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Background. Immunotherapy is a promising therapy for metastatic gastric cancer (GC) patients. However, the component of
tumor microenvironment (TME) is a pivotal factor hindering immunotherapy outcome. CD8 Tcells suppress tumor progression.
+is study developed an immune subtyping system and a prognostic model for guiding personalized therapy of GC patients.
Methods. Marker genes related to CD8 T cells were identified by weighted correlation network analysis (WGCNA). Consensus
clustering was used to develop immune subtypes. Univariate Cox regression analysis was performed to screen prognostic genes.
Functional analysis (KEGG and GO annotation) and gene set enrichment analysis were applied. Results. Based on marker genes
related to CD8 Tcells, we identified three immune subtypes (IC1, IC2, and IC3) with distinct prognosis and differential TME. In
IC3, CD8 T cell function was impaired by high activation of CXCR4/CXCL12 axis, and impaired T cell function predicted high
response to immune checkpoint blockade. IC1 was sensitive to chemotherapeutic drugs but showed low response to immu-
notherapy. We also developed an 8-gene prognostic signature with robust performance to stratify GC patients into high-risk and
low-risk groups. Conclusions. +is study identified three immune subtypes and a prognostic signature, and both were effective in
direct personalized therapy for GC patients. +e correlation between TME and immunotherapy was further characterized from a
new perspective.

1. Introduction

Although the incidence and mortality of gastric cancer (GC)
have declined over the past decades, GC is still the leading
cause of cancer death [1]. +e discovery and application of
curative modalities for GC treatment increased the 5-year
overall survival (OS) rate from 18.8% to 28.0% according to
the statistics of the Surveillance, Epidemiology, and End
Results (SEER) program [2]. However, a large number of
metastatic patients still face the difficulties of seeking an
effective therapy. Currently, immunotherapy targeting im-
mune checkpoints seems a promising strategy for treating
advanced gastric cancer [3].

Tumor microenvironment (TME) is highly associated
with tumor cell proliferation, invasion, migration, and
immunotherapy outcome [4, 5]. To a large extent, infiltra-
tion of different types of immune cells is decisive of the
prognosis of immunotherapy [6]. An extensive immuno-
genomic analysis on pan-cancer performed with+e Cancer
Genome Atlas (TCGA) identified 6 immune subtypes, and
GC can be classified into 5 immune subtypes [7]. +e pan-
caner study further characterized the critical role of TME to
drive personalized cancer immunotherapy. Focusing on
tumor immune infiltration in gastric cancer, Zhou et al.
developed two immune subtypes (Immune Activation
Subtype and Immunosuppressive Subtype), which were
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predicted to have different responses to different immu-
notherapies [8].

A link between increased levels of cytotoxic CD8 T cells
and strong antitumor effects has been discovered in many
cancer types such as breast cancer [9], glioblastoma, cervical
cancer [10, 11], and gastric cancer [12]. In the TME, re-
ceptors of PD-L1 and CD80 expressed by tumor cells or
tumor-related immune cells can interact with PD-1 and
CTLA-4 expressed by CD8 T cells, respectively, to impair
CD8 T cell function [13, 14]. +ese interactions may be the
potential targets for immunotherapy [15, 16]. Current
studies also proved that anti-PD-1/PD-L1 and anti-CTLA-4
inhibitors can suppress cancer cell proliferation [17].
Clinical trial of anti-PD-1 antibody combined with apatinib
revealed a positive outcome in advanced GC patients [18].
Immune infiltration of CD8 T cells plays a pivotal role in
inhibiting cancer cell progression, and its function is closely
correlated with TME. In addition, immune response acti-
vated by targeted immunotherapy is highly related to the
status of infiltrated CD8 T cells and TME [19].

+e current study focused on CD8 Tcells and examined
the role of CD8 T cells in immunotherapy. Integrative
bioinformatics analysis identified genes related to CD8
Tcells, based on which three immune subtypes with distinct
prognosis were determined. A link between immune sub-
types and personalized therapy such as immunotherapy was
comprehensively described in the study. Furthermore, we
constructed an 8-gene prognostic signature to predict the
outcomes of GC patients and guide immunotherapy.

2. Materials and Methods

2.1. Data Information and Study Design. GC samples and
expression data of immune cells were obtained from public
databases. TCGA-STAD dataset was downloaded from
TCGA (https://portal.gdc.cancer.gov/). GSE26942 [20],
GSE66229 [20], and GSE84437 [21] datasets containing GC
samples were downloaded from Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/). Expression data
of immune cells was obtained from GEO, including
GSE13906 [22], GSE23371 [23], GSE27291 [24], GSE27838
[25], GSE28490 [26], GSE28726 [27], GSE37750 [28],
GSE39889 [29], GSE42058 [30], GSE49910 [31], GSE59237
[32], GSE6863 [33], and GSE8059 [34] (Supplementary
Table S1). GSE78220 [35] contains the immunotherapy data
of metastatic melanoma patients. IMvigor210 [36] dataset was
from https://research-pub.gene.com/IMvigor210CoreBio
logies. +e workflow of this study is shown in Figure 1.

2.2. Data Preprocessing. Of TCGA-STAD dataset, samples
without survival status, survival time, or follow-up data were
excluded. Using R software package hgu133plus2.db to
convert Ensembl ID to gene symbol, genes with relative
expression level <1 in over 50% samples were excluded. +e
median of expression was selected when one gene had more
than one gene symbol. In this way, 353 samples were in-
cluded in TCGA-STAD dataset (Supplementary Table S2).
Of GC samples in GSE cohort, normal samples, and samples

without survival status, survival time or follow-up data were
excluded. Genes in probes were converted to gene symbol.
Finally, 826 samples were included in the GSE cohort
(Supplementary Table S2).

+e RMA procedure in affy package [37] was used
process raw data of Affymetrix GeneChip data for GSE
cohort. +en, batch effect among different batches was
removed using the function “removeBatchEffect” in limma
R package [38]. +e principle component analysis (PCA)
was applied to display the expression data before and after
the removal of batch effect. No difference was observed in
TCGA-STAD datasets and immune cell datasets after
removing the batch effect (Supplementary Figures S1 and
S2).

2.3. Weighted Correlation Network Analysis (WGCNA).
WGCNAwas applied to identify coexpression gene modules
from immune cell data, and to construct weight coex-
pression networks [39]. Pearson correlation coefficients
between genes were calculated. +e optimal power of soft
threshold (β) was confirmed, according to the coefficient
between log (k) and log (p(k)). For a scale-free network, the
coefficient between log (k) and log (p(k)) up to 0.85 was
selected. +en, expression matrix was converted to adjacent
matrix and topological overlap matrix (TOM). Using av-
erage-linkage hierarchical clustering, genes were clustered
with at least 100 genes in one gene module based on hybrid
dynamic shear tree and TOM. Gene modules were further
clustered according to the eigengenes of each module under
the criteria of height� 0.25, deepSplit� 2, minModuleSize
� 150.

2.4. Gene Enrichment Analysis. R package of clusterProfiler
(v3.14.0) was employed to annotate Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and gene ontology
(GO) terms of marker genes related to CD8 T cells [40].
CIBERSORT [41] (https://cibersort.stanford.edu/) was used
to calculate the enrichment score of 22 types of immune
cells. GSVA R package was applied for single sample gene set
enrichment analysis (ssGSEA) to analyze the relation be-
tween risk score and KEGG pathways [42].

