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scGCN is a graph convolutional networks algorithm
for knowledge transfer in single cell omics
Qianqian Song1,2, Jing Su 3,4✉ & Wei Zhang 1,2✉

Single-cell omics is the fastest-growing type of genomics data in the literature and public

genomics repositories. Leveraging the growing repository of labeled datasets and transferring

labels from existing datasets to newly generated datasets will empower the exploration of

single-cell omics data. However, the current label transfer methods have limited perfor-

mance, largely due to the intrinsic heterogeneity among cell populations and extrinsic dif-

ferences between datasets. Here, we present a robust graph artificial intelligence model,

single-cell Graph Convolutional Network (scGCN), to achieve effective knowledge transfer

across disparate datasets. Through benchmarking with other label transfer methods on a

total of 30 single cell omics datasets, scGCN consistently demonstrates superior accuracy on

leveraging cells from different tissues, platforms, and species, as well as cells profiled at

different molecular layers. scGCN is implemented as an integrated workflow as a python

software, which is available at https://github.com/QSong-github/scGCN.
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S ingle-cell omics technologies are increasingly used in bio-
medical research to provide high resolution insights into the
complex cellular ecosystem and underlying molecular

interconnectedness1–3. Leading this wave of omics is single-cell
RNA sequencing (scRNA-seq), which allows measurement of the
transcriptome in thousands of single cells from multiple biolo-
gical samples under various conditions4–8. Other single-cell-based
assays, include Single-cell Assay for Transposase-Accessible
Chromatin using sequencing (scATAC-seq), profile cellular het-
erogeneity at the epigenetic level9–11, which further elucidates
transcriptional regulators8,12. These technological developments
allow profiling of multiple molecular layers at single-cell resolu-
tion and assaying cells from multiple samples under different
conditions.

The rapid advances in single-cell technologies have led to
remarkable growth of single cell omics data. As more and more
single-cell datasets become available, there is an urgent need to
leverage existing and newly generated data in a reliable and
reproducible way, learning from the established single-cell data
with well-defined labels as reference, and transferring labels to
newly generated datasets to assign cell-level annotations10,11.
However, existing datasets and newly generated datasets are often
collected from different tissues and species13,14, under various
experimental conditions, generated by different platforms15,16,
and in different omics types17. Thus a reliable and accurate
knowledge transfer method must overcome the following chal-
lenges: (1) the unique technical issues of single-cell data (e.g.,
dropouts and dispersion)18–21; (2) batch effects that arise from
different operators, experimental protocols16, and technical var-
iation (e.g., mRNA quality, pre-amplification efficiency, technical
settings during data generation)22–24; and (3) intrinsic biological
variances associated with different tissues, species, and molecular
layers such as RNA-seq and ATAC-seq.

To address these challenges in transferring labels across dif-
ferent datasets, several methods have been developed. The most
commonly used are Seurat v325,26 and the recently reported
Conos27, scmap28, and CHETAH29. Seurat is a well-established,
widely used toolkit for single cell genomics25,26. Recently an
anchor-based label transfer method across substantially different
single-cell samples has been proposed in Seurat v326. Conos

generates a joint graph representation by pairwise alignments of
samples, to propagate labels from one sample to another. scmap
learns cell types by measuring the maximum similarity between
the reference dataset with well-annotated cells and unknown
datasets30. Guided by the reference data, CHETAH identifies a
classification tree for a top-to-bottom classification in unan-
notated data. Whereas these methods are valuable in different
settings, they exhibit limited capability and performance, partially
due to the fact that they only extract shared information from
individual cells but ignore higher-order relations between cells.
Such topological cell relation can be well captured by the Graph
Convolutional Networks (GCN)31. Recently, GCN and its related
methods have been successfully applied in single cells and in
diseases32–36, showing that inclusion of GCN enables learning of
high-order representation and topological relations of cells that
improve performance.

Here, we present a graph-based artificial intelligence model,
termed single-cell Graph Convolutional Network (scGCN). We
provide evidence that scGCN allows reliable and reproducible
integration of single-cell datasets and transferring labels across
studies. Thus, knowledge learned from well-characterized datasets
in previous studies can be transferred to and provides insights in
studies. Using a wide range of different single-cell omics datasets,
including data from different tissues, species, sequencing plat-
forms, and molecular layers (such as RNA-seq and ATAC-seq),
we demonstrate that scGCN outperforms other methods in
accuracy and reproducibility. In addition, we provide the imple-
mentation software of scGCN, which is compatible with various
single-cell datasets for accurate cell type identification.

