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ABSTRACT

Deoxynivalenol (DON) is considered to be the most harmful mycotoxin that affects the intestinal health
of animals and humans. Phenethyl isothiocyanate (PEITC) in feedstuff is an anti-nutritional factor and
impairs nutrient digestion and absorption in the animal intestinal. In the current study, we aimed to
explore the effects of PEITC on DON-induced apoptosis, intestinal tight junction disorder, and its po-
tential molecular mechanism in the porcine jejunum epithelial cell line (IPEC-J2). Our results indicated
that PEITC treatment markedly alleviated DON-induced cytotoxicity, decreasing the apoptotic cell per-
centage and pro-apoptotic mRNA/protein levels, and increasing zonula occludens-1 (ZO-1), occludin and
claudin-1 mRNA/protein expression. Meanwhile, PEITC treatment ameliorated DON-induced an increase
of the inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) mRNA levels and intracellular
reactive oxygen species (ROS) level, and a decrease of glutathione peroxidase 1 (GPx1), superoxide dis-
mutase 2 (SOD2), catalase (CAT) and heme oxygenase 1 (HO-1) mRNA levels. Additionally, PEITC treat-
ment significantly down-regulated autophagy-related protein 5 (ATG5), beclin-1 and microtubule-
associated protein 1 light chain 3B (LC3-II) mRNA/protein levels, decreased the number of green fluo-
rescent protein-microtubule-associated protein 1 light-chain 3 (GFP-LC3) puncta and phosphatidylino-
sitol 3 kinase (PI3K) protein expression, and up-regulated phospho-protein kinase B (p-Akt) and
phospho-mammalian target of rapamycin (p-mTOR) protein expression against DON. However, the
activation of autophagy by rapamycin, an autophagy agonist, abolished the protective effects of PEITC
against DON-induced cytotoxicity, apoptosis and intestinal tight junction disorder. Collectively, PEITC
could confer protection against DON-induced porcine intestinal epithelial cell injury by suppressing ROS-

mediated autophagy.
© 2021 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Mycotoxins belong to secondary metabolites of fungi, which
frequently contaminate feed, cereal crops and foods worldwide,
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ally, approximately 25% of crops such as rice, cereals and nuts are

Production and Hosting by Elsevier on behalf of KeAi

contaminated with mycotoxins, which are considered as a major
safety risk factor for animal and human health (Berthiller et al.,
2013; Streit et al.,, 2013). Deoxynivalenol (DON), a mycotoxin
mainly synthesized by Fusarium species in wheat, corn and barley,
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also known as vomiting toxin, has the highest occurrence and
over-standard rate (Pestka, 2010; Wu et al., 2016). The toxicity
caused by DON can be classified as acute or chronic. Acute expo-
sure to DON can induce vomiting, diarrhea, circulatory shock,
gastrointestinal bleeding and even death with extremely high
exposure (Mishra et al., 2020; Pestka, 2010). At a chronic low dose,
DON exposure over a long period time can cause growth retar-
dation, immune system disorder and intestinal barrier disruption
(Liao et al., 2018; Vignal et al., 2018; Wang et al., 2019). Therefore,
the adverse effects of acute and chronic DON consumption on
human and animal health have become a global concern for
researchers.

The intestine is the first defensive barrier and the most
exposed organ against the luminal content, which includes toxic
substances. DON efficiently crosses the small intestinal epithelial
barrier by passive diffusion, and the small intestinal cells display
the most sensitivity to DON (Videmann et al., 2007). In vitro, in-
testinal porcine epithelial cell line (IPEC-]J2 cell), separated from
the jejunum of newborn piglets, is widely used to study the effects
of toxins on intestinal function. Our previous studies have
revealed that DON exposure reduced the cell viability of IPEC-]2 in
a dose- and time-dependent manner (Ge et al., 2020; Ying et al.,
2019). DON also impaired intestinal nutrition transport, affected
the structure of the intestine, decreased the production of mucus,
and impaired the tight junction proteins expression, leading to
disruption of the intestinal barrier function (Li et al., 2018;
Pasternak et al., 2018; Wang et al., 2020). Further, increasing ev-
idence has indicated that oxidative stress plays a key role in DON-
induced intestinal toxicity, apoptosis and inflammation in vivo
and vitro (Broom, 2015; Kang et al., 2019; Osselaere et al., 2013).
When the reactive oxygen species (ROS) attain a maximum
resistance threshold, it will lead to organelle damage and even-
tually cell death.

