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Purpose. Hypoxia is a leading hallmark of tumors, which is associated with carcinogenicity and dismal patient outcome. In this
project, we tended to detect the prognostic value of hypoxic lncRNA and further generate a hypoxic lncRNA-based model in head
and neck squamous cell carcinoma (HNSCC). Methods. We integrated the transcriptome and clinical information of HNSCC
based on TCGA dataset. Univariate-multivariate Cox analysis was implemented to develop the signature according to hypoxia-
related lncRNAs (HRlncRNAs) with greatly prognostic power in HNSCC. Next, the biomarker signature was tested using survival
analysis and ROC plots. Moreover, we used GSEA to uncover the potential pathways of HRlncRNAs, and CIBERSORT and
ssGSEA tools were applied to mirror the immune status of HNSCC patients. Results. Nine HRlncRNAs (LINC00460, AC144831.1,
AC116914.2, MIAT,MSC-AS1, LINC01980, MYOSLID, AL357033.4, and LINC02195) were determined to develop a HRlncRNA-
related signature (HRLS). High-HRLS group was associated with dismal patient outcome using survival analysis. Moreover, the
HRLS was superior to classical clinical traits in forecasting survival rate of samples with HNSCC. GSEA unearthed the top six
hallmarks in the HRLS-high group individuals. In addition, the HRLS was also bound up with the infiltration of macrophages,
CD8 T cells, and activated mast cells. Conclusion. Our nominated nine-HRlncRNA risk model is robust and valuable tool for
forecasting patient outcome in HNSCC.

1. Introduction

Head and neck squamous cell carcinomas (HNSCCs) are a
heterogeneous group of neoplasms originating from the
head and neck (HC) malignant areas, including the lip, oral
cavity, nasopharynx, oropharynx, hypopharynx, and larynx
[1]. HNSCC accounts for the majority of HC malignancies
and has a high mortality rate. Over 700,000 people world-
wide suffer from HNSCC each year, with a mortality rate of
about 60% [2]. At present, clinical classification of HNSCC is
generally based on anatomical site and tumor stage. HNSCC
cases are usually diagnosed at advanced stage due to the
shortage of the robust clinical screening indicators [3].
Although multitype treatments have been applied in
HNSCC patients, the clinical outcome of HNSCC cases is
still dismal [4].

Multiple studies have attempted to invest the molecular
mechanism underlying its onset and progression and, by far,
researchers have identified a subset of molecules as bio-
markers in the detection of HNSCC. One intriguing report
published in 2020 found that GATA3 could increase the
risks for HNSCC by stabilizing HIF-1 and, recently, another
group reported that UBE2C is closely bound up with the
poor outcome of HNSCC [5, 6]. However, as a prognosis
biomarker, single molecule can vary greatly and hinges on an
individual’s particular pathological status, making a com-
prehensive prognosis model based on multiple genes des-
perately needed.

Hypoxia is one of the hallmarks of the metabolic tumor
microenvironment (TME) and occurs commonly in several
solid tumors, such as liver cancer, stomach cancer, and
breast carcinoma [7–10]. /e development of hypoxic
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microenvironment is caused by overgrowth of the tumor
and insufficient supply of oxygen in the blood [11]. Existing
reports have suggested that hypoxia plays a central part in
tumor aggressiveness and metastasis, resulting in drug re-
sistance and treatment failure. Hypoxia also could boost
cancer metastasis by activating cytokines related to tumor
angiogenesis and invasion [12]. With the increase of tumor
volume, the central region of HNSCC displays a high level of
hypoxia [13]. However, the effective and reliable treatment
for HNSCC tissue hypoxia has not been developed.

In the last decade, genomic and epigenetic studies have
shown that long noncoding RNA (lncRNA), similar to
protein-coding genes, exerts its crucial role in human cancer
pathogenesis. Notably, greater than 50% of the human ge-
nome is in transcription as lncRNA which is a type of
transcript of over 200 nucleotides [14]. lncRNA could
mediate gene transcription and translation through epige-
netic modifications or miRNA regulation. Under hypoxic
status, lncRNAs can serve as oncogenes or tumor sup-
pressors involved in regulation of carcinogenicity [15, 16].
For instance, lncRNA-BX111 induced by hypoxia could
boost cell viability and metastasis by triggering ZEB1
transcription in pancreatic cancer [17]. In lung cancer,
AC020978 has been proved to facilitate cell growth and
activate glycolytic metabolism by promoting PKM2-induced
HIF-1α upregulation after hypoxia treatment [18]. Unfor-
tunately, the effect of hypoxia-related lncRNA (HRlncRNA)
in HNSCC has been not comprehensively clarified yet.

