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Identifying causative disease agents in human patients from shotgun metagenomic sequencing (SMS) presents a powerful

tool to apply when other targeted diagnostics fail. Numerous technical challenges remain, however, before SMS can

move beyond the role of research tool. Accurately separating the known and unknown organism content remains difficult,

particularly when SMS is applied as a last resort. The true amount of human DNA that remains in a sample after screening

against the human reference genome and filtering nonbiological components left from library preparation has previously

been underreported. In this study, we create the most comprehensive collection of microbial and reference-free human ge-

netic variation available in a database optimized for efficient metagenomic search by extracting sequences from GenBank

and the 1000 Genomes Project. The results reveal new human sequences found in individual Human Microbiome Project

(HMP) samples. Individual samples contain up to 95% human sequence, and 4% of the individual HMP samples contain

10% or more human reads. Left unidentified, human reads can complicate and slow down further analysis and lead to in-

accurately labeled microbial taxa and ultimately lead to privacy concerns as more human genome data is collected.

[Supplemental material is available for this article.]

Metagenomic analysis of human clinical samples is often con-
founded by the abundance of host genome present in the sample.
This can be particularly challenging when trying to uncover a
poorly characterized etiologic agent thatmay or may not be recov-
erable from a diagnostic next-generation sequencing run (Yozwiak
et al. 2012;Wilson et al. 2014). Ideally each sequencer read should
be examined and its relationship relative to all previously se-
quenced organisms accurately reported. Unfortunately, the most
sensitive search needed to detect highly divergent organisms
does not scale when naively examining an entire sequencing run
that may total many gigabases (Zhao et al. 2012). A complementa-
ry approach is to use a metagenomic assembler; however, low cov-
erage of individual microbial genomes can limit the potential for
good quality assemblies in complex samples (Howe et al. 2014)
or samples dominated by host background. Marker-based ap-
proaches present an important option for fast estimation ofmicro-
bial content but only tag a small fraction of the input leaving
potentially interesting fragments hidden in a large collection of
unlabeled reads (Liu et al. 2011; Berendzen et al. 2012; Segata
et al. 2012; Sunagawa et al. 2013; Minot et al. 2014; Tu et al.
2014). Recent efforts have demonstrated substantial progress in la-
beling all reads by applying ordered searches that attempt to re-
serve the most computationally expensive analysis for the fewest
reads (Nakamura et al. 2009; Zhao et al. 2013; Byrd et al. 2014;
Cotten et al. 2014; Takeuchi et al. 2014). A recent example is
SURPI (Naccache et al. 2014), which maps reads to the human ref-
erence genome to subtract host reads prior to search of the
GenBankNTdatabase. DeconSeq is another tool that identifies hu-

man reads as contaminants by aligning reads to seven assembled
human genomes (Schmieder and Edwards 2011) to detect human
variants beyond the single reference genome. A limitation of these
approaches, however, is the use of read mapping tools that orga-
nize their respective database search against each reference gene/
genome independently. This presents a fundamental scaling
problem as more organisms in the population are added to the da-
tabase. For example, the reference database used to build taxonom-
ic profiles for Human Microbiome Project (HMP) samples (Martin
et al. 2012) used a microbial reference database totaling 7.3 giga-
bases (Gb), which represents only a small fraction of the sequenced
microbial strains available. In the case of SURPI, although a 42-Gb
GenBank NT database is searched, a best first match approach is
taken, which requires careful downstream analysis to avoid overly
specific calls that fail to recognize highly conserved elements.

Nonredundant search of a population of human genomes
was recently shown to improve detection sensitivity using a new
data structure to map reads to multiple human genomes simulta-
neously (Huang et al. 2013). This approachused assembledhuman
genomes for reference but excluded microbial genomes. A related
approach uses a large k-mer index as implemented in software
tools Kraken (Wood and Salzberg 2014) and Livermore Metage-
nomics Analysis Toolkit (LMAT) (Ames et al. 2013). Kraken sup-
ports efficient search by mapping k-mers to each source genome
and storing the lowest common ancestor. A highly conserved ge-
netic region found in hundreds of genomes is efficiently identified
with the lowest common ancestor (LCA) in a single search step.
Recent improvements to LMAT present a similar approach but
place a greater emphasis on storing more data in two ways. First,
rather than store the LCA for each k-mer, the list of source genomes
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and the taxonomichierarchy are stored—up to a user specified lim-
ited number of taxonomic identifiers (set to 200)—to improve dis-
crimination at lower taxonomic ranks while placing an upper
bound on overall runtime. When a k-mer maps to more genomes
than allowed by the threshold, a pruning procedure retains only
the higher rank taxonomy identifiers. Second, LMAT uses a larger
microbial genome database, which totals >115 gigabases of geno-
mic sequence—assembled draft and complete genomes for virus,
bacteria, fungi, protozoa and mitochondrial genomes of eukary-
otes. The original database required at least 620 gigabytes (GB) of
DRAM, which limited its use to researchers with access to large
memory machines. To improve accessibility, the software was re-
cently tuned to exploit a combination of DRAM and NVRAM
(e.g., flash drives) (Ames et al. 2014) and in addition reduced the
database size to 458 GB for the full and 17 GB for the marker data-
bases, thus allowing the software to run on substantially lower cost
machines. These recent optimizations additionally enable the use
of a larger cluster, where NVRAM is used as a supplemental mem-
ory resource. Scaling is supported in part by the use of NVRAM,
which allows use of a much larger local single address space than
is possible with DRAM and at a lower cost. For example, the 800
GB of NVRAM available per compute node in this study is com-
mercially available at $5 per GB compared to $10 per GB of
DRAM (assuming 1 terabyte of DRAM). A key benefit of NVRAM
over traditional high performance disks is the ability to randomly
access any part of flashmemory similarly to traditional memory at
orders of magnitude higher input output operations per second
(IOPS) than is possible with traditional single high performance
disks. RAID disk configurations and parallel file systems with mul-
tiple storage servers increase IOPS, but also increase cost and com-
plexity. Additionally, parallel file systems based on storage area
networks (SAN) greatly increase latency compared to node local
NVRAM and are not suitable for our extended memory use case.
NVRAM represents an important middle memory tier that allows
the NVRAM to act as a supplemental memory resource in a way
that is not possible with traditional spinning disk technology.