Phenethyl isothiocyanate (PEITC), belonging to glucosinolates
(Gls), is a secondary organosulfur plant metabolite that exists
extensively in all Brassica-originated fodders. PEITC is produced
by the breakdown of gastrointestinal microbiota, which belong to
an anti-nutritional factor in feedstuff (Dinkova-Kostova and
Kostov, 2012; Liu et al., 2017). It has been proven that a substan-
tial amount of PEITC ingestion might be deleterious to animal
health and production by reducing digestibility and nutrient uti-
lization which might be associated with the drastic endocrine
disturbance induced by PEITC, especially in pigs (Tripathi and
Mishra, 2007). High PEITC intake reduced palatability (due to
their bitter taste), stimulated the mucosa to produce gastroen-
teritis, inhibited the synthesis of iodine, caused liver, kidney and
thyroid hypertrophy and increased mortality (Burel et al., 2000;
Duchamp et al., 1996; Mawson et al., 1994; Tripathi and Mishra,
2007). It has previously been observed that a high dose of PEITC
had a cytotoxic by inducing oxidative stress and apoptosis in vitro
(Liu et al., 2019; Zhu et al., 2020). Further, several studies have
demonstrated that PEITC could exert an anti-inflammatory and
antioxidant capacity in some cancer cells by inhibiting NF-«B or
activating the Nrf2 signaling pathway (Krajka-Kuzniak et al.,
2020; Liu, 2017; Okubo et al., 2010).

DON-contaminated feedstuffs primarily affect the intestinal
health of animals. And DON and PEITC can exist in feedstuffs
simultaneously. But there is little study regarding the effect of
PEITC on DON-mediated intestinal injury. Hence, the present study
aimed to explore the protective effects of PEITC on oxidative stress,
apoptosis and intestinal tight junction disorder induced by DON
and its potential mechanism using the IPEC-J2 cell as a model,
which will provide a theoretical basis for the prevention and con-
trol of DON in feedstuff.
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2. Materials and methods
2.1. Chemical and antibodies

DON (purity >99%), PEITC (purity >99%), rapamycin (Rapa),
dimethyl sulfoxide (DMSO, purity >96%), and rabbit polyclonal
microtubule-associated protein 1 light chain 3B (LC3B) antibody
were purchased from Sigma—Aldrich (St. Louis, USA). Rabbit
autophagy-related protein 5 (ATG5) antibody was purchased from
Santa Cruz Biotechnology (Santa Cruz, USA). Rabbit phospho-
protein kinase B (p-Akt), rabbit phospho-mammalian target of
rapamycin (p-mTOR), rabbit phosphatidylinositol 3 kinase (PI3K),
mouse B-actin and horseradish peroxidase (HRP)-conjugated goat
anti-rabbit or -mouse secondary antibodies were purchased from
Cell signaling Technology (Boston, USA). Rabbit zonula occludens-1
(ZO-1), rabbit occludin, rabbit Akt and rabbit mTOR antibodies
were purchased from Abcam (Cambridge, UK). Rabbit caspase-3
and rabbit caspase-9 antibodies were purchased from Abmart
Shanghai Co.,Ltd (Abmart, China).

2.2. Cell culture

The IPEC-J2 cell line was used between passages 10 to 30, and
grown in DMEM/F12 medium (Gibco, USA) supplemented with 10%
fetal bovine serum (FBS, Gibco, USA) and 1% antibiotics (100 units/
mL penicillin and 100 pg/mL streptomycin) (Gibco, USA) at 37 °C
under a humidified atmosphere containing 5% CO; in a cell culture
incubator (Thermo Fisher, USA).