Results
Overview of the scGCN. Knowledge learned from existing single-
cell datasets is often represented as cell labels. Examples of cell
labels are cell type, developmental state, activation status, cellular
functionality, and signaling pattern. The scGCN approach
leverages well-characterized single-cell data as reference to infer
such cellular-level knowledge in query dataset, i.e., label transfer,
through semi-supervised learning (Fig. 1). First, scGCN learns a
sparse and hybrid graph of both inter-dataset and intra-dataset
cell mappings using mutual nearest neighbors of canonical

Fig. 1 Schematic overview of scGCN for transferring labels from reference data to query data. scGCN first learns a hybrid graph of both inter-dataset
(dash line) and intra-dataset (solid line) cell mappings. In the hybrid graph, round solid-colored dots represent cells of the reference dataset, while the
triangles represent cells from the query dataset. Based on the hybrid graph, semi-supervised GCN is used to project cells of both reference and query
datasets onto hidden layer so that cells with the same labels present in the same subpopulation. Thus, cell labels in query data are predicted and learned
from reference data.
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correlation vectors that project different datasets onto a correlated
low-dimensional space, which enables the identification and
propagation of shared information between reference and query
data. Subsequently, based on the constructed graph, semi-
supervised GCN is used to project cells of both reference and
new datasets onto the same latent space so that cells with the
same labels present in the same population. Consequently, cell
labels in query data are predicted and learned from reference
data. Details are described in “Methods” section.

Performance of label transfer within datasets. To evaluate the
performance of scGCN, we benchmark it against other methods,
including Seurat v326, Conos27, scmap28, and CHETAH29. For
quantitative benchmarks, we first use ten scRNA-seq datasets that
vary in cell numbers, tissues, species, and sequencing technolo-
gies. These datasets represent different scenarios and challenges
in cell label transfer. For each dataset, we randomly select 50% of
its cells as the reference data and apply the above methods to
learn the labels of the other 50% of cells as the query data.

We evaluate the performance of each method using the
accuracy score (Acc), which is defined as the proportion of
correctly predicted cells among all cells in the query data. Our
results show that scGCN consistently demonstrates better
performance than other methods across datasets and achieves
the highest accuracy (mean Acc= 91%, Fig. 2a), which is
significantly higher than other methods (Seurat v3: 87%; Conos:
83%; scmap: 82%; CHETAH: 77%) (P value= 0.0019, 0.0058,
0.0039, and 0.002, respectively). scGCN demonstrates particularly
higher accuracy relative to these methods in some datasets. For
example, Seurat v3 shows a relatively lower accuracy score in
GSE99254 dataset (Seurat v3: 77%; scGCN: 85%), while Conos
performs poorly on the GSE108989 dataset (Conos: 53%; scGCN:
86%), and CHETAH performs poorly on the SRP073767 dataset
(CHETAH: 62%; scGCN: 90%). Therefore, scGCN achieves the
best performance in transferring labels accurately in the ten
benchmarking datasets.

To highlight the comparison regarding specific cell types, we use
the SRP073767 dataset as an example, which has two subtypes of
T cells (CD4+ T helper2 cells, CD4+/CD25 Treg cells) that every
benchmarked method cannot distinguish accurately whereas
scGCN performs relatively better (Fig. 2b and Supplementary
Fig. 1a). In addition, Seurat v3 and Conos cannot discriminate
between CD4+ T helper2 cells and CD4+/CD45RA+/CD2−
Naive T cells, nor the CD8+/CD45RA+ Naive Cytotoxic cells and
CD8+ Cytotoxic T cells. scmap and CHETAH also inaccurately
assigns CD4+ T cells to CD8+ T cells, and has low accuracy for
monocyte classification and unassigned cells. scGCN, in contrast,
performs better than other methods in discerning these similar
cell types.

Transfer labels across datasets of different platforms. As
emerging single cell data are generated by different experimental
platforms, we test whether scGCN can be used to accurately
transfer labels across datasets from different platforms. Here we
include 12 paired reference-query datasets. Each pair of
reference-query datasets is profiled using different scRNA-seq
technologies.

Similarly, we use the accuracy score to evaluate the performance
of each method. Based on the 12 reference-query datasets, the
accuracy score of scGCN (mean Acc= 87%, Fig. 3a) is consistently
higher than Seurat v3 (mean Acc= 82.2%) and Conos (mean Acc
= 82.3%), and also significantly better than scmap (mean Acc=
66%; P value= 0.001433) and CHETAH (mean Acc= 58%, P
value= 2.219e−05). Specifically, when querying the PBMC Smart-
seq2 data from the reference of PBMC Dropseq data, both Seurat v3

(Acc= 68%) and scmap (Acc= 60%) show relatively lower
accuracy scores than scGCN (Acc= 77%). Similarly, Conos (Acc
= 71%) and CHETAH (Acc= 32%) present lower accuracy than
scGCN (Acc= 76%) when mapping MCA Smart-seq2 from MCA
10× data. Notably, when annotating the PBMC 10× V3 data using
the PBMC Cel-seq data as reference, scGCN is distinctively superior
to other methods. Although these two datasets are generated using
different platforms, Uniform Manifold Approximation and Projec-
tion (UMAP)37 reveals highly consistent transferred labels by
scGCN for the cell populations of the PBMC 10× V3 query data
(Fig. 3b). The Sankey diagram shows that the reference dataset is
much smaller than the query dataset (Fig. 3c), suggesting the
effectiveness of scGCN even with a small reference dataset.