2.5. Identification of Immune Subtypes Based on CD8 T Cells.
Marker genes related to CD8 T cells were identified by
WGCNA. Univariate Cox regression analysis screened
genes related to prognosis from TCGA-STAD dataset and
GSE cohort. +e intersected genes between the two
datasets were selected for consensus clustering in TCGA-
STAD dataset. ConsensusClusterPlus R package was ap-
plied to perform unsupervised consensus clustering [43].
+e optimal cluster number k � 3 was confirmed by cu-
mulative distribution function (CDF) and the relative
change in area under CDF curve. Kaplan-Meier survival
analysis was performed to verify the effectiveness of
classification. GSE cohort was used to validate the ro-
bustness of classification.
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2.6.�e Relation between Immune Subtypes and Personalized
�erapy. TIDE (https://tide.dfci.harvard.edu/) was used to
predict the potential correlation between immune subtypes
and immune response. Higher TIDE score integrating T cell
dysfunction and Tcell exclusion was positively related to the
possibility of immune escape. GSE78220 dataset containing
anti-PD-1 immunotherapy data of melanoma patients was
used for submap analysis on TCGA-STAD samples. Lower p

value represented a higher similarity of treatment outcomes
among samples. Bonferroni-correction was performed to
correct p value. In addition, estimated IC50 of chemo-
therapeutic drugs including cisplatin, cyclopamine, and
rapamycin was analyzed in different immune subtypes.
Lower estimated IC50 represented higher drug sensitivity.

2.7. Construction of a Prognostic Model. A total of 826
samples in GSE cohort were randomly divided into training
group and test group at a ratio of 8 : 2 for 100 times.+emost
ideal training group and test group were selected under two
conditions: (1) similar proportion of gender and survival
status in two groups; (2) close number of binary classifi-
cation samples after clustering expression profiles. Finally,
659 samples in the training group and 165 samples in the test
group were confirmed, and no statistical difference was
observed between the two groups (Chi-square test, p> 0.05,
Supplementary Table S3). TCGA-STAD dataset was an
independent validation group.

Survival R package of “coxph function” was conducted
for univariate Cox regression analysis in the training group.
Differentially expressed genes with coefficients were
screened under p< 0.05. Least absolute shrinkage and se-
lection operator (LASSO) regression analysis in the glmnet
package [44] and step Akaike information criterion

(stepAIC) in the MASS package [45] were employed to
optimize the prognostic model defined as: risk score� gene 1
expression ∗ coefficient 1 + gene 2 expression ∗ coefficient
2 + . . .+ gene n expression ∗ coefficient n. Risk score was
converted to z-score, and z-score� 0 was the cut-off for
stratifying samples into high-risk and low-risk groups.
Receiver operating characteristic (ROC) curve and Kaplan-
Meier survival curve were used to assess the prognostic
model.

2.8. Statistics Analysis. All the statistics analyses were per-
formed in R (v3.6.2). p< 0.05 was considered as a statistical
significance. All statistics methods were shown in figure
legends.

3. Results

3.1. Identification of Marker Genes Related to CD8 T Cells.
We first extracted marker genes associated with CD8 Tcells.
To this end,WGCNAwas used to analyze expression profiles
of immune cells and identify coexpressed gene modules.
Hierarchical clustering analysis classified a number of im-
mune-related genes into various branches (Figure 2(a)). For
ensuring a scale-free topology nature, the Pearson correla-
tion coefficient between log (k) and log (p(k)) should reach
0.85. +erefore, β� 8 where β represents power of soft
threshold selected (Figure 2(b)). Based on the soft threshold
and correlation coefficient between genes, a topological
overlap matrix was built, and a series of gene modules were
identified. Finally, after merging adjacent modules accord-
ing to eigengenes, 14 coexpressed gene modules were de-
termined (Figure 2(c)). +ese 14 gene modules were
differently associated with various types of immune cells;
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Figure 1: +e flow chart of developing immune subtypes and prognostic genes based on genes related to CD8 T cells.
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here, pink module with 446 genes was found to be closely
associated with CD8 T cells (coefficient� 0.58, p � 2e − 17,
Figure 2(d)).

KEGG and GO analysis on 446 CD8 T cells-related
genes demonstrated a strong relation between these genes
and immune function. +e number of annotated terms of
biological process, cellular component, and molecular
function were 284, 46, and 26 (p< 0.05), respectively, and
the top 10 terms were listed (Figures 3(a)–3(c)). +ese
genes were closely involved in T cell receptor signaling
pathway, antigen receptor-mediated signaling pathway,
T cell differentiation, immune response-activating cell
surface receptor signaling pathway, lymphocyte differen-
tiation, etc. KEGG analysis annotated 33 pathways sig-
nificantly correlated with these genes including multiple
immune-related pathways, such as primary immunodefi-
ciency, +1 and +2 cell differentiation, T cell receptor
signaling pathway, +17 cell differentiation, and natural
killer cell mediated cytotoxicity (Figure 3(d)).

3.2. Construction of CD8 T Cells-Related Immune Subtypes.
After 446 marker genes of CD8 T cells were extracted, CD8
T cells-related immune subtypes were constructed. By using
univariate Cox regression analysis, 45 and 127 genes asso-
ciated with GC prognosis were identified from TCGA-STAD
dataset and GSE cohort, respectively.+e intersection of two
sets displayed a total of 28 genes, with 3 genes positively
correlated with overall survival (OS) and 25 genes related to
a worse OS (p< 0.05, Figure 4(a)). According to the ex-
pression of 28 genes, we conducted consensus clustering on
353 samples from TCGA-STAD dataset. CDF curve showed
the highest relative change in area under CDF curve when
cluster number k� 3, suggesting that the optimal cluster
number was 3 (Figure 4(b), Supplementary Table S4).
Consensus matrix classified 353 samples into three immune
subtypes of IC1, IC2, and IC3 (IC, immune cluster;
Figure 4(c)). Survival analysis revealed the distinct OS
among the three subtypes with the optimal OS in IC1 and the
worst OS in IC3 (p � 0.035, Figure 4(d)). Likewise, we
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Figure 2: WGCNA for identifying marker genes related to CD8 Tcells from immune cell datasets. (a) Hierarchical clustering tree based on
179 expression profiles in immune cells datasets. (b) Confirmation of soft threshold (power) by scale independence and mean connectivity.
(c) Identification of 14 gene modules with different colors from clustering dendrogram. Grey represents gene clusters that cannot merge
with others. (d) Pearson correlation rank analysis between 14 gene modules and 14 types of immune cells.
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observed the same results in GSE cohort (p< 0.0001,
Figure 4(e)), indicating that this immune subtyping system
was valid in different datasets.

3.3.�eDistribution of Immune Subtypes in Clinical Features.
To analyze if there was a relation between immune subtypes
and clinical features, we analyzed the distribution of three
subtypes in different clinical features including survival
status, T stage, N stage, M stage, stage I to IV, age, and
gender. +e results showed that three subtypes were dif-
ferentially distributed in survival status, T stage, stages I to
IV, and age; however, no difference was shown in N stage, M
stage, and gender (Figure 5). +e proportion of deceased
samples in IC3 was higher than IC1 (p< 0.05, Figure 5(a)),
which was consistent with the worse OS of IC3. As for T
stage, IC1 had the highest proportion of T1, while IC3 had
the highest proportion of T4 p< 0.05, Figure 5(b)), showing
that T stage was tightly correlated with immune subtypes.

+e proportion of stage I from IC1 to IC3 was decreasing
(p< 0.05, Figure 5(e)), which may be one of the reasons
contributing to the optimal prognosis of IC1 and the worst
prognosis of IC3. Interestingly, age ≤65 consisted of the
majority in IC3, which was opposite to IC1 and IC2
(p< 0.05, Figure 5(f )).

3.4. �e Correlation between Immune Subtypes and Tumor
Mutation Burden. We calculated the tumor mutation bur-
den (TMB) of each sample in TCGA-STAD dataset using
mutect2 software. Distinct TMB was shown in three im-
mune subtypes, with the highest TMB in IC1 and the lowest
TMB in IC3 (p � 2.6e − 8, Figure 6(a)). Consistently, IC1
had the most numbers of mutated genes, while IC3 had the
least (p � 1.8e − 10, Figure 6(b)). Furthermore, 10031 genes
were screened with a mutation frequency up to 3%; here,
1636 genes were found to be significantly mutated usingChi-
square test (p< 0.05). +e mutation patterns of the top 15
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mutated genes were displayed in Figure 6(c). +e proportion
of TP53 mutations accounted for 37%, and other highly
mutated genes such as MUC16, LRP1B, and ARID1A were
reported to be closely associated with various cancers.