2.3. MTT assay

Cell viability was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5
diphenyltetrazolium bromide (MTT, Sigma, USA) as previously
described (Liu et al., 2021). Briefly, IPEC-J2 cells were cultured in
96-well plates at a concentration of 4 x 10> cells/well and exposed
to DON or PEITC alone and in combination for 24 h. Then, 15 uL of
MTT (5 mg/mL) was added into each well. After 4 h incubation, the
supernatant was removed and added 150 pL DMSO to dissolve the
precipitate. The absorbance at 490 nm was determined using a
Microplate Reader (Bio-Rad, USA). All tests were performed 3 times.

2.4. Lactate dehydrogenase (LDH) activity assay

IPEC-J2 cells were seeded in 96-well plates at a density of
4 x 10% cellsjwell with corresponding treatments. Then the su-
pernatant was collected and centrifuged at 12,000 x g for 10 min at
4 °C. LDH activity was measured by using LDH kits according to the
manufacture's instructions (Jiancheng, China).

2.5. Analysis of apoptosis by Hoechst 33,258 staining

IPEC-J2 cells were cultured in the 20-mm diameter round glass
coverslips (WHB, China), which were placed in a 12-well plate at a
density of 1 x 10° cells/well. After treatment, cells were stained
with Hoechst 33,258 (Beyotime, China) for 10 min. Finally, the
slides were washed 3 times with phosphate buffer solution (PBS)
and scanned with a fluorescence microscope (Zeiss, Germany).

2.6. Annexin V-FITC apoptosis detection

IPEC-J2 cells were cultured at a concentration of 2 x 10° cells/
well in 6-well plates with the corresponding treatment. Then, cell
apoptosis ratio was detected according to Annexin after the cells
were digested with trypsin without ethylene diamine tetraacetic
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acid (EDTA). Annexin V-FITC apoptosis detection kit (BD Pharmin-
gen, USA) was used to measure the cell apoptosis. The obtained
cells were washed twice with PBS and centrifuged for 5 min at
1,000 x g, then resuspended with 100 pL of binding buffer and
stained with 5 pL of annexin V-FITC and 5 pL of PI in the dark at
room temperature for 15 min. Finally, 400 pL binding buffer was
added into each sample for flow cytometric analysis (FASC Calibur,
USA).

2.7. Intracellular ROS assay

Intracellular ROS in IPEC-J2 cells were quantified by using an
H,DCF-DA probe (Beyotime, China). IPEC-]2 cells were plated in a
12-well plate at a density of 1 x 10° cells/well. After treatment, the
cells were rinsed twice with PBS and incubated with H,DCF-DA
(10 pmol/L) at 37 °C for 30 min in the dark. The fluorescence signals
were detected by fluorescence microscopy at 488 (excitation) and
581 nm (emission).

2.8. Quantitative real-time PCR (qRT-PCR) analysis

The RNA isolation and qRT-PCR were determined as our previ-
ous study using Trizol reagent (TaKaRa, China) (Liu et al., 2021).
cDNA was synthesized using the Prime Script RT Master Mix Kit
(Takara, China) according to the manufacturer's instructions. The
relative mRNA levels of target genes were determined using the
278ACt method with B-actin serving as a reference gene. The
primers used were synthesized by Sangon Biotech (Shanghai,
China) and are shown in Table 1.

2.9. Western blotting analysis

After corresponding treatment, the cells were washed with cold
PBS and lysed with cold RIPA buffer (Beyotime, China) with a
protease inhibitor phenylmethylsulfonyl fluoride (PMSF). Next, the
total protein concentration was assessed by the BCA protein assay
kit (Beyotime, China). Equal amounts of denatured protein were
loaded on 12% sodium dodecyl sulfate polyacrylamide gel electro-
phoresis (SDS-PAGE) gels, and then transferred to polyvinylidene
fluoride (PVDF) membranes (Millipore, France). The membranes
were incubated with primary antibodies overnight at 4 °C, followed
by a 1 h incubation with respective secondary antibodies at room
temperature. The protein bands were visualized by using Image
Quant LAS 4000 (GE Healthcare Life Sciences, USA) and quantified
by using Image Pro-Plus 6.0 software (Media Cybernetics. Sarasota,
USA).