We next use heatmap to depict the accuracy of each cell type,
including B cells, CD4+ T cells, and cytotoxic T cells identified by
different methods (Fig. 3d and Supplementary Fig. 1b). Seurat v3
and CHETAH incorrectly assign most CD4+ T cells and natural
killer cells to cytotoxic T cells. Some megakaryocytes and CD16+
monocytes are assigned to other cell types by Conos and scmap.
The closely related cell types such as natural killer cells and
T cells, as well as CD14+ monocytes and CD16+ monocytes, are
correctly discriminated by scGCN.

Transfer labels across datasets of different species. We next
evaluate the performance of scGCN across datasets from different
species. We apply all benchmarking methods to four paired
reference-query datasets. For each paired dataset, one consists of
cells from mouse and the other from human tissues.

We first apply all five methods to identify the labels of query
data in the four pairs of datasets. Then we compare the
visualization of cells using the aggregated reference-query data
by different methods (Fig. 4a). Because CHETAH does not
provide the aggregated data, we omit this method in the following
comparisons of cell visualization. Due to the inherent noise and
batch effects in the raw data, cells are not separated well,
particularly for dataset 3, i.e., phs001790 (mouse)—GSE115746
(human), and dataset 4, i.e., GSE115746 (mouse)—phs001790
(human). Similarly, in the UMAP projections of Seurat v3 and
Conos, cells are not distinguished explicitly in datasets 3 and 4.
scmap shows far less discernable results in these paired datasets
(Supplementary Fig. 1c). In contrast, when using the aggregated
data generated by scGCN, cell subpopulations are clearly
discerned in the UMAP projections for all four scenarios.

The UMAP projections suggest that the aggregated cells are
aligned better by scGCN than the other methods. This
observation is further confirmed by the accuracy score (Fig. 4b).
Specifically, scGCN shows the best performance with higher
average accuracy (87%), compared with Conos (71%), Seurat v3
(67%), scmap (48%), and CHETAH (20%). We find that Conos
shows higher accuracy than Seurat v3 in datasets 1 and 2, but
lower in datasets 3 and 4. Quantitatively, in the four paired
datasets, scmap and CHETAH produce less accurate results than
those of Seurat v3 and Conos. Together, these results show that
scGCN performs consistently better in transferring labels (e.g.,
Seurat v3 and Conos) across different species.

Transfer labels across datasets of different types of omics. We
next examine how well different algorithms transfer labels across
different types of omics. Here we apply scGCN, Seurat v3, and
Conos, but omit scmap and CHETAH as they are only designed
for scRNA-seq data. Four open accessible paired datasets (A549,
brain, kidney, and lung tissues) with scRNA-seq data as the
reference and scATAC-seq data as the query dataset, respectively,
are included for comparison. We use two evaluation metrics
including the batch mixing entropy and the silhouette coefficient.
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Fig. 2 Performance of label transfer within datasets. a Performance of scGCN and other methods (Seurat v3, Conos, scmap, and CHETAH) are measured
by the accuracy score on ten datasets. Each point represents the accuracy scores of scGCN versus an alternative method on one dataset. The dashed line
represents equivalent accuracy between two methods. Dots above the dashed line indicate that scGCN outperforms the corresponding method on these
datasets. b Heatmap of the accuracy matrix of each cell type, including different T-cell subtypes, B-cells, and monocytes, which are identified by different
methods based on the single cell dataset (SRP073767). Source data are provided as a Source Data file.
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Fig. 3 Performance of scGCN and its comparison with other methods using 12 cross-platform datasets. a Performance of scGCN and alternative
methods are measured by the accuracy score for 12 paired datasets. Each pair of reference-query datasets is profiled using different single-cell platforms.
Each point represents the accuracy score for the query data of each paired datasets. b scGCN produces the UMAP projection of cells from Cel-seq as the
reference to annotate cells from 10× V2 as the query dataset. c The height of linage line in the Sankey diagram reflects the cell number of each cell type in
the reference data and query data. d Heatmap shows the accuracy matrix of each cell type identified by different methods based on the Cel-seq data as
reference and the 10× V2 data as the query dataset. Source data are provided as a Source Data file.
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The batch mixing entropy shows the mixing level of cells in the
aggregated profiles of reference and query data38. A higher
entropy value means better intermingling of cells from different
batches, whereas the scRNA-seq and scATAC-seq data are
regarded as two batches. The silhouette coefficient quantifies the
separation of different cell types by calculating the silhouette

widths of each cell type38,39. A higher silhouette coefficient
represents more differences between cell types and fewer var-
iances within each cell type.