3.5. Differential Expression of Chemokines and Immune
Checkpoints among Immune Subtypes. Chemokines play a
pivotal role in determining TME by recruiting and or-
chestrating immune cells, which can elicit or inhibit
antitumoral responses. +rough binding with chemokine
receptors, chemokines promote tumor proliferation, tu-
mor angiogenesis, and migration. +erefore, we assessed
the expression of 41 chemokines and 18 chemokine re-
ceptors of three immune subtypes and observed that 28
out of 41 chemokines and 11 out of 18 chemokines re-
ceptors were differentially expressed among the three

subtypes, and that the majority of them were higher-
expressed in IC3 (Figures 7(a) and 7(b)), which may lead
to a distinct TME. As chemokines are critical for tumor
angiogenesis that is necessary for tumor proliferation and
migration, we also evaluated the angiogenesis score of
each sample in TCGA-STAD dataset according to a series
of genes related to angiogenesis [46]. Significant differ-
ence was observed among three subtypes that the an-
giogenesis score was the lowest in IC1 but the highest in
IC3, which was consistent with their prognosis
(Figures 7(c) and 4(d)). Immune checkpoints are re-
sponsible for transducing signals between immune cells;
thereby, they can regulate cytokine secretion in response
to TME. We obtained 47 genes related to immune
checkpoints from previous research [47] and analyzed
their expression of each sample. +e result showed that 25
out of 47 genes were differentially expressed among IC1,
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IC2, and IC3 (Figure 7(d)), suggesting that these 25 genes
related to immune checkpoints were closely involved in
contributing to different TMEs.

3.6. Differential Enrichment of Immune Cells and Oncogenic
Pathways among Immune Subtypes. As the expression of
chemokines and genes related to immune checkpoints
varied in three immune subtypes, we further analyzed the
distribution of immune cells and activity of tumor-related
pathways. CIBERSORT was employed to calculate enrich-
ment score of 22 types of immune cells. Among these im-
mune cells, CD8 T cells, resting memory CD4 T cells, M0
macrophages, and M2 macrophages were apparently higher
enriched than others, and 8 immune cells were differentially
enriched in three subtypes, including naive B cells, activated
memory CD4 T cells, helper follicular T cells, resting NK
cells, monocytes, M0 macrophages, M2 macrophages, and
resting dendritic cells (Figures 8(a) and 8(b)). Activated
memory CD4 T cells were highly enriched in IC1, enabling
more active antitumor response, although no difference of
enrichment of CD8 T cells was observed in the three sub-
types. A low proportion of M0 macrophages and a high
proportion of M2 macrophages were found in IC3, which
could explain the increased number of tumor-associated
macrophages (TAMs). IC3 had the highest immune score
than IC1 and IC2, which may result from a high expression
of chemokines and chemokine receptors in IC3
(Figures 8(d), 7(a) and 8(b)).

In addition, we evaluated the enrichment of 10 oncogenic
pathways in the three subtypes [48], and all pathways were
differentially enriched in the three subtypes (Figure 8(c)).
Noticeably, IC3 was significantly higher-enriched than IC1
and IC2 in the most pathways, including Hippo signaling
pathway, Notch signaling pathway, PI3K signaling pathway,
TGF-β signaling pathway, RAS signaling pathway, and WNT
signaling pathway (p< 0.0001, Figure 8(c)).

According to various aspects of analysis, the three im-
mune subtypes presented significant difference and correla-
tion in prognosis, TME, and oncogenic pathways,
demonstrating the effectiveness of this immune subtyping
system. Compared with the previous immune subtypes in a
pan-cancer research [7], a close relation was also discovered.
+e pan-cancer research divided gastric cancer into five
immune subtypes (C1, C2, C3, C4, and C6) with different OS,
and the distribution of five subtypes was assessed in IC1, IC2,
and IC3 (Figure 8(e)). C2 subtype with favorable OS consisted
of a high proportion of IC1 and a low proportion of IC3. C3
subtype with worse OS than C2 was densely gathered in IC3,
and C6 subtype with the worst OS only presented in IC1 and
IC2 (Figure 8(e) and Supplementary Figure S3). +e results
further proved that our immune subtyping system was solid
and reliable in predicting gastric cancer prognosis.

3.7. Immune Escape and T Cell Function Analyzed by TIDE.
Next, we analyzed whether there was a difference among
IC1, IC2, and IC3 on their immune response using TIDE
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methodology [49]. In TCGA-STAD dataset, IC1 had the
lowest TIDE score, and IC3 had the highest (Figure 9(a)),
indicating a high possibility of immune escape in IC1. +e
function of T cells is an important factor that can directly
affect the immune response against tumor cells. +erefore,
we also analyzed the manifestation of T cell function from

the aspects of dysfunction and exclusion. IC1 showed the
lowest score of both T cell dysfunction and exclusion, while
IC3 had the highest score of the two (Figures 9(b) and 9(c)),
suggesting impaired function of T cells to kill tumor cells in
IC3. +e similar results were also found in GSE cohort
(Figures 9(d)–9(f)).
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Figure 7: Expression of chemokines, chemokine receptors and genes related to immune checkpoints in TCGA-STAD dataset. ((a) and (b))
Expression of 41 chemokines (a) and 18 chemokine receptors (b) in three subtypes. (c) Differential angiogenesis score among three subtypes.
(d) Expression of 47 genes related to immune checkpoints in three subtypes. ANOVA was performed. ∗p< 0.05, ∗∗p< 0.01, ∗∗p< 0.001,
∗∗∗∗p< 0.0001.
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3.8. Differential Sensitivity of�ree Immune Subtypes to PD-1
Inhibitor and Chemotherapeutic Drugs. Anti-PD-1/PD-L1
therapy using PD-1/PD-L1 inhibitors to active or reactive
immune response to tumor cells is one of the most
promising immunotherapies for treating many cancer types.
We performed submap analysis to compare the similarity of
TME between samples treated by anti-PD-1 inhibitor in

GSE78220 dataset and three immune subtypes. High sim-
ilarity with a low p value indicated a high efficacy of anti-PD-
1 therapy. IC3 was shown to be not sensitive to anti-PD-1
therapy in both TCGA-STAD dataset and GSE cohort
(Bonferroni-corrected p � 0.001, Figures 10(a) and 10(b)).
However, IC1 and IC2 showed different responses to anti-
PD-1 therapy in two datasets. Furthermore, we also
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Figure 8: Immune features of three immune subtypes in TCGA-STAD dataset. (a) +e heatmap presenting the distribution of 22 immune
cells. (b) Comparison of enrichment score of 22 immune cells among three subtypes. (c) +e enrichment of 10 oncogenic pathways in three
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examined the response to chemotherapeutic drugs by cal-
culating estimated IC50. Lower IC50 was indicative of a
higher drug sensitivity and possibly a more favorable out-
come. In TCGA-STAD dataset, IC1 displayed the lowest
estimated IC50 of all three drugs (cisplatin, cyclopamine,
and rapamycin), indicating that IC1 had the highest sen-
sitivity to these drugs (Figures 10(c)–10(e)); however, IC3
could only limitedly benefit from the treatment of these
drugs. Simultaneously, consistent results were observed in
GSE cohort (Figures 10(f )–10(h)).

3.9. Construction of a Prognostic Model Based on Marker
Genes Related to CD8 T Cells. Although the immune sub-
typing system can stratify GC patients into three subtypes
with distinct prognosis and can largely guide chemotherapy
and immunotherapy, it is not effective in predicting the
treatment outcomes of GC patients. Based on the genes
related to CD8 T cells, we constructed a prognostic model
with the least number of genes to simply and efficiently
predict prognosis. To this end, GSE cohort was randomly
divided into training group and test group (Supplementary
Table S3), with TCGA-STAD dataset as an independent
validation group.

