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tegaserod on the expression of GRK2 and GRK6 
in the rat gastrointestinal tract
Teshome Nedi1,2, Paul J. White1, Ian M. Coupar1 and Helen R. Irving1,3* 

Abstract 

Objective:  Tegaserod is a 5-hydroxytryptamine type 4 (5-HT4) receptor agonist, formerly used in treating constipa-
tion predominant irritable bowel syndrome, which desensitizes 5-HT4 receptors in rat oesophagus and colon in vitro. 
Desensitization of 5-HT4 receptors is regulated by G-protein coupled receptor kinases. This study was designed to 
assess the effect of 5-HT4 receptor activation on the expression of GRK2 and GRK6 in the rat oesophagus and distal 
colon by acute administration of tegaserod.

Results:  Rats were treated with a single dose of tegaserod (5 mg/kg) and tissue samples of the oesophagus and dis-
tal colon were prepared and level of GRK2 and GRK6 protein expression was determined using western blotting. The 
immunodensity of GRK2 and GRK6 was normalized against the loading control β-actin and compared with control 
animals. Acute administration of tegaserod for 1, 2, 3, 4, 6, and 8 h did not change significantly the immunodensity of 
GRK2 or GRK6 in the oesophagus or GRK2 in the distal colon when compared with control animals. This may indicate 
that the basal level of GRK2 and GRK6 expression is sufficient to regulate the desensitization of 5-HT4 receptors in 
acute drug treatment.
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Introduction
5-Hydroxytryptamine type 4 (5-HT4) receptor agonists 
have prokinetic effects in the gastrointestinal tract stim-
ulating motility and secretion through enhanced ace-
tylcholine release from excitatory motor neurons and 
interneurons [1]. Tegaserod is a 5-HT4 receptor agonist 
with clinical efficacy in patients with constipation-pre-
dominant irritable bowel syndrome and chronic con-
stipation [2]. Tegaserod was used for the treatment of 
constipation-predominant irritable bowel syndrome 
in females and chronic constipation for both males and 
females until withdrawn in 2007 as it was associated 
with rare adverse cardiovascular effects [2, 3]. Tegas-
erod increases gastric emptying and accelerates small 

intestine and colonic transit in healthy human subjects 
[4] but increases colonic transit without altering gastric 
emptying in patients with constipation-predominant irri-
table bowel syndrome [5]. Tegaserod has a low therapeu-
tic gain of 5–12% above placebo and is poorly absorbed 
with about two-thirds of oral doses being eliminated in 
the faeces [6]. It facilitates the peristaltic reflex in mouse, 
rat, guinea-pig and human intestine and also attenuates 
sensory neurotransmission in human rectum [7–12]. 
Tegaserod increased the amplitude of evoked excitatory 
postsynaptic currents in cultured myenteric neurons 
from mice, which desensitized rapidly, making it dif-
ficult to obtain responses to higher concentrations [13]. 
In addition, tegaserod desensitizes 5-HT4 receptors in rat 
oesophagus and colon in vitro [14, 15].

G protein coupled receptor (GPCR) kinase (GRK) reg-
ulated homologous desensitization has been reported 
for 5-HT4 receptors in mouse colliculus neurons and 
rat oesophagus and colon [14–17]. Cell culture studies 
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using co-expression of GRKs with different 5-HT4 recep-
tor splice variants showed the involvement of GRK2 and 
GRK5 in desensitization [18–20]. In contrast, desen-
sitization of 5-HT4 receptors has been associated with 
GRK6 in the oesophagus and both GRK2 and GRK6 in 
the distal colon of the rat [15].

Changes in the level of GRK expression elicited by 
in  vivo stimulation or blockade of GPCRs by agonist 
and antagonist is complex and not predictable [21, 22]. 
For example, chronic treatment with desipramine (a 
noradrenaline reuptake blocker) and acute treatment 
with fluoxetine (a 5-HT reuptake blocker) did not change 
significantly the immunodensity of GRK2/3 [23]. While 
chronic treatment with both opioid agonists and antago-
nists increases the expression of GRK2 and GRK6 in the 
brain [24, 25]. The molecular mechanisms associated 
with the regulation of 5-HT4 receptors in  vivo by spe-
cific GRKs after treatment with 5-HT4 receptor agonist 
has not been studied. Therefore, the aim of this study was 
to assess the effect of 5-HT4 receptor activation on the 
expression level of GRK2 and GRK6 in the rat oesopha-
gus and distal colon by acute administration of tegaserod.