Using these two metrics, we evaluate the transferred labels in
each query dataset, i.e., scATAC-seq data. Compared to the other
methods, scGCN shows better performance with higher mixing
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entropy (Fig. 5a). Specifically, Seurat v3 has higher mixing
entropy than Conos in A549 data, but is lower than Conos in the
other three datasets. In the brain dataset, Conos shows
comparable mixing entropy with scGCN. We then calculate the
silhouette coefficients for all three methods (Fig. 5b). Compared
with Seurat v3 and Conos, scGCN has significantly and
consistently higher silhouette coefficients. In most datasets,
Seurat v3 shows slightly higher silhouette coefficients than Conos.

To further visualize the joint alignment of scRNA-seq data and
scATAC-seq data, we show the UMAP projection of the
aggregated A549 cells with labels learned by different methods
(Fig. 5c). The cell subpopulations (0, 1, and 3 h cells after 100 nM
dexamethasone (DEX) treatment) are clearly discerned in the
UMAP projection when using the aggregated data generated by
scGCN. In contrast, Seurat v3 and Conos can not explicitly
distinguish different cell subpopulations (Fig. 5c and Supplemen-
tary Fig. 2a).

To characterize the differential accessible loci and uncover the
transcriptional regulatory mechanisms in the scATAC-seq data of
A549 cells, we perform the motif enrichment analysis to discover
the cis-regulatory DNA sequences that differentially regulate the
3 h cells after DEX treatment. After treatment, the specific loci of
3 h cells are enriched with the binding motifs of FOXO3, REBB1,
and ELF1 compared to 0 h cells (Fig. 5d). Moreover, the
transcription factor FOXO3 is upregulated in 3 h cells (Fig. 5e),
which is a validated regulator that drives cell progression under
the DEX treatment40,41. KRT7 and WDR60 also show higher
expression in 3 h cells, which occurs in vivo with DEX
treatment42,43 (Supplementary Fig. 2b). RREB1 and ELF1 exhibit
upregulation in 3 h cells compared to 0 h cells (Fig. 5e). These
results suggest the potential roles of these identified transcrip-
tional factors in maintaining and establishing the chromatin
accessibility to express functional genes after treatment. We
perform similar motif analysis in mouse brain dataset, based on
the integrated scRNA-seq and scATAC-seq datasets from the 10×
Genomics Chromium system (Supplementary Fig. 3). In these
data, overrepresented DNA motifs are identified in L4-specific
accessibility peaks, with Foxp1, Egr3, and Smad3 motifs as the
highly enriched motifs (Supplementary Fig. 3a), which also
exhibit upregulated expression in L4 cell subtype (Supplementary
Fig. 3b). Altogether, these results suggest that scGCN outper-
forms other methods when transferring labels between single cell
transcriptomics and epigenomics data.

Discussion
Single-cell omics technologies have allowed biologists to gain
insights into the individual cellular components of complex
biological ecosystems44–46. Given the explosive growth in single-
cell data, there is a critical need to leverage the existing, well-
characterized datasets as references to ensure reliable and con-
sistent annotations of data. In this study, we report a graph-based
artificial intelligence model, single-cell Graph Convolutional
Network (scGCN) that allows researchers to use reference single-
cell omics data to annotate data through robust knowledge
transfer approach. We provide evidence that scGCN allows for
reliable and reproducible cell type transferring across datasets

from different tissues, species, sequencing platforms, and mole-
cular layers (such as RNA-seq and ATAC-seq). The scGCN
software, which is publicly accessible, is compatible with various
single-cell datasets for accurate label transfer.

Apart from the technical aspects of computational analysis, the
accuracy, robustness, and sensitivity of label transfer also rely on
the quality of the reference datasets. Reference datasets used in
this study are well-characterized in literature, covering various
types of samples and application scenarios in biomedical research.
Whereas the current study does not address the quality issues of
the reference datasets, it is well accepted that accumulating data
in the field will lead to development and definition of higher
quality and experimental evidence-based reference datasets.
Additionally, when annotating the PBMC 10X V3 data, scGCN
reveals accurate cell mapping even when the reference dataset has
few cells, suggesting that scGCN is less insensitive to cell number
than other methods, which can be further validated with more
datasets for a systematic and stringent analysis.

scGCN consistently outperform four commonly used algo-
rithms, namely Seurat v3, Conos, scmap, and CHETAH that
possess the knowledge transfer functionalities. scGCN can also
overcome batch effects compared to CCA (Supplementary
Figs. 4–5 and Supplementary Note 1). In addition to the datasets
used in Figs. 2–5, we further include a well-recognized bench-
marking collection of single-cell datasets covering 13 major
platforms47 and completely examine all possible reference-query
combinations, which allows unbiased evaluation of scGCN
(Supplementary Fig. 6–7 and Supplementary Note 2).