2.10. Confocal immunofluorescence

IPEC-J2 cells were grown on coverslips to approximately 60% to
70% confluence in a 12-well plate, and transfected with the GFP-LC3
plasmid using a X-tremeGENE HP DNA transfection reagent (Roche,
USA) according to the manufacturer's protocols for 12 h. Then, the
cells were fixed with 4% paraformaldehyde for 15 min and nuclei
were stained with DAPI (Beyotime, China) for 5 min. The localiza-
tion of LC3 was visualized using a Zeiss LSM710 confocal micro-
scope (Zeiss, Germany).

2.11. Statistics analysis

All experiments have been performed a minimum of 3 times
with similar results. All data were analyzed by one-way analysis of
variance (ANOVA) using SPSS 20.0 for Windows, and the data were
presented as the mean + SEM of the indicated number of replicates.
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3. Results

3.1. PEITC treatment attenuated DON-induced cytotoxicity in IPEC-
J2 cells

First, the cytotoxicity effect of DON (0.5 to 16 umol/L) and PEITC
(0 to 40 umol/L) on IPEC-]2 cell viability were measured by MTT and
LDH release assay. As shown in Fig. 1A the cell viability of IPEC-]2
cells was decreased linearly with increasing concentration of
DON. Furthermore, 2 to 16 umol/L of DON treatment significantly
increased linearly the LDH activity (P < 0.01, Fig. 1B). As shown in
Fig, 1B and E, PEITC displayed no cytotoxicity to IPEC-]2 cells except
at the concentrations beyond 5 pmol/L. Thus, 1 pumol/L of DON and
1.25, 2.5, 5 pmol/L of PEITC was chosen in the subsequent experi-
ment. To assess the effects of PEITC on DON-induced cytotoxicity,
we measured the viability and the LDH release of IPEC-J2 cells
pretreated with PEITC in the presence of DON. As shown in Fig. 1C, F
2.5, 5 umol/L PEITC significantly suppressed DON-induced decrease
in cell viability and DON-induced increase in LDH activity (P < 0.01).
These results suggested that PEITC could protect against DON-
induced cytotoxicity in IPEC-J2 cells.

3.2. PEITC treatment alleviated DON-induced apoptosis in IPEC-J2
cells

To determine the effects of PEITC on DON-induced apoptosis, we
measured the apoptosis-related mRNA/protein expression and the
apoptotic cell percentage in IPEC-J2 cells. As shown Fig. 2A—F, DON
exposure significantly enhanced the mRNA expression of Bax and
caspase-3, up-regulated the protein expression ratios of cleaved
caspase-3/pro caspase-3 and cleaved caspase-9/pro caspase-9,
decreased the mRNA expression of Bcl-2 (P < 0.01). But these
changes were markedly reversed by 1.25, 2.5 and 5 pmol/L PEITC
treatment in a dose-dependent manner. Meanwhile, DON alone
induced nuclear condensation, and enhanced the number of
apoptotic body and the total apoptosis ratio (Fig. 2G—I). But the
increases were markedly reduced by PEITC treatment (P < 0.01).
Thus, these results showed that PEITC protected against DON-
induced apoptosis in IPEC-J2 cells.

3.3. PEITC treatment alleviated DON-induced tight junction
disorder in IPEC-J2 cells

To evaluate the potential effects of PEITC on DON-induced in-
testinal tight junction dysfunction, we assessed the mRNA
expression of ZO-1, occludin and claudin-1 by qRT-PCR, and the
protein expression of ZO-1 and occludin by Western blotting. As
presented in Fig. 3, DON exposure significantly decreased the ZO-1,
occludin and claudin-1 mRNA and protein expressions compared
with the control group (P < 0.01). However, PEITC treatment could
reverse DON-induced decreases of above mRNA and protein levels.
Thus, these results suggest that PEITC treatment had a beneficial
effect on DON-induced tight junction of intestinal in IPEC-]2 cells.