Results

Taking advantage of a largeNVRAMresource, this paperuses LMAT
to present the first evaluation of a vastly expanded database of
searchable reference-free human genetic variants formetagenomic
search. More than 90 terabases of raw sequence data comprising
2626 human individuals from the 1000 Genomes Project (HGP)
(The 1000 Genomes Project Consortium 2012) were evaluated us-
ing 1.05 million CPU hours to identify novel human genetic vari-
ants. Table 1 summarizes new databases that were created and
compared, including a new database termed “LMAT-Grand,”
which includes novel human variants and an expanded collection
of synthetic sequence contaminants. The LMAT-Grand database is
used to annotate the 18 terabases of HMP data (The Human
Microbiome Project Consortium 2012a) and report microbial con-
tents of the HGP data. The number of newly discovered human
reads in HMP samples were compared with using the standard hu-
man reference genome alone (LMAT-Ref) and using all assembled
human genetic data available through GenBank (Benson et al.
2013) (LMAT-GenBank). Although the vast majority of human ge-
netic variants found outside of the human reference genome were
recovered through the use of assembled GenBank genes, novel var-
iants from the HGP were responsible for identifying as much as 40
times more human reads in the HMP data set depending on the
body site. The increased sensitivity in detecting human reads con-

firms that the vastmajority (84.58%) of the samples contained 1%
or fewer human reads. Nevertheless, if looking for low abundance
organisms or investigating the smaller number of cases containing
large amounts of human sequence, misidentification of these hu-
man reads can lead to costly and inaccurate downstream reporting
of a sample’s microbial contents. New detailed genus, species, and
strain-level taxonomic profiles, plasmid, and gene profiles for all
HMP samples are made available along with the newly discovered
human sequence and other novel sequences (see Data access).
Recent work presented searches of small subsets of HGP data that
look for a small number of specific microbes (Langdon 2014;
Laurence et al. 2014). A search of all available sequenced microbes
across the complete Phase 3 HGP data set is given for the first time
to better quantify potential sources of microbial contamination.
Finally, the expanded collection of searchable human sequence
data is used to report 38 million new human reads found in the re-
cently sequenced La Braña genome (Olalde et al. 2014). The new
searchable databases and software are made freely available both
for large memory and smaller memorymachines (see Data access).
The results provide a new resource for more detailed and accurate
assessments of human metagenomic sequencing data.

LMAT-Grand identifies new human sequence in HMP

The first objective was to determine the ability to detect new hu-
man sequences in metagenomic samples that were previously
screened against the human reference genome using new human
genomic data. In addition to the human reference genome, two
sources of human genomic datawere considered: human sequence
fromGenBank and genomic data fromHGP. Adding all human ge-
netic sequence fromGenBank to the LMAT database is a nontrivial
undertaking, which required downloading 72 gigabases of se-
quence; however, it is computationally tractable. In contrast, add-
ing the genetic variation from 2626 human genomes was a major
computational undertaking, requiring nearly half a petabyte of
temporary storage and 1.05 million CPU hours on a new cluster
(Catalyst) designed for data intensive computing (see Methods).

Table 2 shows a count of distinct human labeled 20-mers add-
ed from each source of human genomic DNA: the reference assem-
bly (LMAT-Ref), GenBank (LMAT-GenBank), and HGP (LMAT-
Grand). The vast majority of human 20-mers not found in the

Table 1. Summary of examined LMAT databases

Database
name Description

Size
(GB)

LMAT-Ref Microbial genomes plus human reference
genome (hg19)

455.31

LMAT-
GenBank

LMAT-Ref plus GenBank human 457.57

LMAT-Grand LMAT-GenBank plus HGP sequences 457.62
LMAT-RefSeq LMAT-Grand minus draft microbial

genomes
82.47

LMAT-ML Microbial only marker library 16.70
LMAT-ML-

Human
Microbial markers plus all human

sequences
17.52

LMAT-Genes All NT genes plus genes from microbial
genomes

120.00

LMAT-Region Human-only region specific markers 1.35

The full microbial genome database includes all draft and complete
genomes from virus, bacteria, archaea, fungi, and protozoa from 04/11/
2014. Vector sequence, Illumina adaptors, and a phiX genome are in-
cluded and tagged as “synthetic construct.”
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human reference assembly were found in GenBank with fewer
20-mers unique to HGP. This gives a conservative report of HGP-
specific 20-mers given the strict selection criteria used to extract
20-mers fromtheHGPdata (seeMethods).Despite the smaller num-
ber of HGP-unique 20-mers and their minimal impact on database
size (see column 3 of Table 1), their inclusion led to identifying
substantially more human reads in select body sites in the HMP.

Figure 1 shows the difference in human-labeled reads across
the body types sampled in the Human Microbiome Project
(HMP) using 131 representative samples. All HMP samples were
previously screened against the human reference genome to re-
move human reads using BMTagger (http://hmpdacc.org/doc/
HumanSequenceRemoval_SOP.pdf). The results show that for
many cases, the largest improvement is obtained through the ad-
dition of GenBank; however, in every sample, improvement in
identified human reads is observed when the HGP database is in-
cluded. Overall, 1.7 times more human reads were detected using
HGP data over GenBank alone and 2.4 times more than from the
human reference genome alone. Additionally, a collection of

1000 reads taken from world regional distinct populations were
spiked into HMP mock community samples to compare detection
sensitivity between LMAT-Grand and LMAT-Ref, which showed
up to 1.4 times improvement in detection sensitivity (see Supple-
mental Material).

Figure 2 shows a histogram for the abundance of human reads
across the 9025 HMP individual sequencer runs examined using
the HGP-derived database. The average amount of human DNA
in each sequencer run is 2%; however, 4% of the runs contained
10% or more human reads with 75% of these samples coming
from anterior nares (nostrils). Sequencer runs with an abundance
of human reads (≥10%) came from different individuals and two
different sequencing centers, reducing the likelihood that these
newly identified human sequences come from a single contami-
nating source.

To confirm the newly identified human reads detected in
HMP samples, BLASTN (Altschul et al. 1990) with default search
settings was used to compare the reads against the NT database.
Averaged over the 131 representative samples, support was found

Table 2. Number of new human k-mers (k = 20) added to searchable database and total k-mers in the database

Database New human k-mers Total human k-mers Total k-mers Percentage human Percentage increase

1. LMAT-Ref 2,295,537,227 2,295,537,227 31,464,525,440 7.30 —

2. LMAT-GenBank 209,632,954 2,505,170,181 31,742,908,834 7.89 0.88
3. LMAT-Grand 7,249,146 2,512,419,327 31,749,680,687 7.91 0.90

Counts k-mers added from the human reference assembly (LMAT-Ref), from GenBank (LMAT-GenBank), and the 1000 Genomes Project (LMAT-
Grand). Total k-mer count microbial and human sequences. Percentage of database.

Figure 1. Average percentage of reads identified as human sequence in HMP samples, using LMAT-Ref, LMAT-GenBank, or LMAT-Grand by body site.
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for 32% of the human reads showing eukaryote sequence (pri-
mates, other mammals, plants, insects, etc.) as the top match, in-
cluding 28.5% with a top match to human. Less than 2% had
their top BLASTmatch to bacteria, indicating a small false positive
rate. These matches were examined and determined to originate
from subsequences from a small number of partial bacterial ge-
nomes. Most of the reads tagged as human by LMAT-Grand had
no BLAST matches using the default settings. Additional analysis
that follows indicates that LMAT was more sensitive than default
BLAST.