With the development of single-cell sequencing technology and
growing single-cell data sizes, we show the scalability of scGCN in
large-size datasets. Specifically, the memory usage and the com-
puting time are profiled with respect to different sample sizes
(from 100 k up to 1 million cells), using the dataset generated by
Cao et al48. We compare the computational costs of scGCN with
Seurat v3 on a computer with 64 GB memory and 3.6 GHz Intel
Core i9 processor. We show the computational time and average
memory usage for different sample sizes (i.e., 100 k, 200 k, …, 1
millon) in Supplementary Figs. 8–9 and Supplementary Note 3.
scGCN is comparable to Seurat v3 in computational time and
memory usage49, demonstrating its efficiency and scalability for
large-size single-cell datasets.

From a technical perspective, scGCN has some major advan-
tages. First, unlike the other methods, scGCN simultaneously
utilizes features, graphic structures, and reference labels to over-
come batch effects, protocol differences, and other intrinsic dif-
ferences (e.g., different species and omics types) among datasets.
Second, scGCN transfers labels from labeled samples to unlabeled
samples in a semi-supervised manner, which is more desirable
than other unsupervised methods. Third, in every layer, scGCN
nonlinearly propagates feature information from neighboring
cells in the hybrid graph, which learns the topological cell rela-
tions and improves the performance of transferring labels by
considering higher-order relations between cells.

Despite these successful results, there are several aspects in
which scGCN can be improved. First, as an artificial intelligence
(AI) model, scGCN shows not only the merits of its kind, but also

Fig. 4 Performance of scGCN and its comparison with other methods using four cross-species datasets. a UMAP projection of four paired cross-species
datasets, based on the aggregated data by different methods. The top two rows represent the aggregated data using the human and mouse pancreas
dataset GSE84133. First row: human data as the reference and mouse data as the query data. Second row: mouse data as reference and human data as
query. Overall, 11 cell type labels are visualized. The bottom two rows represent cells collected from human (phs001790) and mouse cortex (GSE115746),
with human and mouse samples as the reference in the third and fourth rows, respectively. Overall, 33 cell type labels are visualized. b The bar plots show
the performance of scGCN versus other methods (Seurat, Conos, scmap, and CHETAH) that are measured by the accuracy score for four paired cross-
species datasets shown in a. Each bar represents the accuracy score of each method. Source data are provided as a Source Data file.
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some limitations including the black-box nature of AI
models50–52. These can be addressed through downstream ana-
lysis such as differential gene identification and enrichment
analysis, that can ameliorate some of the problems and bring
insights into the labeled cells. Second, as a graph model,
improving the graph construction can further boost model per-
formance. Our graph construction based on mutual nearest
neighbors reflects the state-of-art in single cell graph repre-
sentation. As a fast-growing research field, graph construction
approaches are emerging that we will test and adapt in future
versions of scGCN.

Methods
Data preprocessing. For each input data, we denote the dataset with known
cell labels as reference data XR 2 Rm0 ´ nr and the dataset that needs to be annotated
as query data XQ 2 Rm0 ´ nq , where m0 is the number of common gene features
shared by XR and XQ, nr, and nq are the number of cells in reference data XR and
query data XQ. First, we identify the gene features that exhibit the most variability
across different cell types in the reference data, which can be represented as het-
erogenous and prioritized features. As there are multiple cell types present in the
reference data (the number of different cell types is annotated by F), we perform
multi-class differential expression analysis to XR

m0 ´ nr using analysis of variance
(ANOVA) to identify the most variable genes across different cell types. Bonferroni
correction is used to select the top m= 2000 genes in reference data with sig-
nificantly adjusted P values. In scGCN, all input data filters out non-variable gene
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Fig. 5 Performance of scGCN and its comparison with other methods using four paired cross-omics datasets. a, b For each method, performance
metrics including two indexes, i.e., batch effects entropy (A549 n= 100; Brain n= 100; Kidney n= 100; Lung n= 100) and silhouette index (A549 n=
5282; Brain n= 6737; Kidney n= 17,674; Lung n= 4994), are used to evaluate the level of cell mixing across datasets and the preservation of local
structure within dataset. Data are represented as boxplots where the middle line is the median, the lower and upper hinges correspond to the first and third
quartiles, the upper whisker extends from the hinge to the largest value no further than 1.5× the inter-quartile range (IQR) from the hinge, and the lower
whisker extends from the hinge to the smallest value at most 1.5× IQR of the hinge. c UMAP plots of A549 cells colored by dataset (scRNAseq, scATAC-
seq) and by cell states (0, 1, and 3 h), after integration by scGCN and Seurat v3. d Overrepresented DNA motifs are identified in 3 h-specific accessibility
peaks, with FOXO3, RREB1, and ELF1 motifs as the most highly enriched motifs. e These motifs also exhibit upregulated expression in scRNA-seq cells at 3
h. Source data are provided as a Source Data file.
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features, thus the reference data and the query data become XR 2 Rm ´ nr and
XQ 2 Rm ´ nq .