Within the training group, we screened 107 differentially
expressed genes related to OS using univariate Cox re-
gression analysis (p< 0.05). +en, LASSO regression anal-
ysis was conducted to compress the model and reduce
number of genes. +e coefficient of each gene was close to
zero with the increasing value of lambda (Supplementary
Figure S4A). 10-fold cross validation was applied to con-
struct model with different lambda, and the confidential
interval of different lambda was calculated (Supplementary
Figure S4B). When lambda� 0.0671, the optimal model
consisting a total of 12 genes was developed (Supplementary
Figure S4).+en, we applied stepAIC to further optimize the
model, and finally an 8-gene prognostic model was con-
structed as follows:

Risk score � 0.358∗ FBLN5 + 0.307∗ENPP5

− 0.665∗KLHDC4 − 0.620∗CD160

+ 0.890∗ZNF578 + 0.751∗ LBH

− 0.864∗KLRD1 + 0.215∗TCEAL2.

(1)

+e risk score of each sample was counted using the 8-
gene signature, and risk score was converted to z-score. Each
sample was classified into low-risk and high-risk groups by
the cutting of z-score� 0. In the training group, 327 samples
and 332 samples were classified into high-risk and low-risk
groups, respectively, with the high-risk group showing more
deceased samples (Figure 11(a)). ZNF578, TCEAL2, LBH,
FBLN5, and ENPP5 were highly expressed in high-risk
group, while KLHDC4, KLRD1, and CD160 were low-
expressed in low-risk group (Figure 11(a)). ROC analysis
manifested the reliability of the classification that AUC of 1-
year, 3-year, and 5-year was 0.60, 0.68, and 0.70, respectively
(Figure 11(b)). Survival curve revealed the significantly
distinct OS between two groups, with a better prognosis in
low-risk group (p< 0.0001, Figure 11(c)). Risk score could

be an independent factor to efficiently predict prognosis
(HR� 1.62, 95% CI� 1.47–1.79, Figure 11(c)). We therefore
assessed the prognostic model in the test group. 165 samples
were stratified into high-risk and low-risk groups with
distinct OS (p< 0.0001, Supplementary Figure S5). +e
robustness of the prognostic model was also validated in
TCGA-STAD dataset, and 353 samples were classified into
low-risk and high-risk groups with differential OS
(p � 0.002, Supplementary Figure S6). In addition, we also
analyzed the expression differences of these eight genes
between cancer and adjacent samples. We can observe that
most of these genes have significant expression differences,
such as KLHDC4, ZNF578, LBH, and KLRD1 that are
significantly overexpressed in tumor samples and tceal2 that
is significantly underexpressed in adjacent samples (Sup-
plementary Figure S7A). Further, we observed the expres-
sion differences of these genes in three molecular subtypes;
FBLN5, LBH, and TCEAL2 were specifically highly
expressed in IC3, and KLHDC4 was specifically low
expressed in IC3 (Supplementary Figure S7B). +e above
results indicated that the 8-gene signature was effective in
GC prognosis prediction.

3.10. Risk Score was Associated with Clinical Features and
Immune Subtypes. +en, we analyzed the relation between
risk score and clinical features including T, N, M stage,
stages I to IV, gender, and age and found that low risk score
was presented in T1, N0, M0 stage, and stage I with clinically
mild progression (Figures 12(a)–12(d)). Especially, signifi-
cantly differential risk score was distributed in T stage
(p � 0.00021), stages I to IV (p � 0.00054). However, gender
and age were not the factors affecting risk score
(Figures 12(e) and 12(f)). Notably, a strong correlation was
observed between risk score and immune subtypes, where
IC1 had the lowest risk score and IC3 showed the highest
risk score (p � 5.8e − 27, Figure 12(g)). +ese results further
demonstrated the viability of the prognostic signature.
Moreover, hazard ratio of clinical features and risk type was
assessed with univariate and multivariate Cox regression
analysis using TCGA-STAD dataset. Risk type was signifi-
cantly associated with overall survival, with HR� 1.66 (95%
CI� 1.18–2.32, p � 0.003) and HR� 1.52 (95% CI� 1.05
–2.19, p � 0.025) in univariate and multivariate Cox re-
gression analysis, respectively (Figure 13). Moreover, age
and M stage were also risk factors, with HR >1, which could
be included to delineate nomogram together with risk score.

3.11.�eCorrelation betweenRisk Score andKEGGPathways.
To further examine whether risk score and functional
pathways were correlated, ssGSEA was performed to cal-
culate enrichment score of each sample in TCGA-STAD
dataset, followed by correlation analysis between enrich-
ment score in functional pathways and risk score using
Pearson correlation analysis. |Correlation coefficient| ≥0.4
was set as a cut-off to screen the functional pathways closely
associated with risk score. 64 KEGG pathways, including 18
pathways negatively correlated with risk score and 46
pathways positively correlated with risk score, were
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identified (Figure 14(a)). Pathways related to cell cycle, DNA
replication, and DNA repair were greatly enriched in the
samples with low risk score, while tumor-related pathways,
such as VEGF signaling pathway, NOTCH signaling path-
way, TGF-β signaling pathway,WNTsignaling pathway, and
MAPK signaling pathway, were highly enriched in the
samples with high risk score (Figure 14(b)). +e strong
correlation between high risk score and high enrichment of
oncogenic pathways showed that the 8 prognostic genes may
be closely involved in promoting tumor progression through
activating or regulating oncogenic pathways.

3.12. Construction of a Nomogram to Predict Prognosis.
To more precisely predict overall survival, we constructed a
nomogram combining three risk factors (risk score, M stage,
and age). Each risk factor corresponds to a point according

to clinical information, and the total points correspond to
the predicted death possibility in 1-, 3-, and 5-year
(Figure 15(a)). +e predicted OS was corrected by the ob-
served OS (Figure 15(b)). Decision curve analysis (DCA)
was performed to evaluate the effectiveness of the nomo-
gram. As a result, nomogram was more advantageous to
predict prognosis than risk score only (Figure 15(c)).

3.13. Prognostic Significance of Risk Score in Immunotherapy.
We further examined whether the 8-gene signature was
associated with the efficacy of immunotherapy. Imvigor210
dataset containing metastatic urothelial carcinoma patients
treated by anti-PD-L1 immunotherapy was used in the
following analysis. Kaplan-Meier survival curve showed a
more favorable OS in low-risk group (p< 0.0001,
Figure 16(a)). In comparison to neoantigen (NEO) and
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Figure 9: TIDE analysis for predicting the efficacy of immunotherapy in different subtypes. (a–c) TIDE score (a), T cell dysfunction score
(b), and Tcell exclusion score (c) of samples in TCGA-STAD dataset. (d–f) TIDE score (d), Tcell dysfunction score (e), and Tcell exclusion
score (f ) of samples in GSE cohort. ANOVA was performed. ns, no significance. ∗p< 0.05, ∗∗p< 0.01, ∗∗p< 0.001, ∗∗∗∗p< 0.0001.
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TMB, risk score with an AUC of 0.83 (95% CI� 0.67–1.00,
Figure 16(b)) was the most effective when predicting
prognosis. Between high-risk and low-risk groups,

differential responses to immunotherapy were detected,
where the proportion of complete response (CR) and stable
disease (SD) was found to be significantly higher in low-risk
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Figure 10: Different responses to immunotherapy and chemotherapy among three immune subtypes. ((a, b)) Submap analysis between
GSE78220 and TCGA-STAD dataset (a), GSE78220 and GSE cohort (b). Bonferroni correction was applied to correct (p) value. Anti-PD-
1_NR and anti-PD-1_R groups represent nonresponsive and responsive to anti-PD-1 therapy respectively. (c–e) Estimated IC50 of cisplatin
(c), cyclopamine (d) and rapamycin (e) in TCGA-STAD dataset. (f–h) Estimated IC50 of cisplatin (f ), cyclopamine (g) and rapamycin (h) in
GSE cohort. ANOVA was performed. ns, no significance. ∗p< 0.05, ∗∗p< 0.01, ∗∗p< 0.001, ∗∗∗∗p< 0.0001.
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group (p< 0.05, Figure 16(c)). In the relation to immune
infiltration, risk score was negatively related tomany types of
immune cells such as CD8 T cells, cytotoxic lymphocytes, B
lineage, and NK cells, while NEO and TMB were not

obviously correlated with these immune cells (Figure 16(d)).
Moreover, lower risk score was related to higher NEO and
TMB, suggesting that patients with higher NEO and TMB
could benefit much more from anti-PD-L1 therapy.
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Figure 11: Assessment of the prognostic model in the training group. (a) +e distribution of high-risk and low-risk groups, and the
expression of 8 prognostic genes corresponding to risk score. (b) ROC analysis and AUC of 1-year, 3-year and 5-year OS predicted by the 8-
gene signature. (c) Kaplan-Meier survival curve of high-risk and low-risk groups. Log-rank test was performed.
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Figure 12: +e relation of risk score to T stage (a), N stage (b), M stage (c), stage I to IV (d), gender (e), age (f ) and immune subtypes (g).
Wilcoxon test was performed.