A more sensitive BLAST search (using a word size of eight in-
stead of 28 and max E-value of 0.01) for human reads from the
sequencer run with the highest percentage of human reads was
then examined (SRR059474 from an anterior nares body site).
Figure 3 shows a breakdown of the reads as a percentage of the hu-
man read counts (e.g., estimated abundance) and as a percentage
of read clusters after clustering reads with CD-HIT (Fu et al.

2012). As a percentage of distinct read clusters, the vast majority
(86%) have a top match to a primate sequence, giving strong sup-
port for the accuracy of the newly identified human read calls. As a
percentage of distinct reads, the vast majority (71%) of reads are
not recognizedwith BLASTmatches. Themost abundant sequence
element shows a topmatch to Solanales, primarily originating from
a single highly redundant cluster. This could represent a true bio-
logical contaminant; however, the relatively high E-value of 0.001
indicates high sequence divergence making it difficult to confi-
dently assert the taxonomic identity. The four most abundant
read clusters (comprising 57% of the human reads) with no initial
BLASTmatch were checked for matches in the NT database with E-
values up to 10. One of the four clusters showed exclusive best
matches to human with an E-value of 0.75, giving the strongest
support for a human origin. In the other cases, the results were in-
conclusive with poor scoring matches (E-value ≥2.7) to bacteria
and eukaryotes. The reads were checked for chimera to explain

Figure 2. Histogram showing how often different amounts of human reads are found across the collection of sequencer runs. The x-axis displays human
read abundance in sequencer runs in bins of 2%. The y-axis shows the percentage of sequencer runswith the amount of human reads specified on the x-axis
using a log scale. The highest fraction of human reads in a sequencer run is 94% and found in one run.

Figure 3. Sensitive BLAST search based assignment of reads from an HMP sample reported to have a high abundance of newly labeled human reads. The
left panel shows the distribution of taxonomic assignments after reads were binned into clusters of similar reads. The right panel shows the raw abundance
based on read counts for each read assignment. Taxonomic assignments with a 0% abundance label reflect percentages <1%.
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the lack of BLAST matches to human sequence, but insufficient
numbers of chimera were found to explain the paucity of BLAST
support. The unidentifiable human reads were also checked for
their abundance across individuals in the 1000 Genomes Project
collection, which show that ∼25% of the reads were associated
with at least 100 individuals (see Supplemental Material).

To further determine the identity of the newhuman sequenc-
es, human readswith BLASThits to RepBase (Jurka et al. 2005)were
compared with comparable NT and NR BLAST hits to identify
known repetitive sequences with no evidence of human sequence
in GenBank but match a primate near-neighbor and show no con-
flicting proteinmatches. Therewere 33 distinct read clusters with a
best match to a nonhumanprimate sequence spanning 16 distinct
repeat elements, including SINE1 elements and others (see avail-
able data). Errors in theNR databasewere detected in the process of
comparing human reads that matched to bacterial proteins in NR.
A collection of human sequences was found to be misidentified as
Leuconostoc sp. DORA_2 proteins (GI: 566236135, 566236136,
566236137, 566238011, 566240723). Although the BLASTX
search showed 2038 human reads matched to the five different
Leuconostoc sp. DORA_2 protein identifiers, 2033 of the reads
were found to have significant BLASTN matches to human se-
quences in NT. The sequences originate from premature infant
guts and highlight the need to correctly recognize human reads
to avoid microbial misattribution.

To further validate novel human read identification, LMAT-
Grand was searched against HMP Mock Community samples as a
negative control using both the staggered and even abundance
Illumina samples (SRR172903 and SRR172902, respectively).
Results from the staggered sample are reported as representative re-
sults. LMAT-Grand reported 4585 human labeled reads, and 669 of
these could be validated with supporting BLAST alignments, indi-
cating a small amount of human contamination even in these
carefully constructed controls designed to contain only microbial
DNA. However, 2135 reads were found to be likely false positives
given their lower BLAST E-value to a microbial genome than a hu-
man genomic sequence. Although this reflects a tiny fraction of
the ∼7.6 million reads, to confirm these reads were not having a
disproportionate impact on over aggressive human read calling,
the collection of putative false positive human reads identified
in the previous set of 131 HMP samples and the mock community
samples were used to remove 20-mers from LMAT-Grand that were
mislabeled human (see Supplemental Material). The revised
LMAT-Grand was used to re-tag all human identified sequence in
the HMP samples, which reduced the number of human reads
by only 1.5%. In the examined high human abundance case
(SRR059474), the number of human reads was reduced by only
0.3%. Therefore, although the corrected LMAT-Grand database is
made available along with the corrected collection of human
reads, other output was retained.

HMP samples contain limited world region and personal

identifiable data

To consider whether newly labeled human reads could present po-
tential privacy concerns, the reads were examined for short tan-
dem repeat (STR) markers and world region identifiable markers.
The STR detection software lobSTR (Gymrek et al. 2012) was run
on the reads LMAT classified as human from the HMP data, group-
ing reads by subject ID across samples (combined from multiple
sequencer runs) and body sites for the runs available for download,
for a total of 178 subjects. An average of 25 short tandem repeats

(STRs) per subject were identified, with a maximum of 54 in reads
fromone individual (see SupplementalMaterial). LobSTR reported
the vast majority on Chromosome 5, one on Chromosome X, and
none on Chromosome Y. Although none of these markers corre-
sponded to 16 CODIS markers used for forensic attribution (based
on positional information from http://lobstr.teamerlich.org/ystr-
codis.html), it is possible that a database containing more STR
markers could facilitate some level of individual identification us-
ing human reads remaining in the HMP samples after the standard
procedure of read mapping to a single reference to remove human
reads. The STRs were also checked against a library of newly cata-
loged HGP-derived STRs to determine the amount of overlap
(Willems et al. 2014). There are 78 of the 178 subjects with at least
20 of the hg19 reference lociwith periods of 2–6, and a few subjects
have up to 33 of the reference loci. Eighty-nine of the approxi-
mately 700,000 reference loci were present in the human reads
identified by LMAT from the HMP samples, predominantly on
Chromosome5, butwith at least one on every chromosome except
Chromosomes 18, 21, X, and Y. Although the STRs do not current-
ly provide personal identifying information, it is conceivable that
over time a sufficiently large database of human genomes labeled
with personal identifying information could pose a privacy con-
cern.

Considerable progress has been made in recent years using
targeted genetic loci from the human genome to recognize shared
genealogies (Elhaik et al. 2014). To investigate the potential for
ethnic host identification in HMP samples, a search database was
created (LMAT-Region in Table 1) to conduct world region identi-
fication from HGP genomes and ethnic codes. The LMAT-Region
database is similar in structure to other LMAT databases except
for two custom levels added to the taxonomy tree under the hu-
man species node. Taxonomy tree leaves are theHGP ethnic codes,
and their parents are the five world regions (Africa, Europe, East
Asia, South Asia, and Americas). The LMAT-Region contains hu-
man sequence only and is meant to regionally classify previously
identified human reads. Supplemental Figure S3 shows ROC
curves measuring sensitivity and specificity on HGP individuals,
which reflect an optimistic assessment of accuracy—assuming fu-
ture test individuals are drawn from theHGP population and there
is relatively high coverage of the human genome present in the
sample. Supplemental Figure S4 reports the ratio of total 20-mers
to distinct 20-mers as a function of distinct 20-mers present in
an individual human sample and provides the reference point to
assess whether human region identifying reads are present in the
HMP samples. The human reads for the 178 participating HMP in-
dividuals were searched against the LMAT-Region and found to
yield very small numbers of region world identifiable reads (at
most 76). The small number of region identifiable reads combined
with the much larger number of reads used to accurately identify
regions in the HGP data suggest that region identifying informa-
tion from the host in HMP is not readily accessible.

