemistry in the first
diagnostic setting without RNA fusion analysis (Table 1).
Furthermore, 1 of these 15 cases (C4) (Table 1) was avail-
able for FISH analysis and showed a CIC rearrangement
(Supplemental Figure S2).

Unsupervised analyses based on the expression of the 20 top
predictors identified via the RF classifier showed that the 15
candidate cases clustered together with the CIC-rearranged
samples of the training set (Figure 4C). ETV4 expression was
very high in all 15 candidate cases, validating the approach.
However, these cases were not those with the highest WT1
expression (Figure 4B). This suggested that ETV4 expression
was a key element in the classifier predictions, whereas the use
of WT1 expression alone might have missed these cases. To
explore further whether the multigene RF classifier is superior
to using ETV4 expression alone, all 37 test samples with high-
ETV4-expression (ie, ETV4 expression higher than the 97th
percentile of ETV4 gene expression across all test samples)
were investigated. ThisETV4 expression thresholdwas chosen
on the basis of the curated cohort as one that could well
separate CIC-rearranged and CIC-rearranged-like cases from
the others (Figure 2). These 37 high-ETV4-expression cases
included the 15 candidate cases identified by the RF and 22
additional cases. Of these 22 cases, 1 case clustered with the
CIC-rearranged samples of the training set and 21 cases had
discordant expression profiles, which differed from the CIC-
rearranged cases (Figure 4C). The case clustering with the
CIC-rearranged samples (S_09) (Table 2) was an additional
candidate CIC-rearranged case on the basis of its expression
profile. This high-ETV4-expression case had a predicted
probability of 0.72 and indeed was compatible with a CIC-
rearranged sarcoma on the basis of the STT expert
Table 2 Additional Candidate CIC-Rearranged Case Identified on the B

Sample
identifier

Predicted probability
of being CIC-rearranged

Identified
candidate fusion

S_09 0.72 None

The table columns show sample identifier, predicted probability of being CIC-re
age, sex, anatomic localization, and initial diagnosis in the pathology report.
F, female.
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pathologists’ review. Because this case was an external case
that had been sent for consultation, no paraffin material was
available for FISH analysis. However, all of the other 21 tu-
mors with a probability less than 0.75 but high ETV4 expres-
sion were not compatible with CIC-rearranged sarcomas, and
included carcinomas of the salivary glands, sinonasal undif-
ferentiated carcinoma, and epithelioid sarcoma of proximal
type. A reassessment of all 1335 cases on the basis of their
clinicopathologic data and morphology suggested that the 15
candidate CIC-rearranged samples identified by the classifier
with prob(CIC-rearranged) > 0.75 and the additional sample
S_09 were the only 16 cases with a diagnosis compatible with
CIC-rearranged sarcoma. Taken together, these results show
that the RF classifier performs better than ETV4 expression
alone.
Discussion

Here, the usefulness of gene expression profiles measured
with the Illumina TruSight RNA Fusion panel to support the
diagnosis of STTs was evaluated. In the curated cohort of 69
STTs, unsupervised analysis of expression data revealed
that tumor entities characterized by distinct gene fusions
clustered together according to their gene expression pro-
files. Notably, the 10 CIC-rearranged sarcomas and the five
SBRCSs with a CIC-rearranged-like histomorphology
showed very similar expression patterns. In addition, all 15
samples showed an up-regulation of PEA3 transcription
factor genes (ETV1, ETV4, ETV5) and WT1, in agreement
with previous findings that PEA3 genes are transcriptional
targets of the chimeric CIC::DUX4 fusion
protein.6,10,15,18e20 Given the observed subtype-specific
transcriptional profiles revealed by the targeted RNA-seq
panel, the possibility of building an expression-based RF
classifier focusing on CIC-rearranged and ES cases, the two
most common SBRCS subgroups and those with the most
critical differential diagnosis, was explored further. For the
other samples in the curated cohort, the RF predicted
probabilities greater than 0.9 for the CIC-rearranged-like
cases and less than 0.6 for the other SBRCSs. When tested
on a large test cohort of 1335 routine diagnostic cases, the
classifier identified 15 cases with high probability of being
CIC-rearranged, including 1 case with a CIC::NUTM1 gene
fusion.36 The compatibility with a CIC-rearranged sarcoma
asis of Its Expression Profile