In our project, we took advantage of the TCGA-HNSCC
dataset and develop a risk signature based on hub
HRlncRNAs which could offer reliable reference for patient
outcome forecasting and individualized therapy of HNSCC
patients.

2. Methods

2.1. Data Preparation. /e HNSCC dataset with FPKM
transcriptome data and basic clinical and survival infor-
mation was collected from the Cancer Genome Atlas
(TCGA) website. After filtering the samples with survival
time <30 days, a total of 490 HNSCC cases were selected for
the next analysis. We collected a list of 200 hypoxia-related
genes (HRGs) from the MSigDB (Supplementary Table 1)
[19].

2.2. Identification of Differentially Expressed HRlncRNAs.
/en, we collected differentially expressed lncRNAs
(DElncRNAs) using the Limma package in R project (|fold
change (FC)|� 1.0 and p< 0.05). Moreover, correlation
analysis was implemented to determine the HRlncRNAs
based on the 200 HRGs in HNSCC and (|cor|> 0.3,
p< 0.001) and differentially expressed HRlncRNAs were
obtained by overlapping with DElncRNAs.

2.3. Construction of the Prognostic Signature. To develop a
lncRNA-based signature, all HNSCC samples were equally
and randomly divided into a discovery cohort and a vali-
dation cohort in a 1 :1 ratio. Performing univariate Cox

method, we identified underlying HRlncRNAs which display
greatly prognostic value of HNSCC in the discovery cohort
(p< 0.05). Subsequently, the candidate HRlncRNAs were
analyzed by multivariate Cox regression to create a
HRlncRNA signature (HRLS). /e risk power of HRLS�

 exp(HRlncRNAs)∗ β. /e β is the coefficient of each
candidate HRlncRNAs from multivariate Cox analysis.

2.4. Development of the Predictive Nomogram. A total of 490
cases comprised corresponding clinical data for the uni-
variate and multivariate methods. To better develop the
predictive ability of HRLS, we created a nomogram based on
HRLS and other clinicopathological variables for outcome
forecasting in HNSCC. Calibration curves were generated to
verify the nomogram.

2.5.GeneSetEnrichmentAnalysis. To determine the valuable
function and mechanism-related HRLS, we performed
GSEA analysis on the basis of the hallmark gene sets. /is
project implemented GSEA method to identify those en-
richment terms in HRLS-high group and the gene sets were
collected from the MSigDB. /e number of random com-
binations of genomes per analysis was set at 1,000. p< 0.05
was considered as statistically significant.

2.6. Analysis of Tumor-Infiltrating Immunocyte. /e im-
mune landscape of HNSCC samples was characterized by
CIBERSORT which is an immune-related algorithm for
analyzing the abundance of 22 immunocyte types. In ad-
dition, single-sample gene set enrichment analysis (ssGSEA)
was employed to estimate the immune function between two
subgroups.

2.7. Statistical Analysis. All statistical data were analyzed by
R version 4.0.5. Kaplan–Meier (KM) survival was instru-
mental in detecting survival distinctions between two HRLS
groups. /e specificity and reliability of the HRLS were
confirmed using ROC curves.

3. Results

3.1. Identification of Differentially Expressed HRlncRNAs.
We first unearthed 2778 DElncRNAs using differential
expression analysis (991 upregulated and 1787 down-
regulated; Figure 1(a)). /en, a total of 794 HRlncRNAs
were uncovered by performing correlation analysis based on
the hypoxic gene sets. We collected 192 differentially
expressed HRlncRNAs which overlapped with DElncRNA
sets and HRlncRNA sets (Figure 1(b)).

3.2. Construction of the HRLS. We integrated survival in-
formation from the HNSCC cohort in TCGA and removed
cases with survival time <30 days. Next, 246 patients were
randomly assigned into the discovery cohort. Conducting
univariable Cox analysis, we identified 40 prognostic-as-
sociated HRlncRNAs in the discovery set. /en, all these
HRlncRNAs were analyzed by a multivariate analysis.
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Ultimately, nine HRlncRNAs (AC116914.2, AC144831.1,
AL357033.4, LINC00460, LINC01980, LINC02195, MIAT,
MSC-AS1, and MYOSLID) were screened to create the
HRLS (Table 1)./e risk score� [AC116914.2× (−0.0346)] +
[AC144831.1 × (−0.1636)] + [AL357033.4× (−0.2128)] + [LI
NC00460 × (−0.2781)] + [LINC01980× (−0.0072)] + [LINC
02195 × (−0.0610)] + [MIAT × (−0.3569)] + [MSC-AS1×

(0.0804)] + [MYOSLID× (0.1368)]. /e relationship be-
tween HRlncRNA and HRG is shown in Figures 2(a) and
2(b).