Names

Age

Gender

T.Stage

N.Stage

M.Stage

Stage

RiskType

p.value

0.006

0.152

0.013

0.003

0.011

0.000

0.003

Hazard Ratio (95% CI)

1.6 (1.14,2.25)

1.3 (0.91,1.85)

1.7 (1.12,2.59)

1.91 (1.25,2.91)

2.1 (1.18,3.72)

1.93 (1.34,2.77)

1.66 (1.18,2.32)

0.71 1.0 1.41 3.72
HR

(a)

Names

Age

Gender

T.Stage

N.Stage

M.Stage

Stage

RiskType

p.value

0.002

0.096

0.541

0.232

0.035

0.434

0.025

Hazard Ratio (95% CI)

1.77 (1.22,2.57)

1.39 (0.94,2.04)

1.18 (0.7,1.98)

1.43 (0.8,2.56)

1.98 (1.05,3.71)

1.25 (0.72,2.17)

1.52 (1.05,2.19)

0.71 1.0 1.41 3.71
HR

(b)

Figure 13: Univariate (a) and multivariate (b) Cox regression analysis between potential risk factors and prognosis.
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Figure 14: +e relation between risk score and KEGG pathways. (a) 64 KEGG pathways related to risk score identified by Pearson
correlation analysis. |correlation coefficient| >0.4. (b) +e relation between enrichment of pathways and risk score. Horizontal axis
represents the increasing risk score from left to right. Red means positive correlation and blue means negative correlation.
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In addition, we analyzed the risk score in different kinds
of groups, including treatment response, immune cells,
tumor cells, and immune phenotype. CR patients had the
lowest risk score among CR, PD, PR, and SD patients
(Figure 17(a)). Previous study divided immune cells (IC)
and tumor cells (TC) into three groups, according to the
percentage of PD-L1 positive cells: IC0/TC0 (<1%), IC1/TC1
(≥1% but <5%) and IC2+/TC2+ (≥5%) [50]. +e result
showed that IC2+ and TC2+ group had the lowest risk score
(Figures 17(b) and 17(c)), indicating that patients showing
TME enriched with PD-L1-positive cells could be treated by
anti-PD-L1 therapy. In terms of three immune phenotypes
(desert, excluded, and inflamed), inflamed phenotype has
been reported to be actively responsible to immunotherapy,
which was consistent with the present result that inflamed
group had the lowest risk score (p< 0.0001, Figure 17(d)).

+ese analyses demonstrated that the prognostic signature
was robust to predict outcomes for patients who have un-
dergone immunotherapy.

4. Discussion

+e antitumor effects of cytotoxic CD8 T cells rely on CD8
Tcell differentiation and its infiltration in tumor site but can
be suppressed by cytokines and chemokines secreted from
tumor cells and immune cells in TME. It has been dem-
onstrated that the inhibition of PD-1/PD-L1 can activate the
function of cytotoxic CD8 Tcells, thereby suppressing tumor
proliferation. However, the anti-PD-1/PD-L1 therapy is only
effective to certain cancer patients due to differential TME of
patients. +erefore, an effective molecular subtyping system
is strongly needed to characterize TME and status of CD8
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Figure 15: Visualization of the prognostic model. (a) A nomogram based on risk score, M stage and age for predicting overall survival. (b)
+e correction plot of 1-year, 3-year and 5-year OS predicted by the nomogram. (c) DCA curve of nomogram, age, M stage and risk score.

Journal of Oncology 17



T cells, so as to predict the outcomes of immunotherapy.
Although previous studies have developed various types of
molecular subtypes for gastric cancer [7, 51], none of them
focuses on CD8 Tcells. In the present study, we constructed
three immune subtypes (IC1, IC2, and IC3) based onmarker
genes related to CD8 Tcells and fully characterized the tight

relation among immune subtypes, TME, oncogenic path-
ways, chemotherapy, and immunotherapy.

Chemokines play a critical role in facilitating the mi-
gration of immune cells to tumor site and can also modulate
tumor cell metastasis and growth [52]. Differential ex-
pression of chemokines and chemokine receptors was shown
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Figure 16: +e application of the 8-gene prognostic signature in Imvigor210 dataset with patients treated by anti-PD-L1 inhibitors. (a)
Kaplan-Meier survival curve of high-risk and low-risk groups. Log-rank test was performed. (b) ROC analysis of risk score, NEO and TMB
in predicting prognosis. (c) +e distribution of CR, PD, PR, SD patients in high-risk and low-risk groups. ANOVA was performed. (d)
Pearson correlation analysis between risk score and TMB, NEO, and immune infiltration. Blue represents positive correlation and red
represents negative correlation.
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in three immune subtypes, which may explain the distinct
OS outcomes of the three. CCL2, CCL5, CCL17, and CCL22
can induce immunosuppressive cell migration through their
interactions with their receptors of CCR2, CCR5, and CCR4
in macrophages and regulatory Tcells [53]. High expression
of CCL2, CCL5, CCL17, and CCL22 and their receptors were
observed in IC3 (Figure 7), which was related to a poor
prognosis of IC3. CXCR4 can direct the migration of CD8
T cells and NK cells to tumor sites [54] but can also impede
the infiltration of T cells to tumor cells through CXCL12
[55]. Pharmacological studies targeting CXCR4/CXCL12
axis demonstrated that CXCR4 antagonist releases T cells

from CXCL12-rich stroma and increases Tcell infiltration to
tumor sites [55–57]. Moreover, CXCL12 can induce epi-
thelial-mesenchymal transition (EMT) and gastric cancer
metastasis possibly through the interaction between MET
proto-oncogene (c-MET) and CXCR4 [58]. Among three
immune subtypes, the expression tendency of CXCL12 was
corresponding with CXCR4 expression, and IC3 had the
highest expression level of them, which was consistent with
its poor outcome. In addition, previous studies discovered
that low expression of CXCL8 is associated with unfavorable
prognosis in gastric cancer [59, 60], and the same phe-
nomenon is also observed in the present study. +ese
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Figure 17: +e relation of risk score to response treated by anti-PD-L1 (a), PD-L1-postive immune cells (b), PD-L1-postive tumor cells (c),
and immune phenotypes (d). IC2+ represents IC2/IC3 and TC2+ represents TC2/TC3. Kruskal-Wallis test was performed. ns, no sig-
nificance. ∗p< 0.05, ∗∗p< 0.01, ∗∗p< 0.001, ∗∗∗∗p< 0.0001. IC, immune cell. TC, tumor cell.
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observations proved that our immune subtyping system
based on CD8 T cells was reliable.

Immune checkpoint blockade, such as inhibiting PD-1/
PD-L1 axis, is a promising immunotherapy for the man-
agement of metastatic cancer patients. PD-1 expressed by
CD8 T cells can interact with its ligand PD-L1 expressed by
immune cells or tumor cells in TME, leading to T cell ex-
haustion and apoptosis, which refers to immune escape [61].
TIDE analysis revealed that IC3 had the highest score of
Tcell exhaustion and exclusion, indicating its impaired Tcell
function and poor prognosis (Figure 9). High expression of
CXCL12 and CXCR4 was the possible reason for promoting
the interaction between PD-1 and PD-L1, further triggering
T cell dysfunction. In other words, high immune escape
score of IC3 probably resulted from the activation of
CXCL12/CXCR4 and PD-1/PD-L1 axis. Various immune
checkpoint inhibitors have been examined in cancer pa-
tients; however, only around 20% of patients can obtain
long-term benefits [3]. Our immune subtyping system could
guide a better personalized therapy to GC patients.