Graph construction. We use the mutual nearest neighbor (MNN)38 approach and
canonical correlation analysis53 to construct a hybrid graph capturing the topo-
logical characteristics of single cells in both reference and query datasets. First, the
reference dataset as well as the query dataset are standardized. Then a reference-to-
query graph (inter-dataset) as well as an internal query graph (intra-dataset) are
constructed. The final hybrid graph is composed of these two graphs. The hybrid
graph is then used as input for the scGCN model.

Standardization transformation. We first perform the standardized transforma-
tion for reference data, i.e.,

exij ¼
xij � �xi

ρi
; ð1Þ

where xij 2 XR is the raw value of input reference data, �xi is the mean of xij , and ρi
is the standard deviation of xij . Thus exij is the standardized value of feature i and
cell j, where i 2 f1; 2; � � � ;mg and j 2 f1; 2; � � � ; nrg. After standardization, refer-
ence data XR is represented as eXR : In the same way, raw data in XQ is processed in

the same manner that becomes eXQ.

Construction of the reference-to-query graph. For the scGCN method, one
critical step is to construct an effective graph, which is represented as an adjacent
matrix that best leverages the reference data and query data. Here, we use the
MNN38 concept and search for the MNNs from both reference and query data
after simultaneous dimensionality reduction of reference and query datasets
through canonical correlation analysis.

The goal of canonical correlation analysis is to simultaneously project the high-
dimensional reference and query data into the same low dimensional space
through two dataset-specific linear transformations. Thus, molecular patterns in
both reference and query datasets that share the same biological meaning can be
captured and represented uniformly in the low dimensional space. eXR

m ´ nr

represents the standardized reference data and eXQ
m ´ nq represents the query data.

In order to project these two matrixes to a k-dimensional space where k≤m, we
need to identify k pair of canonical correlation vectors μi of nr dimension and νi of
nq dimension, where i ¼ 1; � � � ; k, to maximize

max
μi ;νi

μi
T

eXR
m ´ nr

� �T
eXQ

m ´ nq
νi; ð2Þ

s.t. jjμijj22 ≤ 1 and jjνijj22 ≤ 1. We use singular value decomposition to calculate
the k canonical correlation vector pairs associated with the k largest eigenvalues.
Each pair of canonical correlation vector μi and νi thus can be used to project the

original data eXR
m ´ nr and eXQ

m ´ nq to the i-th dimension in the k-dimensional
space, respectively. In this study we set k ¼ 20.

The reference-to-query graph ARQ is constructed with the MNN approach
based on the projected reference and query data. For a cell i in the reference data
and another cell j in the query data, ARQ

ij ¼ 1 if and only if cell i belongs to the
nearest neighbors of cell j, and at the same time cell j is also one of the nearest
neighbors of cell i. Otherwise ARQ

ij ¼ 0. Thus, we construct the inter-dataset cell
mapping between reference data and query data.

Construction of the query internal graph. Similarly, we also construct the
internal graph AQQ for cells in the query dataset using the MNN approach and
canonical correlation analysis with k ¼ 20.

Construction of the hybrid graph. The final hybrid graph AH 2 Rðnrþnq Þ ´ ðnrþnq Þ is
then constructed by combining the reference-to-query graph (ARQ) and the query
internal graph (AQQ). The hybrid graph AH is used as the input adjacent matrix for
our scGCN model. With this constructed hybrid graph, we validate its effectiveness
by comparing it with other different graph construction methods (see Supple-
mentary Figs. 10–12 and Supplementary Note 4).

scGCN method. We utilize the GCN31 for semi-supervised learning and trans-
ferring labels from reference data to query data. Each cell is viewed as a node. The
annotations of cell types in the reference data are the known labels. The goal of
GCN is to predict the cell type annotations of the query data by using not only the
features of each cell but also the information leveraging reference and query data,
which are characterized as the above hybrid graph AH. Explicitly, the GCN model
takes two inputs. One input is the hybrid graph structure learned above, which is
represented as the adjacent matrix AH 2 RN ´N (see the “Graph construction”
section). The other is the feature matrix X 2 Rm ´N, where N ¼ nr þ nq is the total
number of cells and m is the number of variable features selected in preprocessing.
If the reference data is denoted as XR 2 Rm ´ nr and the query data as XQ 2 Rm ´ nq ,

the input data matrix is extended to:

X ¼ XR

XQ

" #

2 Rm ´ ðnrþnqÞ ð3Þ

Herein, both features of reference and query data, as well as the information
leveraging reference and query data are utilized in our model. With these two
inputs, the GCN model is constructed with multiple convolutional layers.