Inclusion of all draft genomes in search database improves

read bin sensitivity

Including draft genomes in the reference database presents an op-
portunity to recovermore population level genetic variation using
the rapidly growing number of draft assembled genomes available
through GenBank. Including draft genomic sequence must be
weighed with the potential for misclassification from included
contaminants in draft assemblies. This is particularly problematic
for human pathogens like Toxoplasma gondii, where substantial
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amounts of unrecognized human sequence are included in the
draft assemblies. The HGP data provide a valuable negative control
where evidence of microbial content indicates potential false
microbial identification in human samples. In response to uncov-
ering falsely identified genomes, the “synthetic construct” taxono-
my category was expanded to include contaminant sequence that
would otherwise preclude the use of error-prone draft assemblies.
The added sequences include an updated collection of synthetic
vectors (such as cloning vectors) (Allen et al. 2008), phiX sequence
(used by Illumina as a sequencing control), and Illumina adaptors.
Across the representative subset of 131HMP sequencer runs, an av-
erage of 1.7% readswere tagged as synthetic. In addition, the use of
GenBank and HGP human sequence reduced the percentage of
Toxoplasma reads from 0.37% to 0.0003%. Although the average
may seem relatively low across 131 samples using only the human
reference, in individual cases the percentage of Toxoplasma reads
were as high as 11.6% and use of HGP data reduced the percentage
to 0.0087%, demonstrating a powerful tool for recognizinghuman
sequence inadvertently included in assembledmicrobial genomes.

An importantmotivation for usingmicrobial population data
is to reduce the number of unknown sequences, which require in-
terrogation with additional computationally time-consuming
methods. The hypothesis is that searching a read against all genetic
variants of a strain or species will increase the number of reads that
can be identified. Two metrics were used to measure the impact of
adding populations of genomes—percentage of reads with no
k-mer matches in the database (NoDbHits) and reads that have
too few matches to the reference database to confidently use the
assigned taxonomic label (termed LowScore). Use of the new hu-
man reference data (LMAT-Grand) did not increase the NoDbHits
numberbutdecreasedLowScore readsby2.8%,essentiallyallowing
morehumanreads tobe confidently labeled. Thebigger impactwas
observed when excluding microbial draft sequence. Table 3 com-
pares results from three databases, LMAT-Grand, LMAT-RefSeq (a
subset of Grand consisting of only complete RefSeq genomes),
and the previously published mapping rate for the existing
read mapping–based microbial profile method available through
the HMP Data Analysis Center (HMP DACC) at the web portal
for accessing HMP related analysis and data (The Human Micro-
biome Project Consortium 2012b). The table shows a dramatic re-
duction in unlabeled reads from the previously reported 12%
(Martin et al. 2012) down to 0.05% reads with no putative label.
Thus, the number of reads with no database match is dramatically
reduced by 240-fold to 139 megabases total for the HMP data set.

A strikingly different microbial profile is given when relying
on the RefSeq database alone as shown in Figure 4. The figuremea-
sures the amount of agreement between different databases at the
species and genus level using different minimum abundance
thresholds to decide organism presence. Given the larger database

sizes required to store the complete collection of genome se-
quence, two forms of amarker library aremade available to support
applications on smaller memory machines. The marker library
containing only microbial sequences (ML in Fig. 4) uses the
LMAT-ML database described in Table 1. The marker library con-
taining both the microbial sequences and a collection of human
k-mers to support tagging human reads (ML+humanNoprune in
Fig. 4) is represented by the LMAT-ML-Human database described
in Table 1. Themarker libraries are a subset of the LMAT-Grand da-
tabase, retaining k-mers that are unique to different taxonomic
ranks (Ames et al. 2013). Despite an order of magnitude smaller
size (17 gigabytes versus 458 gigabytes), the marker libraries
showed closer agreement to the full database compared with the
RefSeq methods and the profiles available from the HMP DACC.
MetaPhlAn taxonomic profiles are also available through the
HMP DACC, and an updated version of MetaPhlAn profiles are in-
cluded in Figure 4 as an additional profile reference point.

The species most commonly identified by HMP DACC map-
pings that were not detected in the same sequencer runs by
LMAT-Grand were examined in detail to determine if they are
HMP DACC false positive calls or LMAT false negative calls. Up
to 100 reads that HMP DACC mapped to the indicated species
were extracted from each HMP DACC BAM file, and BLAST
searched against NT, the bacterial and viral subset of the full se-
quence database used by LMAT, and a database of the synthetic
constructs. The fraction of BLAST hits to the indicated species
was calculated for the NT and full database as well as the fraction
of reads with hits to the vector database given in Table 4. BLAST
matches to NT and LMAT-Grand showed very few matches to
the HMP DACC species call. Up to 31% of the reads matched syn-
thetic constructs. The HMP DACC-mapped reads to each species
were run through LMAT, and the fraction of classified reads at
the genus level or higher is indicated. LMAT classified up to 84%
of these reads as conserved at the genus level or above. For those
few remaining reads that LMAT assigned at the species level,
the species with the most reads is indicated with the number of
reads in parentheses. None of these species are in the reference da-
tabase used by HMP DACC. The last column shows the fraction of
these LMAT species-classified reads for which the LMAT species
call is among the top BLAST hits. Few or none of the reads have
the HMP DACC call in the BLAST matches except for candidate
division TM7, which has nearly identical BLAST matches as
Saccharimonas aalborgensis, the call made by LMAT. Therefore,
the reads that LMAT does classify to species have high BLAST sup-
port for the LMAT classification. These results support the conclu-
sion that these are false positive species classifications by the HMP
DACC profiles due to a combination of overly specific calls for
reads that are in factmuchmorewidely conserved,matches to syn-
thetic constructs that contaminate many of the draft genomes in
reference sequence databases, and failure to detect the correct or-
ganismdue to a lack of representation in the HMPDACC reference
database.