3.4. PEITC treatment alleviated DON-induced oxidative stress in
IPEC-J2 cells

To assess the effects of PEITC on DON-induced oxidative stress,
we measured the mRNA levels of inducible nitric oxide synthase
(iNOS), cyclooxygenase 2 (COX-2), glutathione peroxidase 1 (GPx1),
superoxide dismutase 2 (SOD2), catalase (CAT) and heme oxygenase
1 (HO-1) by qRT-PCR, and intracellular ROS by using an H,DCF-DA
probe in IPEC-]2 cells. As shown in Fig. 4, DON-treated cells showed
a significant increase in iNOS and COX-2 mRNA levels, and intra-
cellular ROS level (P < 0.01). Meanwhile, DON exposure markedly
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Table 1
Primers used for qRT-PCR.

Gene Accession number Primer sequence (5'—3') Product, bp

HO-1 NM_001004027.1 F: AGCTGTTTCTGAGCCTCCAA 130
R: CAAGACGGAAACACGAGACA

iNOS NC_010454.4 F: GGGTCAGAGCTACCATCCTC 141
R: CGTCCATGCAGAGAACCTTG

COX-2 NC_010451.4 F: TGCGGGAACATAATAGAG 90
R: GTATCAGCCTGCTCGTCT

GPx1 NM_214201.1 F: CCTAGCAGTGCCTAGAGTGC 143
R: CGCCCATCTCAGGGGATTTT

SoD2 NM_214127.2 F: GGCCTACGTGAACAACCTGA 126
R: TGATTGATGTGGCCTCCACC

CAT NM_214301.2 F: CCTGCAACGTTCTGTAAGGC 72
R: GCTTCATCTGGTCACTGGCT

Bax XM_003355975.1 F: GCCCTTTTGCTTCAGGGGATG 135
R: GGCAAAGTAGAAAAGCGCGA

Bcl-2 XM_003122573.2 F: AACTAGGGCTGGGCTCCTTTA 120
R: TCCTGCTCACTCTGCTCAAAC

Caspase-3 NM_214131.1 F: TGGGATTGAGACGGACAGTG 157
R: CGCTGCACAAAGTGACTGGA

Z0-1 XM_021098848.1 F: ATGAGCAGGTCCCGTCCCAAG 142
R: GGCGGAGGCAGCGGTTTG

Occludin XM_005672522.3 F: GACAGACTACACAACTGGCGG 134
R: TGTACTCCTGCAGGCCACTG

Claudin-1 NM_001244539.1 F: CCATCGTCAGCACCGCACTG 107
R: CGACACGCAGGACATCCACAG

LC3B NM_001170827.1 F: TGTCAACATGAGCGAGTTGG 98
R: TCACCATGCTGTGCTGGTTC

ATG5 NM_001037152.2 F: TTGCTCCTGAAGATGGGGAA 102
R: TATCCGGGTAGCTCAGATGT

Beclin-1 NM_001044530.1 F: ACTTGTTCCCTATGGAAACCATTC 215
R: CTTTCTCCACATCCATCCTGTAAG

B-actin XM_021086047.1 F: CTGCGGCATCCACGAAACT 147
R: AGGGCCGTGATCTCCTTCTG

HO-1 = heme oxygenase 1; iNOS = inducible nitric oxide synthase; COX-2 = cyclooxygenase 2; GPx1 = glutathione peroxidase 1; SOD2 = superoxide dismutase 2;
CAT = catalase; ZO-1 = zonula occludens-1; LC3B = microtubule-associated protein 1 light chain 3B; ATG5 = autophagy-related protein 5.

decreased the mRNA levels of GPx1, SOD2, CAT and HO-1. However,
PEITC treatment could suppress DON-induced increase in the
oxidative stress-related mRNA levels. 1.25, 2.5 and 5 pmol/L PEITC
showed the ability to reduce the production of intracellular ROS
induced by DON, and increased the mRNA levels of antioxidant
genes markedly. Thus, these results revealed that PEITC might
alleviate DON-induced oxidative stress in IPEC-J2 cells.