Main text
Methods
Adult male Sprague–Dawley rats (Monash Animal Ser-
vices) weighing 200–280 g were randomly divided into 
six treatment groups and one control group (n = 6; total 
number = 42). Rats were housed at the Faculty of Phar-
macy and Pharmaceutical Sciences, Monash Universi-
ty’s animal facility in a 12 h light–dark cycle with food 
and water ad  libitum. Rats were treated with a single 
intraperitoneal injection of tegaserod maleate (Sequoia 
Research Products Ltd, Berkshire, UK) (5  mg/kg) dis-
solved in vehicle (10% sulfobutyl ether-beta cyclodex-
trin) or just vehicle (controls). Rats were killed 1 h after 
vehicle or 1, 2, 3, 4, 6 and 8 h after drug administration 
by carbon dioxide asphyxiation. Animals were quickly 
dissected and the lower third of the oesophagus proxi-
mal to the diaphragm, and the distal colon were excised. 
The outer muscularis externa of the oesophagus was 

separated from the inner tunica muscularis mucosae. 
Tissues were washed three times with ice-cold phos-
phate buffered saline (PBS) and homogenized in 1:10 
(w/v) of homogenization buffer [50 mM Tris–HCl, pH 
7.5, 150 mM NaCl, 1% Nonidet P40, 0.5% sodium deox-
ycholate, complete protease inhibitor cocktail tablet 
(Roche, Sydney, Australia)] for 1 min before centrifuga-
tion at 12,000×g for 10 min. Supernatant protein con-
centration was determined by Quant-It protein assay 
(Invitrogen) and homogenates were stored at − 80  °C 
until used.

Total protein (50  µg) was separated on 12% poly-
acrylamide gels by SDS-PAGE and transferred to nitro-
cellulose membranes (Amersham Bioscience). Each gel 
was run with a sample from control to all test groups. 
Nonspecific binding to the membrane was blocked with 
Odyssey blocking buffer (LI-COR Biosciences) for 1  h. 
Membranes were probed with combination of two pri-
mary antibodies: goat anti-β-actin and either mouse 
anti-GRK2 or rabbit anti-GRK6 (Table  1) overnight at 
4  °C and washed four times with PBS and 0.1% Tween 
20 PBS (PBST). Membranes were incubated with fluoro-
phore-conjugated secondary antibodies (Table 1) for 1 h 
at room temperature and washed four times for five min 
using PBST. An Odyssey Infrared Imaging System (LI-
COR Biosciences) was used to examine the immunoblots. 
The integrated optical density of the immunoreactivity 
was assessed using the Odyssey Infrared Imaging System 
software (LI-COR Biosciences). The integral optical den-
sity of GRK2 and GRK6 from each lane was normalised 
against β-actin for that lane and expressed as percentage 
of control values.

Data for each treatment group was expressed as 
mean ± standard error of mean (SEM) of GRK2 and 
GRK6 levels expressed as percentage of control values. 
Statistical analyses were performed using GraphPad 
Prism 5 (GraphPad Software, La Jolla, California USA). 
Values were compared between the different groups 
using one-way analysis of variance (ANOVA) followed 
with Dunnett’s multiple comparison post hoc test. A P 
value < 0.05 was considered to be statistically significant.

Table 1  Details of primary and secondary antibodies

Antigen Host species Dilution Sources References

β-Actin Goat 1:500 Abcam

GRK2 Mouse 1:500 Santa Cruz; sc-13143 [15, 36–38]

GRK6 Rabbit 1:300 Santa Cruz; sc-566 [15, 21, 39, 40]