For the first time, profiles of the plasmid and gene content are
provided for all the HMP sequencer runs. Horizontal transfer and
replicate sequencing complicate interpretation of plasmid and
gene profiles, particularly when the same plasmid or gene is se-
quenced multiple times but differently named. Since LMAT takes
a “best first match” approach, the reported plasmid or gene may
have equal match scores to multiple plasmids or genes.
Nonetheless, taxonomic identification can be linked with gene
calls to identify mobile genes of particular interest. For example,
the131 representative setwas searched for plasmidsknown tocarry

Table 3. Percentage of unlabeled reads

LMAT-Grand LMAT-RefSeq HMP DACC

LowScore 14.81 42.34 —

NoDbHit 0.05 2.76 12
Size (Gb) 115 9.13 7.65

See text for a description of the three databases, LMAT-Grand, LMAT-
RefSeq, and HMP DACC. LowScore are reads assigned a taxonomic label
with a match score below the minimum threshold. NoDbHit reads have
no match to the reference database. The size of the reference database
is given in gigabases (Gb).
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the important drug resistance factor NDM-1 (Klebsiella pneumonia
plasmid pNDM-US, Acinetobacter baumannii plasmid pAbNDM-1,
or Escherichia coli plasmid p271A) (Hu et al. 2012), and then reads
used to identify these plasmids were checked for their gene assign-
ments. In total, 33 of the 131 sequencer runs indicate the presence
of a NDM-1 related gene (using a minimum of 10 reads to support
the NDM-1 related gene call), and in seven sequencer runs, the
genes were linked with the p271A plasmid. Five of the seven were
taken from oral samples (throat, palatine tonsils, and keratinized
gingiva). The number of reads used to support the calls is relatively
small, ranging from 10 to 94, indicating very low abundance in
each sample. As a second example application, the 131 representa-
tive set was checked for human identified reads with gene assign-
ments. Only 6% of the human reads were assigned gene calls,
and 1% of these reads were associated with non-protein-coding

genes, suggesting that the vast majority of detected human se-
quences are non-protein coding.

Microbial content in HGP

Although HGP samples do not reflect clinical metagenomic se-
quencing protocols, the data provide an important “negative con-
trol” for documenting microbial content in human samples,
which should have little to no microbial content with clinical rel-
evance.Only five individuals displayedmicrobial content for a sin-
gle organismwith >10−4 (1.5–3.4 × 10−3) read abundance all for an
organism identified as Acidovorax sp. KKS102, which likely reflect
an environmental contaminant. Abundance is calculated using
the number of reads assigned to a taxonomic label divided by
the total number of raw sequencer read pairs (i.e., not quality

Figure 4. Fraction of shared genus (left) and species (right) calls. ROC curve shown using different minimum abundance thresholds to make organism
calls. Different taxonomy calling methods are shown. HMP DACC, MetaPhlAn, and LMAT taxonomy calls with different database types: LMAT-RefSeq
(RefSeq), LMAT-ML (ML), and LMAT-ML-Human (ML+humanNoprune).

Table 4. BLAST-based taxonomic assignments of reads with different labels assigned by LMAT and HMP DACC output

Organism called by
HMP DACC but not
LMAT

NT
BLAST
hits

Bacterial/
viral BLAST
hits

BLAST matches
to synthetic
constructs

LMAT classified
reads at or
above genus

Most common species
detected by LMAT
(number of reads)

BLAST hits for
LMAT species
call

Abiotrophia defective 0.00 0.04 0.04 0.81 Clostridium clostridioforme (4) 1
Actinobacillus minor 0.00 0.02 0.14 0.44 Haemophilus parainfluenzae

(128)
1 (combined

reads)
Actinobacillus

pleuropneumoniae
0.09 0.13 0.11 0.63 Haemophilus parainfluenzae (81)

Actinobacillus
succinogenes

0.04 0.00 0.11 0.43 Haemophilus parainfluenzae
(114)

Haemophilus ducreyi 0.02 0.00 0.31 0.62 Haemophilus parainfluenzae (62)
Mannheimia

succiniciproducens
0.06 0.02 0.13 0.46 Haemophilus parainfluenzae

(107)
Candidate division TM7

single-cell isolate
TM7b

0.00 0.19 0.10 0.62 Candidatus Saccharimonas
aalborgensis (28)

0.89

Catonella morbi 0.00 0.06 0.08 0.84 Phascolarctobacterium sp.
CAG:207 (10)

1

Values are reported as fraction of total reads.
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control filtered read counts). Individual microbial contaminants
could be detected in 1783 of the samples at levels below 10−4.
Total in-sample contamination abundance was found to range
between 0.1% and 1% of the reads in 1415 of the samples. The
majority of these contaminants are tagged as either “synthetic
construct,” reflecting known sources of contamination such as
cloning vectors and adaptors, and two high rank categories
“root” and “cellular organism,” reflecting reads that match to ge-
nomes found across the taxonomy tree. Although some of these
reads reflect true biological conservation (such as phage represent-
ed both as a virus and integration in a bacterial chromosome)
many of these reads are expected to reflect errors in the reference
database. The relatively high abundance of contaminating se-
quences in the HGP indicates the need to accurately tag conta-
mination so that true low frequency microbes of interest can be
clearly separated and reported. Although filtering out known con-
taminants appears to greatly reduce the remaining number of
microbial reads, clearly additional workmust be done to determine
whether the identified microbe is truly associated with the biolog-
ical sample being examined or a persistent environmental contam-
inant. Although a detailed analysis of the microbial content of the
HGP data is beyond the scope of this report, the data is made avail-
able for further analysis, and a brief summary of potentially in-
teresting microbial content is included in the Supplemental
Material, such as evidence of sample contamination and detection
of retrovirus contaminants that were likely contributed by the im-
mortalized cell culture used to store the HGP DNA.

New La Braña human reads

Using LMAT-Grand, the impact of detecting new human variants
was examined for a completely different type of human sample—
the recently published La Braña metagenome (Olalde et al. 2014)
taken from a 7000-yr-old human sample, from which more than
half of the reads failed to map to the human reference. With its
expanded human genetic variation content, LMAT-Grand data-
base was expected to detect substantially more human reads. All
889,666,990 unmapped reads were searched and compared
(Supplemental Fig. S2, pie chart) with the Extended Data Figure 9
inOlalde et al. (2014). Thepreviouslypublished analysisuseda ran-
dom sampling of 1 million unmapped reads, which were searched
against NT using BLAST, and all reads were compared against a
smaller viral database to search for viruses. ThenewLMATpie chart
is surprisingly consistent with the predicted version previously re-
ported. Analysis of all unmapped reads (not just a random subset)
found 3%more reads could be assigned taxonomic labels than pre-
viously determined. Among the unmapped reads, 4% were newly
detected to be human, although comprising a relatively small per-
centage of the data, constituted 37,290,232 reads. Additional anal-
ysis of the newly identified human reads will be needed to rule out
the possibility of contemporary contamination. An exceptionally
small percentage of the reads (0.00014%) were identified as virus
and appear to consist of phage.