3.5. PEITC treatment inhibited DON-induced autophagy in IPEC-J2
cells

Fig. 5 elaborated the effects of PEITC on cellular autophagy
induced by DON. Treatment with 1 umol/L DON had higher ATG5,
beclin-1 and LC3B mRNA expressions than that in the control group
(P < 0.01, Fig. 5A—C). To further identity whether autophagy was
triggered by DON treatment, green fluorescent protein-
microtubule-associated protein 1 light-chain 3 (GFP-LC3), a spe-
cific marker of autophagic vesicles and autophagic activity was
transfected to IPEC-J2 cells. As presented in Fig. 5G 1 umol/L DON
exposure had higher the number of GFP-LC3 puncta than the
control cell (P < 0.01). The results from Fig. 5D—F revealed that DON
exposure markedly increased the PI3K, ATG5 and LC3-II protein
expression, and decreased the protein expression of p-Akt and p-
mTOR. However, PEITC supplementation significantly reduced
DON-induced increase in the mRNA levels of ATG5, beclin-1 and
LC3B in a dose-dependent manner. Meanwhile, 5 umol/L PEITC
treatment markedly suppressed the protein expression of PI3K,
ATG5 and LC3-II and the number of GFP-LC3 puncta, and increased
the protein expression of p-Akt and p-mTOR compared to the
1 pmol/L DON-treated group. Thus, these results suggested that
activating PI3K/Akt/mTOR signaling pathway might be required for
PEITC to alleviate the autophagy induced by DON.
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3.6. Activation of autophagy by rapamycin decreased the protection
provided by PEITC against DON-induced intestinal tight junction
disorder in IPEC-J2 cells

To further explore whether autophagy played a crucial role in
the effects of PEITC on the DON-induced porcine intestinal
epithelial cell injury in vitro, IPEC-]J2 cells were pre-treated with
rapamycin (50 nmol/L) for 2 h before exposure to DON and PEITC
combined. Rapamycin was an autophagy agonist and promoted
cell autophagy by inhibiting mTOR pathway. As shown in Fig. 6A,
E, rapamycin pretreatment significantly enhanced ATG5, beclin-1
and LC-3B mRNA levels and the number of GFP-LC3 puncta
compared with the control group (P < 0.01). Furthermore,
rapamycin pretreatment significantly decreased the ratio of p-
mTOR/mTOR, and increased ATG5 and LC-3 II protein expression
(Fig. 6D, F). However, the effects of PEITC on the autophagy-
related mRNA/protein levels were significantly exacerbated by
rapamycin (Fig. 6A, D and F). Rapamycin reversed the effects of
PEITC on the apoptosis-related mRNA/protein levels and intesti-
nal tight junction mRNA/protein levels (Fig. 6B—D and G).
Meanwhile, pretreatment with rapamycin showed a lowered cell
viability of IPEC-]J2 cells and higher LDH activity than the com-
bination of DON and PEITC group (P < 0.05, Fig. 6H, I). These
results suggested that PEITC protected against DON-induced in-
testinal tight junction disorder through inhibiting autophagy via
activation of mTOR in IPEC-]2 cells.

4. Discussion
Deoxynivalenol (DON), as the mycotoxin with the highest

detected ratio in feedstuff, seriously threatens animal and human
health (Wu et al., 2016). Swine are the most susceptible animals to
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DON exposure. Numerous studies have confirmed that DON could
affect nutrient absorption, disrupt the intestinal barrier integrity,
and induce the oxidative stress and inflammation response of pigs
(Liao et al.,, 2020; Martinez et al., 2019; Pasternak et al., 2018).
Regardless of several antioxidants being reported to alleviate DON-
induced cytotoxicity, effective treatments for DON oxidative stress
and intestinal tight junction require further investigation (Long
et al.,, 2021).