+e three immune subtypes manifested differential
enrichment in oncogenic pathways, especially cell cycle,
HIPPO, NOTCH, PI3K, TGF-β, RAS, and WNT signaling
pathways. Apart from cell cycle pathway, activation of
remained pathways is closely related to poor prognosis of
cancer patients. Some inhibitors targeting HIPPO,
NOTCH, PI3K, TGF-β, and WNT signaling pathways
have been applied in clinical trials [62–65]. High en-
richment of PI3K signaling pathway in GC samples, es-
pecially in IC3, may be a potential target for effective
targeted drug therapy for GC patients. As for chemo-
therapeutic drugs, the subtyping system can also provide a
direction for their clinical use; here, IC1 was found to be
the most sensitive to cisplatin, cyclopamine, and rapa-
mycin (Figures 10(c)–10(h)).

To further evaluate the clinical outcomes of GC patients,
we developed an 8-gene prognostic signature and con-
structed a nomogram with an easy application in clinical
practice. +e signature can calculate the risk score of each
patient and clearly stratify the patients into high-risk and
low-risk groups with distinctly different prognosis. Func-
tional analysis demonstrated that the risk score was closely
associated with oncogenic pathways, such as cell cycle,
NOTCH, WNT, and TGF-β signaling pathways (Figure 14).
Furthermore, the signature also exhibited robust perfor-
mance in screening metastatic urothelial carcinoma patients
treated by anti-PD-1 (Figures 16(a)–16(c)). As for the re-
lation between risk score and immune infiltration, high
infiltration of CD8 T cells, cytotoxic lymphocytes, and NK
cells is negatively correlated with risk score (Figure 16(d)),
suggesting that immune infiltration was a critical factor of
prognosis of patients who received anti-PD-1 therapy.
Consistent with previous studies, in this study, patients with
immune-desert phenotype had poor outcome of immuno-
therapy, while those with immune-inflamed phenotype can
benefit much from immunotherapy [66] (Figure 17(d)).

By an integrated analysis on functional pathways, TME,
immune response, immunotherapy, etc., we comprehen-
sively characterized the links among them and demonstrated

the reliability of the immune subtyping system. +is sub-
typing system based on CD8 T cells together with the
prognostic signature has demonstrated its applicability in
clinical practice.

5. Conclusion

In conclusion, based on genes related to CD8 T cells, we
developed three immune subtypes and an 8-gene prognostic
signature to guide personalized therapy for GC patients.
+ree immune subtypes manifested differential responses to
chemotherapy and immunotherapy. +e prognostic signa-
ture can predict whether GC patients can benefit from
immunotherapy.

Abbreviations

AIC: Akaike information criterion
AUC: Area under ROC curve
CDF: Cumulative distribution function
c-MET: MET proto-oncogene
CR: Complete response
DCA: Decision curve analysis
EMT: Epithelial-mesenchymal transition
GC: Gastric cancer
GEO: Gene expression omnibus
GO: Gene ontology
HR: Hazard ratio
IC: Immune cluster
IC50: +e biochemical half maximal inhibitory

concentration
KEGG: Kyoto encyclopedia of genes and genomes
LASSO: Least absolute shrinkage and selection operator
NEO: Neoantigen
OS: Overall survival
PCA: Principle component analysis
PD: Progressive disease
PD-1: Programmed cell death protein 1
PD-L1: Programmed cell death ligand 1
PR: Partial response
ROC: Receiver operating characteristic
SD: Stable disease
SEER: +e surveillance, epidemiology, and end results
ssGSEA: Single sample gene set enrichment analysis
TAMs: Tumor-associated macrophages
TCGA: +e cancer genome atlas
TMB: Tumor mutation burden
TME: Tumor microenvironment
TOM: Topological overlap matrix
WGCNA: Weighted correlation network analysis.

Data Availability

+e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

+e authors declare that they have no competing interest.

20 Journal of Oncology



Authors’ Contributions

Jianyu Wu and Yajie Xiao equally contributed to this study.
All authors made a significant contribution to the work
reported, whether that is in the conception, study design,
execution, acquisition of data, analysis and interpretation, or
in all these areas; took part in drafting and revising or
critically reviewing the article; gave final approval of the
version to be published; have agreed on the journal to which
the article has been submitted; and agree to be accountable
for all aspects of the work.

Acknowledgments

+e authors did not receive specific funding.

Supplementary Materials

Supplementary Figure S1. Elimination of batch effects for
GSE cohort. (A) +e PCA result before eliminating batch
effects. (B) +e PCA result after eliminating batch effects.
Supplementary Figure S2. Elimination of batch effects for
immune cell datasets. (A) +e PCA result before elimi-
nating batch effects. (B) +e PCA result after eliminating
batch effects. Supplementary Figure S3. Kaplan-Meier
survival curve of C1, C2, C3, C4, and C6 immune subtypes
reported in the previous study. Log-rank test was per-
formed. Supplementary Figure S4. LASSO regression
analysis for optimizing the model. (A) +e coefficients of
each variate (gene) change with different lambda values.
+e red dotted line represents when lambda � 0.0671, the
model was the optimal. (B) Confidential interval under
different lambda values. +e red dot represents the site of
the optimal lambda. Supplementary Figure S5. Assessment
of the prognostic model in the test group. (A) +e dis-
tribution of high-risk and low-risk groups, and the ex-
pression of 8 prognostic genes corresponding to risk score.
(B) ROC analysis and AUC of 1-year, 3-year and 5-year OS
predicted by the 8-gene signature. (C) Kaplan-Meier sur-
vival curve of high-risk and low-risk groups. Log-rank test
was performed. Supplementary Figure S6. Validation of the
prognostic model in TCGA-STAD dataset. (A) +e dis-
tribution of high-risk and low-risk groups, and the ex-
pression of 8 prognostic genes corresponding to risk score.
(B) ROC analysis and AUC of 1-year, 3-year and 5-year OS
predicted by the 8-gene signature. (C) Kaplan-Meier sur-
vival curve of high-risk and low-risk groups. Log-rank test
was performed. Supplementary Figure S7. +e expression
difference of 8 genes. (A) Expression difference of 8 genes
in cancer and adjacent cancer. (B) Expression difference of
8 genes in three molecular subtypes. Supplementary Table
S1. Sample information of each data set. Supplementary
Table S2. +e clinical information of TCGA-STAD dataset
and GSE cohort. Supplementary Table S3. +e information
of training group and test group. Supplementary Table S4.
Molecular subtypes of TCGA samples. (Supplementary
Materials)

References

[1] P. Rawla and A. Barsouk, “Epidemiology of gastric cancer:
global trends, risk factors and prevention,” Gastroenterology
Review, vol. 14, no. 1, pp. 26–38, 2019.

[2] A. P. +rift and H. B. El-Serag, “Burden of gastric cancer,”
Clinical Gastroenterology and Hepatology, vol. 18, no. 3,
pp. 534–542, 2020.

[3] C. Coutzac, S. Pernot, N. Chaput, and A. Zaanan, “Immu-
notherapy in advanced gastric cancer, is it the future?” Critical
Reviews in Oncology/Hematology, vol. 133, pp. 25–32, 2019.

[4] M. Wang, J. Zhao, L. Zhang et al., “Role of tumor micro-
environment in tumorigenesis,” Journal of Cancer, vol. 8,
no. 5, pp. 761–773, 2017.

[5] M. Najafi, N. H. Goradel, B. Farhood et al., “Tumor micro-
environment: interactions and therapy,” Journal of Cellular
Physiology, vol. 234, no. 5, pp. 5700–5721, 2019.

[6] T. Wu and Y. Dai, “Tumor microenvironment and thera-
peutic response,” Cancer Letters, vol. 387, pp. 61–68, 2017.