Anti-mouse IRDye 800CW Donkey 1:10,000 LI-COR Biosciences; 925-32212

Anti-goat IRDye 680RD Donkey 1:10,000 LI-COR Biosciences; 925-68074

Anti-rabbit IRDye 800CW Donkey 1:10,000 LI-COR Biosciences; 925-32213
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Results
Immunoblot analysis of the tissue homogenate of the 
oesophagus and distal colon revealed immunoreac-
tive protein of around 80 kDa for GRK2 or alternatively 
66  kDa for GRK6 under the 800  nm excitation wave-
length channel and around 42 kDa for β-actin under the 
700 nm excitation wavelength channel on the same mem-
brane (Fig. 1). This allowed the analysis of the immuno-
density of GRK2 and β-actin or GRK6 and β-actin on 
the same membrane. The immunodensity of GRK2 rela-
tive to β-actin did not change significantly in either the 
oesophagus (P = 0.52, one-way ANOVA) or distal colon 
(P = 0.66, one-way ANOVA) following acute treatment 
with tegaserod (Fig. 1a, b). Similarly, the immunodensity 
of GRK6 relative to β-actin in the oesophagus (Fig.  1c) 
not change significantly (P = 0.92, one-way ANOVA) fol-
lowing acute treatment with tegaserod.

Discussion
This study was designed to investigate the effect of acute 
activation of 5-HT4 receptors using the 5-HT4 recep-
tor agonist tegaserod on the expression level of GRK2 
and GRK6 in rat oesophagus and distal colon. Prior 
studies indicate that in the oesophagus GRK6 is associ-
ated with the desensitization of 5-HT4 receptors whilst 
GRK2 and GRK6 are associated with desensitization 
of 5-HT4 receptors in the distal colon of the rat [15]. 
GRK-mediated GPCR desensitization has a physiologi-
cal significance to protect cells from over-stimulation in 
the persistent presence of agonists and to keep the sig-
nals under regulation. Up-regulation of GRKs facilitates 
GPCR desensitization whilst down-regulation of GRKs 
impedes GPCR desensitization in vitro and in vivo [26]. 

Intravenous administration of tegaserod (0.001–1 mg/kg) 
has been reported to evoke a dose-dependent increase in 
relaxation of the longitudinal muscle of the rat oesopha-
gus. The response had a rapid onset (commencing less 
than 1  min after dosing) and reached a maximum typi-
cally within 2  min [27–29]. In addition, subcutaneous 
administration of tegaserod (0.03, 0.3 and 3  mg/kg) has 
been reported to produce a dose-dependent colonic pro-
kinetic effect in guinea-pigs [30]. Moreover, intraperito-
neal administration of tegaserod (0.1, 1, 10  mg/kg) has 
been reported to produce a dose-dependent reduction 
in the number of abdominal contractions induced by 
colonic distensions in rats [8]. Based on the above stud-
ies a single dose of tegaserod (5 mg/kg i.p.) was used for 
time course study of the effect of 5-HT4 receptor activa-
tion on the level of expression of GRK2 and GRK6 in the 
rat oesophagus and distal colon.

Similar to the finding of the present in  vivo study, 
acute treatment with the 5-HT reuptake blocker fluox-
etine that increases the synaptic concentration of 5-HT, 
was not associated with changes in the immunodensity 
of GRK2/3 in rat frontal cortex membrane and cytosolic 
fractions [23]. In contrast, acute treatment with tricy-
clics antidepressant desipramine increased in a dose and 
time-dependent manner the content of GRK2/3 in the 
membrane whilst chronic treatment did not alter the 
immunodensity of GRK2/3 [23].