Phenethyl isothiocyanate (PEITC) is a natural plant metabolite
that widely existed in its glucosinolate precursor form in crucif-
erous vegetables. It was reported that PEITC could attenuate
dextran sodium sulfate (DSS)-induced ulcerative colitis by modu-
lation of nuclear factor kappa-B (NF-«B) signaling (Liu, 2017).
Nevertheless, the protective effects of PEITC against DON-induced
cell damage is not clear. Therefore, the present study used the
IPEC-J2 cell line as a model to explore the potential protective effect
and molecular mechanism of PEITC on alleviating cell damage,
oxidative stress and intestinal tight junction disorder caused by
DON. Some previous studies have demonstrated that DON expo-
sure could affect cell proliferation, damage intestinal barrier func-
tion and apoptosis in IPEC-J2 cells (Ge et al., 2020; Kang et al., 2019;
Liao et al., 2017). These results are consistent with our findings that
DON exposure reduced the cell viability, and increased the LDH
activity in IPEC-J2 cells in a dose-dependent manner. However, the
adverse effects were markedly reversed by PEITC treatment.
Overall, our results proved that PEITC has the ability to protect
against DON-induced cytotoxicity in IPEC-]2 cells.

Oxidative stress is usually induced by an imbalance in the accu-
mulation of ROS and the antioxidant capability of the cells (Birben
et al,, 2012). ROS are produced by normal cellular metabolism and
environmental factors, which act as a double-edged sword. Low
levels of ROS as a signaling messenger can promote proliferation,
mitosis, innate immune responses and stress—responsive pathways
(Chen et al., 2016; Sena and Chandel, 2012), whereas high levels of
ROS may change DNA structure, affect modification of lipids and
proteins, induce the production of proinflammatory cytokines and
apoptosis which ultimately induces cell death (Gorrini et al., 2013;
Wiseman and Halliwell, 1996). Meanwhile, oxidative stress results in
intestinal tight junction disorder by disrupting the intestinal barrier,
and inducing inflammation and apoptosis in the intestinal
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epithelium (Adesso et al.,, 2017; Vergauwen et al., 2015). According to
a previous study, DON exposure enhanced the intracellular ROS
levels, reduced CAT, SOD and GSH-Px activities, and induced
apoptosis in IPEC-]2 cells (Kang et al., 2019). In this present study, we
measured the activities of antioxidant enzymes by qRT-PCR, and
detected the ROS levels by using an H,DCF-DA probe. Our results
showed that DON exposure induced the production of intracellular
ROS, and oxidative stress-related genes, such as GPx1, iNOS, SOD2,
CAT, COX-2 and HO-1, also exhibited changes in RNA expression,
indicating that strong oxidation takes place in the IPEC-]2 cell.
Meanwhile, several studies have reported that oxidative stress
generally brings about apoptosis in vivo or vitro (Kang et al., 2019;
Vergauwen et al, 2015). Similarly, after DON treatment, the
apoptosis-related mRNA/protein such as Bax, caspase-3, and cas-
pase-9, and the apoptosis ratio were increased in our results. Be-
sides, some reports have found that PEITC could induce antioxidant
enzyme production and phase II detoxification by activating Nrf2 or
MAPK signaling pathway in vitro and in vivo (Krajka-Kuzniak et al.,
2020; Xu et al., 2006). While PEITC treatment suppressed ROS gen-
eration, GPx1, SOD2, CAT and HO-1 mRNA levels were significantly
increased, which indicates that PEITC may reduce intracellular ROS
levels in DON-exposed IPEC-J2 cells via enhancing the production of
glutathione and catalase. In the current study, PEITC treatment could
inhibit apoptosis via decreasing pro-apoptotic mRNA/protein levels
(Bax, caspase-3 and caspase-9) and increasing Bcl-2 mRNA levels in
IPEC-J2 cells. Hence, these results demonstrated that PEITC protects
IPEC-J2 cells from DON exposure contributing to activating antioxi-
dant adaptive response.