Discussion

The increasing use of deep sequencing presents both a challenge
and an opportunity for expanding the searchable knowledge
base of circulating microbial life while characterizing microbes to
support clinical applications (Fricke and Rasko 2014; Klymiuk
et al. 2014). On the one hand, it is important to develop tools
and databases that extract information from the new genetic vari-

ation recovered on an ongoing basis from sequencing, particularly
as methods for assembly of new genomes from metagenomic se-
quencing advance (Albertsen et al. 2013; Nielsen et al. 2014).
However, robust and high-throughputmethods for error checking
become critical to fully exploit the growing collection of observa-
tional data. This becomes apparent with a more exhaustive search
of human genetic variants and synthetic sequences, which reveal
draft microbial assemblies with contamination that can confound
reference-based microbial identification. This is currently handled
with LMAT by expanding the collection of tagged reference se-
quences. As contaminants are encountered, if they are not explic-
itly matched to a synthetic construct or host genome, the read is
tagged as “root” or “cellular organism” to denote a taxonomically
conserved element along with the list of top matches. As future
work, an explicit metagenomic profile of every assembled genome
is envisioned, which can be used to identify and exclude problem-
atic assemblies. A key limitation of this approach is the need for ex-
tensive sequencing of the target environment. The current LMAT
database is enriched for genomic data associated with the human
target environment. Metagenomic communities isolated from
other environments will continue to present additional challenges
until more of the host andmicrobial genomes are better represent-
ed in reference databases.

The identification of human STRs in HMP samples indicate
that human identification may one day be possible but only
with a vastly expanded database of human genomes, which is
not currently available. The absence of clear ethnic region identi-
fication markers indicate that considerable additional work would
be needed to tease out any possibly important host markers in the
existing HMP samples. Nonetheless, the LMAT-Region database
indicates the potential to identify informative genetic host mark-
ers when there is sufficient coverage of the host genome, which
could become an increasingly common feature of humanmetage-
nomic samples as depth of sequencing coverage grows.

The first published analysis of HMP data reported the use of
8.8 terabases of shotgun metagenomic sequence from 681 biolog-
ical samples (TheHumanMicrobiome Project Consortium2012b).
Since that time, manymore samples have been sequenced and the
current collection of 18 terabases from 1410 samples spread across
9025 sequencer runs represents a significant expansion of collect-
ed data. Comprehensive search of host and microbial populations
now present scaling challenges that limit the use of traditional
search tools, which rely on examining each reference genome in-
dependently. The indexing strategy used by LMAT tracks con-
served sequence elements across the taxonomy tree and presents
an important option for fast search, but its application has been
limited by large memory requirements. Recent advances using ex-
tended memory hierarchies that use lower-cost flash drives show
how exceptional performance can be achieved at dramatically low-
er per-compute-node costs and can support genomic search on a
much larger scale than previously possible. For example, the taxo-
nomic and gene content profiles for the 18 terabases of HMP data
were completed in 37.7 h on a data intensive cluster (seeMethods)
and represent to our knowledge the first analysis for this large col-
lection of HMP data.

There is a growing recognition of the challenges in using
metagenomic sequencing for detecting low abundance pathogens
(Naccache et al. 2013; Salter et al. 2014). The abundance of micro-
bial content found in theHGPdata further demonstrates the ongo-
ing challenge to differentiate clinically relevant low abundance
microbial content fromother sources of biological contamination.
Thus, the advances in methods to efficiently and accurately
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identify the complete profile of microbial contents within a sam-
ple must be accompanied with new strategies to avoid misattribu-
tion from unexpected sources.

Methods

Computational resource

The computational resource for processing the HGP andHMP data
sets using LMAT is the Catalyst cluster within the Livermore
Computing (LC) center. This resource provided 304 compute
nodes with 24 Intel Ivy Bridge cores with 128 GB of DRAM and
800 GB PCIe attached local flash storage (NVRAM) per node. A
complete copy of an LMAT database is stored on the flash drive
of each node and accessed directly as if it were stored in DRAM
with database contents being cached in DRAM. The open source
Data Intensive Memory Map (DI-MMAP) (Van Essen et al. 2012,
2013) Linux kernel module was used to support efficient DRAM
caching of NVRAM pages. Preprocessing of the HMP data for qual-
ity control did not require access to a larger memory resource and
therefore, was done using amore standard Linux cluster Aztec, a 96
node (Intel Xeon 5660, with 12 cores) and 48 GB DRAM per node.

Search database pruning

Tomaintain the ability to scale asmore reference genome sequenc-
es are considered, the reference database uses a previously unpub-
lished feature of LMAT that reduces the number of taxonomic
identifiers pertaining to particular k-mers in the database. Earlier
versions of the software assigned the taxonomy root to k-mers
that have a larger number of taxonomy identifiers (IDs) than a cut-
off parameter (originally set to 50). Although this approach reduc-
es the size of the database and improves runtime, as long lists of IDs
produce slow LMAT runtimes, it sacrifices accuracy by removing
the pertinent taxonomic information for the k-mers. The new ap-
proach, referred to as “pruning,” removes all identifiers for the
lowest rank first (e.g., strain) and then increasing up the taxonomy
hierarchy (e.g., next species, then genus) as needed. We apply this
approach at database creation, assuming that the identifiers have
been preprocessed to include the identifiers for all ancestor taxons
up to the LCA. Every k-mer that refers to more taxonomy identifi-
ers than a specified cutoff parameter will be subjected to the prun-
ing procedure. The taxonomy identifiers for the k-mer are placed
in a priority queue data structure ordered by decreasing rank specif-
icity (depth in the taxonomy tree). The data structure enables re-
moval of all the taxonomy IDs of a particular rank until the total
number of identifiers remaining in the queue is below the cutoff
parameter, which becomes the reduced list of taxonomy identifi-
ers for the k-mer in the database. The current database uses a cutoff
value of 200 to limit the overall size of the database.

Assembled human genome data processing

From assembled human reference genome version 38, we extract-
ed canonical k-mers using Jellyfish 2.0 (Marçais and Kingsford
2011). The utility to create a searchable LMAT database merges a
stream of k-mers in ASCII format. k-mers output from Jellyfish
are sorted alphabetically and taken uniquely (Unix uniq utility).
These k-mers were merged with the LMAT microbial database to
form the LMAT-Ref.

To create the LMAT-GenBank database, the GenBank human
identified nucleotide sequences were retrieved using the NCBI get
utilities. The 72GB of sequencewas run through the same Jellyfish
k-mer extraction procedure and merged with LMAT-Ref. The
LMAT-GenBank database then was used as the starting point for
creating the LMAT-Grand database as outlined below.