For efficient training of GCN introduced in31, the adjacent matrix AH is
modified as:

eA ¼ �D
�1=2

Â�D
�1=2 ¼ �D

�1=2ðAH þ IÞ�D�1=2
; ð4Þ

where I is the identity matrix, Â ¼ AH þ I, and �D is the diagonal degree matrix of
Â.

Specifically, each layer is defined as:

Hðlþ1Þ ¼ f HðlÞ; eA
� �

¼ σ eAHðlÞWðlÞ
� �

; ð5Þ

where HðlÞ is the input and WðlÞ is the weight matrix of the l-th layer, σ �ð Þ is the
non-linear activation function, and the input layer Hð0Þ ¼ X. The labels of cells in
the reference data are represented as a class indicator ylf for cell l 2 YL and label
f 2 1; � � � ; Ff g, whereYL represents nodes with known labels, F represents the total
number of different labels, and ylf ¼ 1 indicates cell l has the f -th label, and 0 as
not of this label.

Specifically, for a three-layer GCN with F distinct labels, the forward
propagation is realized as:

Ŷ ¼ f X;AH
� � ¼ softmax eAReLU eAXTW 0ð Þ

� �

W 1ð Þ
� �

; ð6Þ

where W 0ð Þ 2 Rm ´ h is the input-to-hidden weight matrix projecting the m features
input data into an h dimension hidden layer, ReLU stands for the rectified linear
unit activation function, W 1ð Þ 2 Rh ´ F is a hidden-to-output weight matrix, and
Ŷ 2 RN´ F is the predicted probabilities of cell labels. The softmax activation
function is defined as

softmaxð�Þ ¼ expð�Þ
∑expð�Þ : ð7Þ

Given the reference data, we use the cross-entropy error the evaluate the
predictions, i.e.,

L¼�∑l2YL
∑F

f¼1Y lf ln Ŷ lf

� �

: ð8Þ
After training the model we have

Ŷ ¼ GCNðX;AHÞ 2 RðnrþnqÞ ´ F: ð9Þ
The prediction Ŷ is the probability of each cell within each class. The final label

for cell i is determined as the f -th label when ŷi;f ≥ 0:5 where ŷi;f 2 Ŷ .
When applying the scGCN model, we randomly split the reference data as

training (80%), test (10%), and validation set (10%), while the query data is
unlabeled that can be predicted through the above semi-supervised GCN model.
For datasets in this study, we train three-layer scGCN models for a maximum of
200 epochs using Adam with a learning rate of 0.01 and early stopping with a
window size of 10. For the number of hidden units, we respectively check 32, 64,
128, 256, 528, 1024, and select the optimal one.

In addition to the semi-supervised GCN31, we also evaluate the other different
graph neural network methods, including HYPERGCN54, GAT55, GWNN56,
GraphSAGE57, and ChebyNet58, based on our constructed hybrid graph. GCN
shows the best overall performance; HYPERGCN, GAT, and GWNN are also good
alternatives. We also include the HYPERGCN, GAT, and GWNN models in our
scGCN tool to provide more options to users. Results of the comparisons can be
found in Supplementary Fig. 13 and Supplementary Note 5.

Detection of unknown cells. To identify potential unknown cells in query data, we
provide a screening step in our scGCN model using two statistical metrics, entropy
score and enrichment score, representing mixtureness and enrichment. Specifically,
all cells in query data are grouped to different clusters by modularity-based
community detection59. For each query cluster, we measure its mixtureness and
enrichment based on the inter-data graph of scGCN. Our rationale is that a query
cluster of unknown cell type is more likely to have random links to different cell
types in the reference data, while a query cluster of known cell type is more likely to
link to a specific cell type in the reference data. In this way, unknown cells can be
identified by the two statistical metrics. (1) Entropy score: For a cluster h in the
query data, the mixtureness of this cluster is defined by the information entropy of
normalized enrichment scores. That is,

Hh ¼ �∑
C

c

Sc;h
∑C

c Sc;h
log

Sc;h
∑C

c Sc;h
and Sc;h ¼ mc;h=∑

C
c mc;h

nc=∑
C
c nc

ð10Þ

where c is a specific cell type, C is the set of all cell types in reference data, mc;h is
the number of cells in query cluster h that are linked to cell type c in reference data
by the inter-data graph of scGCN, and nc is the number of cells belonging to cell
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type c in reference data. (2) Enrichment score: For a cluster h in the query data, the
enrichment score ESh is defined by the normalized enrichment of the most enri-
ched cell type. That is,

ESh ¼ max
c2C

Sc;h=∑
C

c
Sc;h: ð11Þ

For a cluster in the query data, the entropy score describes whether this cluster
in query data is dominated by a specific cell type, and the enrichment score
describes how strong this cell type is enriched. Thus, if the query cell cluster h has
higher entropy and lower enrichment, these cells should be assigned as unknown
cell types. Detailed performance evaluation is shown in Supplementary Fig. 14 and
Supplementary Note 6.