Intestinal epithelium maintains an effective barrier separating
the internal lumen of the host, capable of protecting the intestinal
internal environment from gut microbiota and exogenous toxins,
while simultaneously allowing the selective intake of nutrients and
fluids. If the integrity of the intestinal tract is broken, it will lead to
many serious intestinal inflammatory disorders (Holmberg et al.,
2018). The expression and distribution of tight junction proteins
play a crucial role in intestinal barrier function. Some studies have
demonstrated that oxidative stress could lead to intestinal barrier
injury (Vergauwen et al., 2015). Therefore, we hypothesized that
PEITC may alleviate intestinal dysfunction by inhibiting the pro-
duction of intracellular ROS. In the current study, we have indicated
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that PEITC could reduce the production of intracellular ROS. Next,
we measured the mRNA/protein expression of Z0-1, occludin, and
claudin-1 by qRT-PCR and Western blotting. Our results indicated
that a decrease in ZO-1, occludin, and claudin-1 mRNA levels, and
Z0-1 and occludin protein expression by DON exposure in IPEC-]2
cells for 24 h, which might demonstrate that DON brings about
intestinal barrier function and allows toxic substances contained in
feed or food to pass through the intestinal cells (Ge et al., 2020; Ying
et al,, 2019). In our study, we observed that treatment with PEITC
before exposure to DON restored intestinal barrier function via
upregulating the mRNA/protein expression of tight junction.
Therefore, we further confirmed that PEITC may enhance intestinal
barrier function by scavenging intracellular ROS induced by DON
exposure. But the accurate mechanism of PEITC on the effects of
intestinal barrier function is not fully understood, so more studies
are needed to determine this.

Autophagy, called “self-eating”, is a fundamental cellular pro-
cess in eukaryotes that is involved in removing or reusing the
damaged organelles and protein aggregates via lysosomes to
maintain cellular homeostasis and function, thus dysregulated
autophagy can lead to various pathological condition (Cadwell,
2016; Kroemer et al., 2010). Autophagy reveals a dual role in

regulating cell death. On the one hand, at the basal level of auto-
phagy, it provides cells with nutrients and defends cells against
harmful conditions to promote cell survival (Jing and Lim, 2012). On
the other hand, excessive autophagy induces cell apoptosis and
accelerates cell death, which is called as autophagy-mediated cell
death (Gu et al., 2019; Jing and Lim, 2012). Numerous studies have
indicated that the mammalian target of rapamycin (mTOR)
signaling pathway is a significant way to regulate autophagy, and
activation of autophagy is correlated to the suppression of mTOR,
which can inhibit autophagy (He and Klionsky, 2009; Zhou et al.,
2013). Also, it has been reported that DON exposure induced cell
apoptosis and autophagy by inhibiting Akt/mTOR signaling
pathway (Gu et al., 2019; Tang et al., 2015). Similar to these results,
the current study results indicated that DON could significantly
suppress Akt and mTOR protein expression, and increased ATG5
and LC3-II protein expression and the number of GFP-LC3 puncta to
activate autophagy, while PEITC treatment reversed this process via
activating Akt/mTOR signaling pathway, and down-regulating
ATG5 and LC3-II protein expression and the number of GFP-LC3
puncta. Hence, the protective effects of PEITC on DON-induced in-
testinal cell injury may be associated with repression of autophagy
by activating Akt/mTOR signaling pathway.
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Previous research has demonstrated that autophagy is related to
the intestinal mucosal barrier (Cadwell, 2016), but the role of
autophagy in PEITC alleviation of DON-induced intestinal barrier
function remains unclear. Hence, we further testified that the
protective effect of PEITC on the intestinal epithelial barrier was
related to autophagy using rapamycin that was an autophagy
agonist. We found that ATGS5, beclin-1 and LC-3 II mRNA/protein
expression, and the number of GFP-LC3 puncta were significantly
increased by rapamycin-pretreatment. Further, PEITC didn't atten-
uate DON-induced apoptosis and intestinal tight junction disorder
when the IPEC-]2 cells were pretreated with rapamycin. Thus, these
findings indicated that autophagy played a crucial role in the effects
of PEITC on the DON-induced intestinal epithelial barrier function,
and PEITC protected against DON-induced intestinal tight junction
disorder through inhibiting autophagy via activation of mTOR in
IPEC-J2 cells.

5. Conclusions

In summary, we demonstrate that PEITC has an apparent cyto-
protective effect on DON-induced damage in IPEC-J2 cells. Treat-
ment with PEITC alleviated DON-induced oxidative damage,
apoptosis and intestinal tight junction disorder, which may be
related to suppressing autophagy via ROS-mediated mTOR
signaling pathway. Hence, the novel findings may provide insights
for broadening the application of PEITC to alleviate the toxicity of
mycotoxins in animals or humans.
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