Processing HGP data

To reduce the risk of errors, only “Phase 3” data as provided (ftp://
ftp-trace.ncbi.nih.gov/1000genomes/ftp/analysis.sequence.index)
was used for analysis, after being downloaded via ftp over the
course of several weeks. Nonetheless, a major impediment to in-
corporating unbiased (e.g., non-reference-based) variation from
raw reads is the risk of mislabeling nonhuman contaminants as
novel human variants. Although extensive QC was undertaken
during human genome (HG) sequencing, the potential for nonhu-
man contamination cannot be ruled out. Therefore, reads were ini-
tially compared against an LMAT database to identify reads with
20-mer matches to the existing LMAT human genome reference.
Reads that shared no 20-mers with the existing HG reference
were identified as possible nonhuman reads and were explicitly
classified with LMAT using its full microbial database. Reads as-
signed aminimum score of one (higher confidence) for a bacterial,
viral or archaea taxa were excluded. Reads assigned a score of less
than one were included as human candidates with all other reads
that had one or more human 20-mers present. (Reads with every
20-mer alreadymatched to the existingHG referencewere set aside
and ignored.) Illumina guidelines recommend the use of mini-
mum 30× coverage of minimum Q30 bases to infer a human
SNP (http://res.illumina.com/documents/products/technotes/
technote_snp_caller_sequencing.pdf). We adopted this strategy
by applying a Q30 mask to all reads (e.g., all bases with Q-value
<30 were set to N); thus, only 20-mers comprised exclusively of
Q30 or greater were considered. This is much more restrictive
than requiring that the single query base adhere to the Q-value
threshold. This is an inherent limitation of operating in k-mer
space. The computational efficiency afforded by the use of
k-mers nonetheless expands the candidate reference set to com-
pensate for themore restrictive quality filtering. In addition, a nov-
el candidate 20-mer must occur at least 30 times in a human
sample to be considered valid. Although this biases toward identi-
fication of repetitive sequence and reduces the variants recovered
from low coverage samples, we opted to err on the side of conser-
vative selection criteria. Finally, to further reduce possible low-lev-
el contaminants and false positives, a novel 20-merwas required to
occur in at least four human samples.

We implemented a workflow to handle preprocessing and
post-processing steps around LMAT using shell scripts, which
would operationally integrate into a batch job scheduling environ-
ment. This workflow processed all sequence files for a particular
sample as input, and produced a set of ASCII k-mers as output.
Subsequently, we describe the steps taken within the workflow.
The workflow was designed to run as a single “compute” job with-
in the batch scheduling environment.

Therewere two passes of LMAT analysis on the HGP data. The
first pass of LMAT ran concurrently with the preprocessing steps
(via shell script pipe), where data was decompressed (unzipped)
and filtered for quality using seqtk with -Q 30. In this step,
LMAT ran against a precursor to the LMAT-Ref database (an earlier
version of LMAT-Ref using genomic data from 9/4/2013). To sup-
port identification of potentially new human k-mers, we made a
simple modification to LMAT to report the number of k-mers re-
trieved from the database. Any reads that had k-mers notmatching
those in the database would be considered new for the purpose of
integration.

Three post-processing scripts written in awkwere used to scan
through output from the first pass of LMAT. In the first post-pro-
cessing task, reads that contain valid k-mers and one or more
k-mers that do not match the database were pooled by sample
identifier and set aside to be considered as potentially novel hu-
man content. Second, reads that do not contain k-mers matching
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human in our database but show strong enough matches to other
organisms were set aside for future analysis. An additional awk
script counts reads that produce 100% matches to human for all
valid k-mers.

One of the challenges facing the processing of the samples is
the diversity in size. Ten samples were larger than 100 GB in total
data size, so partitioning of the samplewasnecessary for a compute
job to complete theworkflow processingwithin a reasonable time-
frame. Some human samples consist of several hundred constitu-
ent sequencer runs (input files). Our approach to partitioning
each sample was to split the list of input files, assuming that the
distribution of file sizes would produce reasonable partitioning
for each sample. A lesson learned from this approach is that
many of the individual file sizes were even too large; so a better ap-
proach (used for LMAT large runs using cluster resources) is to split
the FASTA (or FASTQ) on a per-read basis. The average time per
sample was 16 h, but the longest jobs took 96 h, and some re-
mained running on the compute nodes aftermost jobs completed.
Because our workflow specific for this process started with com-
pressed files, partitioning raw sequence data files does not readily
apply; thus, a future implementation would need to revise the
workflow.

Jellyfish was used to enumerate all the canonicalized k-mers
found in the reads determined in the post-processing to contain
potentially novel human content. Following the 30× coverage re-
quirement, for each sample, each k-mermust be counted at least 30
times. Distinct k-mers from Jellyfish are output as ASCII text, and
the Unix sort utility is used to produce a set for the individual sam-
ple that can be merged with other samples.

In a process that took several hours, the 2646 input files con-
taining sorted ASCII k-mers were merged (sort -m) in batches of up
to 10 files per merge process. The distribution of number of k-mers
found to occur in differing numbers of samples was examined, and
a minimum of four individuals was chosen as a cutoff to balance,
capturing a large number of k-mers while avoiding erroneous
k-mers that may arise in a small number of samples. We used the
Unix uniq tool with -c to count occurrences in the merged output
and with a single-line awk script, produce such output. This set of
k-mers generated from the 1000 Genomes Project samples are
merged with the previously extracted sets of human k-mers and
added to the searchable LMAT reference database as done in previ-
ous steps for the GenBank human gene sequence collection.

As a second pass, microbial content profiles for the HGP data
were generated using the LMAT-Grand database using all candi-
date new human reads identified in the first pass screening of
the HGP data set. The total processing time for the HGP data set
was 43,600 node hours (or 1,046,400 CPU hours), which could
be completed in 6 d on the Catalyst cluster.

HMP data processing

All available HMP files were downloaded from the NCBI Sequence
Read Archive (http://www.ncbi.nlm.nih.gov/bioproject/; BioProject
ID 43017) onNovember 27, 2013, using the Aspera download util-
ity (SRA Handbook 2014), downloaded over the course of 66 h. A
total of 9,113 SRA files were converted to FASTQ using the SRA
SDK 2.3.2-4 and options fastq-dump –split-files –split-spot –skip-
technical –dumpbase. FASTQ-mcf revision 488 (Aronesty 2013)
was used to trim reads using a list of Illumina sequence adaptors
and discard reads of length less than 35. Reads were thenNmasked
to ignore base callswithquality scores below10, and readswith less
than 35 valid bases were discarded. Paired reads were then merged
to form a single contiguous read for LMAT processing. A total of
9,025 sequencer runswereavailable forLMATprocessingafterqual-
ity filtering. All steps prior to running LMATwere run on the Aztec

cluster described above and took 2851 node hours, 820 of these
hours were spent extracting the FASTQ format from the SRA files.
A total of 10,046 node hours were used to generate the HMP taxo-
nomic profiles, which could be completedwith theCatalyst cluster
in 33 h. The gene content profiles were generated in 1430 node
hours and completed in 4.7 h on the Catalyst cluster.

The average runtime for LMAT-Grand, LMAT-ML, and LMAT-
Gene was 17 kilobases per second per core (kbp/s), 198 kbp/s, and
63 kbp/s, respectively. This translates to ∼4.1 h to analyze a 10 gig-
abase data set on a 40-core machine for LMAT-Grand, 21 min for
LMAT-ML, and 1.1 h for LMAT-Gene.