[7] V. +orsson, D. L. Gibbs, S. D. Brown et al., “+e immune
landscape of cancer,” Immunity, vol. 48, no. 4, pp. 812–830.e814,
2018.

[8] Y.-J. Zhou, G.-Q. Zhu, X.-F. Lu et al., “Identification and
validation of tumour microenvironment-based immune
molecular subgroups for gastric cancer: immunotherapeutic
implications,” Cancer Immunology, Immunotherapy, vol. 69,
no. 6, pp. 1057–1069, 2020.

[9] H. R. Ali, E. Provenzano, S.-J. Dawson et al., “Association
between CD8+ T-cell infiltration and breast cancer survival in
12 439 patients,” Annals of Oncology, vol. 25, no. 8,
pp. 1536–1543, 2014.

[10] P. S. Kim and R. Ahmed, “Features of responding T cells in
cancer and chronic infection,” Current Opinion in Immu-
nology, vol. 22, no. 2, pp. 223–230, 2010.

[11] J. Kmiecik, A. Poli, N. H. C. Brons et al., “Elevated CD3+ and
CD8+ tumor-infiltrating immune cells correlate with pro-
longed survival in glioblastoma patients despite integrated
immunosuppressive mechanisms in the tumor microenvi-
ronment and at the systemic level,” Journal of Neuro-
immunology, vol. 264, no. 1-2, pp. 71–83, 2013.

[12] Y. Wang, C. Zhu, W. Song, J. Li, G. Zhao, and H. Cao, “PD-L1
expression and CD8(+) T cell infiltration predict a favorable
prognosis in advanced gastric cancer,” Journal of Immunology
Research, vol. 2018, Article ID 4180517, 10 pages, 2018.

[13] V. R. Juneja, K. A. McGuire, R. T. Manguso et al., “PD-L1 on
tumor cells is sufficient for immune evasion in immunogenic
tumors and inhibits CD8 T cell cytotoxicity,” Journal of Ex-
perimental Medicine, vol. 214, no. 4, pp. 895–904, 2017.

[14] S. Chikuma, “CTLA-4, an essential immune-checkpoint for
T-cell activation,” Current Topics in Microbiology and Im-
munology, vol. 410, pp. 99–126, 2017.

[15] B. Rowshanravan, N. Halliday, and D.M. Sansom, “CTLA-4: a
moving target in immunotherapy,” Blood, vol. 131, no. 1,
pp. 58–67, 2018.

[16] A. Salmaninejad, S. F. Valilou, A. G. Shabgah et al., “PD-1/
PD-L1 pathway: basic biology and role in cancer immuno-
therapy,” Journal of Cellular Physiology, vol. 234, no. 10,
pp. 16824–16837, 2019.

[17] B. Wang, L. Qin, M. Ren, and H. Sun, “Effects of combination
of anti-CTLA-4 and anti-PD-1 on gastric cancer cells pro-
liferation, apoptosis and metastasis,” Cellular Physiology and
Biochemistry, vol. 49, no. 1, pp. 260–270, 2018.

Journal of Oncology 21

https://downloads.hindawi.com/journals/jo/2022/8933167.f1.zip
https://downloads.hindawi.com/journals/jo/2022/8933167.f1.zip


[18] J. Xu, Y. Zhang, R. Jia et al., “Anti-PD-1 antibody SHR-1210
combined with apatinib for advanced hepatocellular carci-
noma, gastric, or esophagogastric junction cancer: an open-
label, dose escalation and expansion study,” Clinical Cancer
Research, vol. 25, no. 2, pp. 515–523, 2019.

[19] T. Frankel, M. P. Lanfranca, and W. Zou, “+e role of tumor
microenvironment in cancer immunotherapy,” Advances in
Experimental Medicine and Biology, vol. 1036, pp. 51–64, 2017.

[20] S. C. Oh, B. H. Sohn, J.-H. Cheong et al., “Clinical and ge-
nomic landscape of gastric cancer with a mesenchymal
phenotype,” Nature Communications, vol. 9, no. 1, p. 1777,
2018.

[21] S.-J. Yoon, J. Park, Y. Shin et al., “Deconvolution of diffuse
gastric cancer and the suppression of CD34 on the BALB/c
nude mice model,” BMC Cancer, vol. 20, no. 1, p. 314, 2020.

[22] Y. Zhang, J. H. Ohyashiki, N. Shimizu, and K. Ohyashiki,
“Aberrant expression of NK cell receptors in Epstein-Barr
virus-positivecδT-cell lymphoproliferative disorders,” He-
matology, vol. 15, no. 1, pp. 43–47, 2010.

[23] B. J. Jansen, I. E. Sama, D. Eleveld-Trancikova et al.,
“MicroRNA genes preferentially expressed in dendritic cells
contain sites for conserved transcription factor bindingmotifs
in their promoters,” BMC Genomics, vol. 12, no. 1, p. 330,
2011.

[24] M. Tosolini, F. Pont, D. Bétous et al., “Human monocyte
recognition of adenosine-based cyclic dinucleotides unveils
the A2a Galphas protein-coupled receptor tonic inhibition of
mitochondrially induced cell death,” Molecular and Cellular
Biology, vol. 35, no. 2, pp. 479–495, 2015.

[25] T. K. Garg, S. M. Szmania, J. A. Khan et al., “Highly activated
and expanded natural killer cells for multiple myeloma im-
munotherapy,” Haematologica, vol. 97, no. 9, pp. 1348–1356,
2012.

[26] F. Allantaz, D. T. Cheng, T. Bergauer et al., “Expression
profiling of human immune cell subsets identifies miRNA-
mRNA regulatory relationships correlated with cell type
specific expression,” PLoS One, vol. 7, no. 1, Article ID e29979,
2012.

[27] M. G. Constantinides, D. Picard, A. K. Savage, and
A. Bendelac, “A naive-like population of human CD1d-re-
stricted Tcells expressing intermediate levels of promyelocytic
leukemia zinc finger,” �e Journal of Immunology, vol. 187,
no. 1, pp. 309–315, 2011.

[28] L. L. Aung, A. Brooks, S. A. Greenberg, M. L. Rosenberg,
S. Dhib-Jalbut, and K. E. Balashov, “Multiple sclerosis-linked
and interferon-beta-regulated gene expression in plasmacy-
toid dendritic cells,” Journal of Neuroimmunology, vol. 250,
no. 1-2, pp. 99–105, 2012.

[29] K. C. Malcolm, E. M. Nichols, S. M. Caceres et al., “Myco-
bacterium abscessus induces a limited pattern of neutrophil
activation that promotes pathogen survival,” PLoS One, vol. 8,
no. 2, Article ID e57402, 2013.

[30] L. H. Nagy, I. Grishina, M. Macal et al., “Chronic HIV in-
fection enhances the responsiveness of antigen presenting
cells to commensal Lactobacillus,” PLoS One, vol. 8, no. 8,
Article ID e72789, 2013.

[31] N. A. Mabbott, J. Baillie, H. Brown, T. C. Freeman, and
D. A. Hume, “An expression atlas of human primary cells:
inference of gene function from coexpression networks,”
BMC Genomics, vol. 14, no. 1, p. 632, 2013.

[32] C. Mart́ınez-Cingolani, M. Grandclaudon, M. Jeanmougin,
M. Jouve, R. Zollinger, and V. Soumelis, “Human blood
BDCA-1 dendritic cells differentiate into Langerhans-like

cells with thymic stromal lymphopoietin and TGF-β,” Blood,
vol. 124, no. 15, pp. 2411–2420, 2014.

[33] A. Ricciardi, A. R. Elia, P. Cappello et al., “Transcriptome of
hypoxic immature dendritic cells: modulation of chemokine/
receptor expression,”Molecular Cancer Research, vol. 6, no. 2,
pp. 175–185, 2008.

[34] K. Dybkaer, J. Iqbal, G. Zhou et al., “Genome wide tran-
scriptional analysis of resting and IL2 activated human natural
killer cells: gene expression signatures indicative of novel
molecular signaling pathways,” BMC Genomics, vol. 8, no. 1,
p. 230, 2007.