Cross-species classification. We use the HomoloGene databases provided by
NCBI (Build 68) to identify homologous genes between humans and mice, and
keep only genes that have a one-to-one correspondence, which serves as a look-up
table. After obtaining the intersection gene set between the reference data and the
look-up table, the gene names are then converted to human gene names to obtain a
compatible input for classification.

Methods comparison. For the comparisons with Seurat v3, we used the most recent
CRAN release version 3.2.1 of Seurat26, with its anchoring framework in Seurat v3 for
transfer labels across datasets. Specifically, we follow the Seurat v3 vignette about
Multiple Dataset Integration and Label Transfer at https://satijalab.org/seurat/v3.2/
integration.html, and use the FindTransferAnchors and TransferData functions to
transfer cell type labels from a reference dataset onto a query dataset. For the Find-
TransferAnchors function, we use the default parameters, i.e., reduction= pcaproject,
npcs= 30, dims= 1:30, k.anchor= 5, k.filter= 200, k.score= 30, max.features= 200,
nn.method= rann, normalization.method= LogNormalize, approx.pca= TRUE. For
the TransferData function, we also use the default parameters, i.e., weight.reduction=
pcaproject, dims= 1:30, k.weight= 50, sd.weight= 1.

As above, Seurat v3 provides the options of using PCA as the default (PCA-
based Seurat v3) and CCA as an alternative (CCA-based Seurat v3) to project the
structure of a reference onto the query, which are used in the anchor weighting and
label transfer steps26. We compare scGCN with CCA-based Seurat v3 in
Supplementary Fig. 15 and Supplementary Note 7. For benchmarking with scmap,
we identify the classification of query data using the scmapCluster function of
scmap. For CHETAH, we identify the classification of query data using the
CHETAHclassifier function. All methods are applied with default parameters. In
this study, statistical significance is defined using the two-sided Wilcoxon rank test.

A549 data. The A549 dataset is downloaded from GEO, which includes 3260 cells
profiled using the sci-CAR protocol60. scRNA-seq and scATAC-seq data can be
accessed with accession number of GSM3271040 and GSM3271041. After quality
control, the resultant data consists of 2641 cells in our analysis.

Mouse brain data. The single-cell ATAC-seq dataset of adult mouse brain cells is
provided by 10× Genomics, which is available through the 10× Genomics website
(http://cf.10xgenomics.com/samples/cell-atac/1.1.0/atac_v1_adult_brain_fresh_5k/
atac_v1_adult_brain_fresh_5k_filtered_peak_bc_matrix.h5). scRNA-seq data is
obtained from the same biological system (the adult mouse brain), which can be
downloaded from Allen Institute website (http://celltypes.brain-map.org/api/v2/
well_known_file_download/694413985).

Kidney data. The kidney dataset is downloaded from GEO, which includes 11,
296 single cells from the mammalian kidney using the sci-CAR protocol60. The
scATAC-seq data and scRNA-seq data that can be accessed with accession number
of GSM3271045 and GSM3271044 are profiled using the sci-CAR protocol60.
Duplicate genes are merged by maximum value and cells that are labeled as NA are
removed. Moreover, we remove cells with less than 500 expressed genes and genes
expressed in fewer than ten cells from the scRNA-seq data. Cells with less than 200
accessible loci and loci opened in fewer than ten cells are removed from scATAC-
seq data. The final dataset with 8837 cells is used in our analysis.

Lung data. The lung dataset contains lung count matrices from three scRNA
datasets (two lung samples from Tabula Muris [https://figshare.com/projects/
Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_-
from_Mus_musculus_at_single_cell_resolution/27733], one lung sample from
GSE108097, and two lung sci-ATAC-seq replicates from GSE68103.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. All datasets analyzed in the current study are
publicly available and can be downloaded from their public accessions, including
GSE108989, GSE115746, GSE118389, GSE72056, GSE98638, GSE99254, GSM3271044,

GSM3271045, phs001790, SRP073767 [http://support.10xgenomics.com/single-cell/
datasets], E-MTAB-5061, GSE84133, GSE81608, and GSE85241. The PBMC data of six
different sequencing protocols are available from the Broad Institute Single Cell portal
(https://portals.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-
pbmc-data) and the Zenodo repository (https://doi.org/10.5281/zenodo.3357167)30. We
select these single-cell data as they have been frequently used to evaluate the performance
of transferring labels by different methods25,26,28,30. The following shows the details of
scRNA-seq and scATAC-seq data used in this study. Source data are provided with
this paper.

Code availability
All the functions mentioned above are implemented as a python software that is available
at Github and Zenodo (https://github.com/QSong-github/scGCN)61.
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