Age, years/sex/
localization

Initial diagnosis
in pathology report

47/F/hand Unclassified small round cell
sarcoma

arranged, identified gene fusion during primary routine pathology workup,
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diagnosis was confirmed for all of them by their re-
evaluation by expert soft-tissue pathologists. In addition,
one case with available paraffin material was confirmed to
harbor CIC rearrangement by FISH.

Results confirmed the importance of ETV4 as a marker
for CIC-rearranged sarcomas, however, they also high-
lighted advantages of using a multigene assessment. Indeed,
all 15 candidate cases had very high ETV4 expression value.
However, when considering the additional 22 samples with
ETV4 expression higher than approximately the 97th
percentile, the predicted probabilities by the RF in most
cases were markedly lower, correctly indicating that these
samples were not CIC-rearranged. The expression profiles
of 21 of these 22 cases differed from those of the training
CIC-rearranged cases and re-evaluation by the expert STT
pathologists indeed ruled out a CIC-rearranged sarcoma
diagnosis for all 21. On the other hand, only one case of
potential CIC-rearranged sarcoma with a probability of 0.72
would have been interpreted as a false negative. A reas-
sessment of this case revealed that this tumor had been
classified as likely CIC-rearranged sarcoma in the initial
pathology report based on morphology and immunohisto-
chemistry. However, the sample harbored very poor RNA
quality, which might have affected the measured expression
profiles and in turn the predicted probability by the RF. In
summary, a prediction based on ETV4 expression alone,
with an expression threshold of approximately the 97th
ETV4 expression percentile, would have identified one more
CIC-rearranged case correctly, but with a precision (ie,
percentage of correctly identified CIC-rearranged cases out
of all cases predicted as CIC-rearranged) of 43% (16 of 37).
Instead, the RF classifier achieved a precision of 100% (15
of 15). This suggests that more specific diagnostic support
might be achievable by using the RF multigene classifier,
while high ETV4 expression is a sensitive but less-specific
screening approach. Furthermore, the RF provides a quan-
titative and observer-independent prediction score. To
assess the sensitivity and specificity of the RF properly, it
would be necessary to have an alternative, ground-truth
criterion able to identify all positive cases (ie, all CIC-
rearranged sarcomas), in the test set of 1335 cases. The
reassessment of all 1335 cases on the basis of their clini-
copathologic data and morphology suggested that these 16
samples were the only cases compatible with CIC-rear-
ranged sarcoma. Thus, a threshold of prob(CIC-
rearranged) > 0.75 identified 15 of 16 cases with no
false-positive results, whereas a threshold �0.72 would
have identified all 16 cases with one false-positive case.
Accordingly, the identification of CIC-rearranged cases with
the RF classifier appears highly specific. Yet, even a case
with high prob(CIC-rearranged) by the RF classifier needs
critical interpretation on the basis of morphology, immu-
noprofiling, and clinicopathologic data by the pathologist.

Taken together, this study shows that the bioinformatical
analysis of targeted RNA-seq expression patterns can
effectively support a SBRCS diagnosis. The failure to
The Journal of Molecular Diagnostics - jmdjournal.org
detect CIC::DUX4 rearrangements by next-generation
sequencingebased RNA fusion analysis emphasizes the
need for careful evaluation of novel diagnostic assays using
known rearranged cases and expertise of a laboratory
specialized in STTs. In the future, the availability of a larger
and well-curated training cohort of STTs could mitigate the
well-known curse of dimensionality issue, associated with
having a number of features (genes) significantly higher
than the number of samples. A larger training set also could
allow extension of the approach to a multiclass prediction
tool, able to predict probabilities associated with different
STT subtypes. In addition, this approach may be extended
to separate STT entities without specific gene fusion events,
such as dedifferentiated liposarcoma.
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