[35] W. Hugo, J. M. Zaretsky, L. Sun et al., “Genomic and tran-
scriptomic features of response to anti-PD-1 therapy in
metastatic melanoma,” Cell, vol. 165, no. 1, pp. 35–44, 2016.

[36] N. Vander Velde, A. Guerin, R. Ionescu-Ittu et al., “Com-
parative effectiveness of non-cisplatin first-line therapies for
metastatic urothelial carcinoma: phase 2 IMvigor210 study
versus US patients treated in the veterans health adminis-
tration,” European Urology Oncology, vol. 2, no. 1, pp. 12–20,
2019.

[37] L. Gautier, L. Cope, B. M. Bolstad, and R. A. Irizarry, “Affy--
analysis of affymetrix genechip data at the probe level,”
Bioinformatics, vol. 20, no. 3, pp. 307–315, 2004.

[38] I. Diboun, L. Wernisch, C. A. Orengo, and M. Koltzenburg,
“Microarray analysis after RNA amplification can detect
pronounced differences in gene expression using limma,”
BMC Genomics, vol. 7, no. 1, p. 252, 2006.

[39] P. Langfelder and S. Horvath, “WGCNA: an R package for
weighted correlation network analysis,” BMC Bioinformatics,
vol. 9, no. 1, p. 559, 2008.

[40] G. Yu, L.-G. Wang, Y. Han, and Q.-Y. He, “ClusterProfiler: an
R package for comparing biological themes among gene
clusters,” OMICS: A Journal of Integrative Biology, vol. 16,
no. 5, pp. 284–287, 2012.

[41] B. Chen, M. S. Khodadoust, C. L. Liu, A. M. Newman, and
A. A. Alizadeh, “Profiling tumor infiltrating immune cells
with CIBERSORT,” Methods in Molecular Biology, vol. 1711,
pp. 243–259, 2018.

[42] S. Hänzelmann, R. Castelo, and J. Guinney, “GSVA: gene set
variation analysis for microarray and RNA-seq data,” BMC
Bioinformatics, vol. 14, no. 1, p. 7, 2013.

[43] M. D. Wilkerson and D. N. Hayes, “ConsensusClusterPlus: a
class discovery tool with confidence assessments and item
tracking,” Bioinformatics, vol. 26, no. 12, pp. 1572-1573, 2010.

[44] T. Hastie and J. Qian, Glmnet Vignette, pp. 1–30, Stanford
University, Stanford, CA, USA, 2016.

[45] B. Ripley, B. Venables, D. M. Bates et al., “Package “mass”,”
Cran R, vol. 538, pp. 113–120, 2013.

[46] M. Masiero, F. C. Simões, H. D. Han et al., “A core human
primary tumor angiogenesis signature identifies the endo-
thelial orphan receptor ELTD1 as a key regulator of angio-
genesis,” Cancer Cell, vol. 24, no. 2, pp. 229–241, 2013.

[47] L. Danilova, W. J. Ho, Q. Zhu et al., “Programmed cell death
ligand-1 (PD-L1) and CD8 expression profiling identify an
immunologic subtype of pancreatic ductal adenocarcinomas
with favorable survival,” Cancer Immunology Research, vol. 7,
no. 6, pp. 886–895, 2019.

[48] F. Sanchez-Vega, M. Mina, J. Armenia et al., “Oncogenic
signaling pathways in the cancer Genome atlas,” Cell, vol. 173,
no. 2, pp. 321–337.e310, 2018.

[49] P. Jiang, S. Gu, D. Pan et al., “Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response,”
Nature Medicine, vol. 24, no. 10, pp. 1550–1558, 2018.

22 Journal of Oncology



[50] J. E. Rosenberg, J. Hoffman-Censits, T. Powles et al., “Ate-
zolizumab in patients with locally advanced and metastatic
urothelial carcinoma who have progressed following treat-
ment with platinum-based chemotherapy: a single-arm,
multicentre, phase 2 trial,” Lancet (London, England), vol. 387,
no. 10031, pp. 1909–1920, 2016.

[51] Cancer Genome Atlas Research Network, “Comprehensive
molecular characterization of gastric adenocarcinoma,” Na-
ture, vol. 513, no. 7517, pp. 202–209, 2014.

[52] M. T. Chow and A. D. Luster, “Chemokines in cancer,”
Cancer Immunology Research, vol. 2, no. 12, pp. 1125–1131,
2014.

[53] K. Kohli, V. G. Pillarisetty, and T. S. Kim, “Key chemokines
direct migration of immune cells in solid tumors,” Cancer
Gene �erapy, vol. 29, 2021.

[54] M. Goedhart, S. Gessel, R. van der Voort et al., “CXCR4, but
not CXCR3, drives CD8(+) T-cell entry into and migration
through the murine bone marrow,” European Journal of
Immunology, vol. 49, no. 4, pp. 576–589, 2019.

[55] Y. D. Seo, X. Jiang, K. M. Sullivan et al., “Mobilization of
CD8+ Tcells via CXCR4 blockade facilitates PD-1 checkpoint
therapy in human pancreatic cancer,” Clinical Cancer Re-
search, vol. 25, no. 13, pp. 3934–3945, 2019.

[56] C. Feig, J. O. Jones, M. Kraman et al., “Targeting CXCL12
from FAP-expressing carcinoma-associated fibroblasts syn-
ergizes with anti-PD-L1 immunotherapy in pancreatic can-
cer,” Proceedings of the National Academy of Sciences, vol. 110,
no. 50, pp. 20212–20217, 2013.

[57] B. Bockorny, V. Semenisty, T. Macarulla et al., “BL-8040, a
CXCR4 antagonist, in combination with pembrolizumab and
chemotherapy for pancreatic cancer: the COMBAT trial,”
Nature Medicine, vol. 26, no. 6, pp. 878–885, 2020.

[58] Y. Cheng, Y. Song, J. Qu et al., “+e chemokine receptor
CXCR4 and c-MET cooperatively promote epithelial-mes-
enchymal transition in gastric cancer cells,” Translational
oncology, vol. 11, no. 2, pp. 487–497, 2018.

[59] U. M. Raja, G. Gopal, S. Shirley, A. S. Ramakrishnan, and
T. Rajkumar, “Immunohistochemical expression and locali-
zation of cytokines/chemokines/growth factors in gastric
cancer,” Cytokine, vol. 89, pp. 82–90, 2017.

[60] P. Yan, Y. He, K. Xie, S. Kong, andW. Zhao, “In silico analyses
for potential key genes associated with gastric cancer,” PeerJ,
vol. 6, Article ID e6092, 2018.

[61] G. L. Beatty andW. L. Gladney, “Immune escape mechanisms
as a guide for cancer immunotherapy,” Clinical Cancer Re-
search, vol. 21, no. 4, pp. 687–692, 2015.

[62] H. W. Park and K.-L. Guan, “Regulation of the Hippo pathway
and implications for anticancer drug development,” Trends in
Pharmacological Sciences, vol. 34, no. 10, pp. 581–589, 2013.

[63] N. Takebe, D. Nguyen, and S. X. Yang, “Targeting notch
signaling pathway in cancer: clinical development advances
and challenges,” Pharmacology &�erapeutics, vol. 141, no. 2,
pp. 140–149, 2014.

[64] J. T. Buijs, K. R. Stayrook, and T. A. Guise, “+e role of TGF-β
in bone metastasis: novel therapeutic perspectives,” BoneKEy
Reports, vol. 1, no. 6, p. 96, 2012.

[65] S. G. Pai, B. A. Carneiro, J. M. Mota et al., “Wnt/beta-catenin
pathway: modulating anticancer immune response,” Journal
of Hematology & Oncology, vol. 10, no. 1, p. 101, 2017.

[66] M. Binnewies, E. W. Roberts, K. Kersten et al., “Understanding
the tumor immune microenvironment (TIME) for effective
therapy,” Nature Medicine, vol. 24, no. 5, pp. 541–550, 2018.

Journal of Oncology 23