To compare output from different databases on a smaller sub-
set of HMP samples, a collection of 131 sequencer runs were select-
ed by randomly choosing up to six runs from the 19 body sites
evenly divided by sex where appropriate. To examine accuracy
more closely, the subset (six) of samples with existing taxonomic
reports available throughHMPDACC that couldbematched exact-
ly with samples in the 131 HMP set were compared (SRS052620,
SRS022719, SRS053917, SRS052668, SRS057083, SRS022713).
Due to the small sample size (six), a secondcollectionof 73 samples
nonoverlapping with the 131 representative set were compared
and showed similar overlap; thus, the original collectionwas taken
as a representative sample. The HMPDACC-derived profiles used a
custom read mapping and taxonomy calling pipeline, and the fol-
lowing summary is based on the supplemental text provided by
Martin et al. (2012). Briefly, a microbial database was constructed
from archaeal, bacterial, viral, and lower eukaryote organisms (in-
cluding draft genomes). A custom procedure was developed to re-
move possibly redundant genomes, based on removing genomes
with 90% similarity. Reads were mapped to genomes in the data-
base using CLC bio aligner requiring 80% identity over 75% of
the read. The minimum threshold for reporting a strain present is
a coverage cutoff of 0.01× depth across 1% of the strain’s genome.

Themost recent available version ofMetaPhlAn (MetaPhlAn2
version 2.0.0 beta3; Segata et al. 2012) was used to generate
MetaPhlAn profiles reported in Figure 4 using default parameter
settings. For clustering, version 4.5.4 was used with default set-
tings. NCBI BLAST version 2.2.27+ was used for all BLAST based
analysis. For comparing differing taxonomic calls between differ-
ent software, BLASTNwas runwith settings: -evalue 0.0001 -max_-
target_seqs 5.

Searchable gene database

In addition to the genome databases used for organism identifica-
tion, a searchable gene database was created (LMAT-Gene in Table
1) using a 20-mer index and using sequences obtained on April
22, 2014, consisting of GenBank NT genes and annotated genes
from microbial genomes. Gene sequences were extracted from ge-
nomes and labeled with gene ID by combining information from
the genome gff files in the NCBI genomes database (ftp://ftp.ncbi.
nih.gov/genomes/), start and stop positions enumerated in the
gene2accession file at NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/
DATA/gene2accession.gz), and sequences in .ffn and .frn files at
the NCBI genomes subdirectories for bacteria, viruses, plasmids,
fungi, and protozoa using custom Perl and Unix scripts. Single
gene entries in NT were extracted using the BLAST blastdbcmd
with a list of gene gi’s obtained from the gene2accession file.
The gene database includes 23,604,714,457 nucleotides for
14,020,775 genes, and the downloadable search index is 120 giga-
bytes. Instead of assigning a taxonomic label to each read, anNCBI
gene identifier is assigned. Genes are reported on a best first match
basis and outputwith aminimumof 10%of the 20-mersmatching
a reference gene. In addition to providing gene content profiles
that are independent of taxonomic assignments, the subset of
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reads that are assigned taxonomic identifiers with match scores
above the minimum score cutoff (0) are summarized for their
gene content to cross link the gene content profiles with the tax-
onomy content profiles.

Plasmid identification

Evolutionary characterization of plasmids is complicated by the
potential for a plasmid to be found inmultiple organisms. In addi-
tion, a plasmid may be isolated under different experimental con-
ditions, sequenced, and assigned different labels. A further
complication is that draft genome sequencing projects may not
identify the plasmid but include it as a segment along with other
chromosomal segments. Thus, LMAT provides “rudimentary”
plasmid identification, by explicitly tagging all known plasmid se-
quences during its database creation phase. At runtimewhen a tax-
onomic assignment is made, the list of top scoring taxonomic
labels is checked for the presence of plasmids. If a plasmid is found
to be among the top scoring candidates, the first encountered top
scoring plasmid is chosen to replace the default taxonomic assign-
ment. It should be noted that multiple plasmids may be assigned
the same score, but only one is reported. Therefore, use of plasmids
for organism identification should be considered carefully with
evidence for the organism from chromosomal information.
Nonetheless, it is expected that the utility to explicitly identify ge-
netic segments that are known to be associated with plasmids will
be useful for downstream analysis.

World regional classification

The LMAT-Region database used a modified NCBI taxonomy hier-
archy that designated “species,” “region,” and “ethnic” as the
named ranks. Homo sapiens was retained as the sole NCBI desig-
nated species, with the five world regions included as child nodes
and the 27 ethnic groups (The 1000 Genomes Project Consortium
2010) included as children nodes of their respective parent region.

Given the ethnic identificationof the2646 samples, all k-mers
from samples with the same ethnicity that appear in four or more
samples were selected as ethnic identifiers (N = 1–4 was consid-
ered). These k-mer sets were combined into a single multi-FASTA
file to be input to LMAT’s database creation pipeline (LMAT man-
ual v. 1.2.4), in which each FASTA header contains only the taxon-
omy identifier for the ethnicity. The “pruning” thresholdwas set to
1 to produce k-mers with single taxonomy identifiers.

For validation of the database, 500 individuals were chosen
from theHGP selected to be a random sampling from the 27 ethnic
groups. Region classificationwas configured to use only reads with
100% valid k-mer matches to a particular ethnicity or region.
Region calls were made based on taking the ratio between the first
and second most abundant region calls using read counts.
Regional read counts are obtained by combining the individual
ethnic specific read counts. Null models were considered but did
not appear to improve results andwere excluded from the analysis.

Data access

The LMAT software is freely available as open source at http://lmat.
sourceforge.net, and version 1.2.4 used in this study is included as
a Supplemental File. The LMAT-Grand, LMAT-ML, LMAT-ML-
Human, LMAT-Genes, and LMAT-Region databases are available
for download via anonymous ftp and are retrieved using the
get_db.sh script included in the LMAT software distribution. The
databases are listed with their actual file names, which are used
as input to download a specific database: LMAT-Grand (lmat-4-
14.20mer.db), LMAT-ML (kML.v4-14.20.g10.db), LMAT-ML-

Human (kML+Human.v4-14.20.g10.db), LMAT-Genes (lmat.
genes.7-14.db), and LMAT-Region (lmat-world-region.db). Genus,
species/strain, and plasmid taxonomy profiles are available for
the complete collection of HMP, and HGP sequencer runs are
available as Supplemental Files. Gene content profiles for all
HMP sequencer runs with a cross reference to taxonomy calls
are available at ftp://gdo-bioinformatics.ucllnl.org/pub/lmat/
hgp_hmp_2014/hmp.gene_cl_profiles.tar.gz. All reads with no
match to the database in the HMP collection, human repeat se-
quences, and STRs are available as Supplemental Files. New hu-
man reads found in the La Braña genome are available through
the NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.
nih.gov/sra) under accession number SRX992275, and the La
Braña metagenomic taxonomy profiles are provided as a
Supplemental File. The HMP DACC staff is in the process of re-
moving the human reads from the public HMP data; the reads
will be made available through NCBI dbGaP (http://www.ncbi.
nlm.nih.gov/gap) under study accession phs000228.v3.p1.
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