Tegaserod activates 5-HT4 receptors on intrinsic pri-
mary afferent neurons and mimics the action of endog-
enous serotonin released from enterochromaffin cells. 
It stimulates the intrinsic primary afferent neurones 
that release transmitters such as calcitonin gene-related 
peptide, which activate cholinergic interneurons. The 
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Fig. 1  Time course study of the effect of tegaserod (5 mg/kg, i.p.) on the expression levels of GRK2 and GRK6 in the rat digestive tract. a GRK2 levels 
in the oesophagus; b GRK2 levels in the distal colon; and c GRK6 levels in the oesophagus. Upper panels: representative immunoblots illustrating 
the effects of tegaserod on the expression level of GRK2 or GRK6 at 1, 2, 3, 4, 6 and 8 h after treatment. Lower panels: the mean densitometric values 
of GRK2 or GRK6 levels relative to β-actin and expressed as percentages of values in untreated control rats (± SEM, n = 6 per group). No significant 
difference from the control occurred in any of the treatments (P > 0.05; one-way ANOVA). Con control, h hours following treatment
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cholinergic interneurons activate the peristaltic reflex [9]. 
Tegaserod has been shown to desensitize the peristaltic 
reflex induced by mucosal stimulation in a time and con-
centration dependent manner in rat colon [14]. In addi-
tion, in rat oesophagus, tegaserod desensitized 5-HT 
induced-relaxation of the tunica muscularis mucosae in 
a time-dependent manner [15]. The lack of change in the 
expression level of GRK2 in the oesophagus (Fig. 1a) is in 
line with the immunohistochemistry study showing that 
there was no expression of GRK2 on the smooth muscle 
of the muscularis mucosae where the 5-HT4 receptors are 
concentrated in the oesophagus [15, 31, 32]. The interest-
ing finding is the lack of change in the expression level of 
GRK6 in the oesophagus and GRK2 in distal colon tissues 
(Fig.  1b, c) where they were found to be co-expressed 
and co-immunoprecipitated with 5-HT4 receptors [15]. 
This may be due to the expression of sufficient levels of 
GRK2 and GRK6 at the basal level to regulate the desen-
sitization of 5-HT4 receptor. Alternatively, it may require 
chronic administration of tegaserod to obtain changes in 
the expression level of GRK2 and GRK6. The desensiti-
zation of GPCRs requires translocation of GRK2 from 
cytosol to membrane upon activation by agonist [33]. 
Analysis of change in the immunoreactivity of GRK2 in 
the membrane fraction warrant further investigation.

In the distal colon, 5-HT4 receptor immunoreactive 
cells were found in longitudinal muscle, myenteric plex-
uses, circular muscle, submucosal plexuses and muscu-
laris mucosae. GRK6 was expressed in the longitudinal 
muscle, circular muscle, and muscularis mucosae and 
co-immunoprecipitated with 5-HT4 receptors [15]. Due 
to the interference of the background it was not pos-
sible to quantify the immunodensity of GRK6. In addi-
tion, the 5-HT4 receptors are located presynaptically at 
neuronal synapses within the myenteric plexus [1] and 
GRK5 is exclusively localised on the nerve endings of 
both myenteric and submucosal plexuses [15]. It is there-
fore worthwhile to investigate the effect of tegaserod on 
the expression of GRK5 and GRK6 at mRNA level in the 
distal colon.

Based on desensitization studies of β2-adrenoceptors 
and M3 muscarinic receptors, it is often generalized that 
partial agonists induce less desensitization of GPCRs 
than full agonists. They could stabilize receptor confor-
mations that differ in their capacity to interact or serve 
as substrates for GRKs and arrestins to generate down-
stream recognition barcodes [34, 35]. Partial agonists 
augment submaximal endogenous stimulation and pre-
vent an exaggerated response to an endogenous agonist. 
As a result partial agonists have a lower tendency to 
induce receptor desensitization and/or receptor down-
regulation [34, 35]. However, the capacity of agonists to 
induce desensitization of 5-HT4 receptors depends more 

on the activation potency of the drug than its efficacy 
[16]. The lower potency of tegaserod may contribute to 
the lack of its effect on the expression level of GRKs in 
rat oesophagus and distal colon. Alternatively, tegaserod 
has similar binding affinities to both 5-HT4 and 5-HT2B 
receptors [30] and acts as an antagonist at the 5-HT2B 
receptor [29, 30]. Thus, the 5-HT2B receptor antago-
nist effect of tegaserod may counteract its effect on the 
expression level of GRKs.

Limitations
Limitations of this study include the use of only one con-
centration of tegaserod. However, the concentration used 
reduces the number of abdominal contractions induced 
by colonic distensions in rats measured over 90 min [8]. 
Taken together with prior observations that desensiti-
zation is only detectable after 20 min in rat oesophagus 
[15], our sampling times of 1–8 h should detect changes 
in GRK expression. Another limitation is the use of a con-
trol at only a single time point, which occurred in part to 
restrict animal usage. A further limitation is the lack of 
positive control for changes in GRK2 and 6 expression 
although our prior study [15] indicated that the antisera 
used detected changes in the expression level of these 
proteins. So far, no studies have investigated the effect 
of 5-HT4 receptor activation on the expression level of 
GRKs using agonists with different potency, selectivity 
and efficacy. Such studies will help understand whether 
the expression of GRKs is altered based on agonist 
potency, selectivity or efficacy in physiological systems.
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