All patients were classified into high- and low-risk
groups based on the median value of risk score. As shown in
(Figures 3(a) and 3(b)), our established HRLS displayed
favorable performance in the discovery cohort. KM survival
curves revealed that HRLS-high group had dismal patient
outcome, but HRLS-low group presented better patient
outcome (Figure 3(c)). In addition, the results of ROC curves
suggested that AUC values were 0.701, 0.785, and 0.715 for
1-, 3-, and 5-year survival, respectively (Figure 3(d)). At the
same time, the above analyses were also applied to detect the
performance of the HRLS using verification set. As we ex-
pected, the similar trend was observed in the two verification
sets (Figure 3).

3.3. Verification of Nine Signature HRlncRNAs. /en, we
determined the prognostic association of nine hub lncRNAs.
/e results showed that dismal survival rates were uncovered
in the high expression of LINC00460, LINC01980,
MSC−AS1, and MYOSLID (Figures 4(a)–4(d)) and the low
expression of AC116914.2, AC144831.1, AL357033.4,
LINC02195, and MIAT (Figures 4(e)–4(i)).

3.4. Subgroup Analysis of the HRLS. Also, we confirmed the
prognostic power of the HRLS in terms of the subgroup of
HNSCC cohort. /e entire HNSCC cohort were classified
into several subgroups, including age subgroup, gender
subgroup, grade subgroup, and stage subgroup. /e out-
comes of patients in HRLS-high group were favorable
according to the abovementioned different subgroups
(Figure 5).

3.5.Developmentof aNomogram. Cox stepwise regression of
the HNSCC set indicated the independence of the HRLS in
forecasting survival of patients. Both univariate and mul-
tivariate methods showed that risk score was meaningful for
forecasting clinical outcome (Figures 6(a) and 6(b)). To
further enlarge the predictive value of the HRLS, we adopted
risk score to generate a nomogram (Figure 7(a)). In addition,
calibration curves show a favorable adaptation of our pro-
posed nomogram for predicting survival (Figure 7(b)).

3.6. Immune Status between Two HRLS Groups. We further
assessed the differences in the immune status based on
immunocyte infiltration between two subgroups. HRLS-
high group displayed remarkably higher abundances of
macrophages M0, macrophages M2, activated mast cells,
and resting T cells CD4 memory (Figures 8(a)–8(d)),
whereas extremely lower abundances of resting dendritic
cells, resting mast cells, activated T cells CD4 memory, and
T cells CD8 (Figures 8(e)–8(h)). Furthermore, ssGSEA
showed that APC costimulation, check point, cytolytic,
HLA, inflammation-promoting, and type II INF responses
were enriched in low-risk cohort (Figure 8(i)).
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Figure 1: Differentially expressed hypoxia-related lncRNA (DEHRlncRNAs). (a) Volcano plot of DElncRNAs in TCGA-HNSCC dataset.
(b) /e Venn plot of lncRNA among DElncRNAs and HRlncRNAs.
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3.7.Correlationbetweenm6A-RelatedMarkersandRiskScore.
Given the importance of m6A-related genes in tumor reg-
ulation, we found that the expressions of RBM15, WTAP,
METTL14, METTL3, YTHDF2, YTHDC1, YTHDC2, FTO,
and HNRNPC were dramatically different between the two
groups (Figure 9).

3.8. GSEA Enrichment of the HRLS. GSEA displayed that
there were six top hallmarks activated in the group with
high-risk status, including “epithelial-mesenchymal transi-
tion,” “angiogenesis,” “hypoxia,” “p53 pathway,” “NOTCH
signaling,” and “TNF-beta signaling” (Figure 10).

4. Discussion

HNSCC is a common head and neck cancer with highly
heterogeneous nature, which has high mortality [1]. Hyp-
oxia, a characteristic hallmark of several malignancies, is the
pivotal cause of tumor progression and treatment resistance
[13]. Currently, lncRNA-based risk model has increasingly
gained interest as a result of its superior predictive capability

[20]. However, prognostic model based on hypoxic lncRNAs
has yet to be comprehensively analyzed.

In our project, we first collected 192 differentially
expressed HRlncRNAs based on Pearson correlation anal-
ysis and differential analysis. Next, we focused on these
lncRNAs with prognostic power. In the discovery set, nine
HRlncRNAs were screened to construct the HRLS via Cox
relevant analysis. Survival curves and ROC analyses illus-
trated the robust perform of the HRLS for forecasting patient
outcome. Furthermore, the HRLS was proved to be an in-
dependent indicator for clinical outcome. In addition, we
explored the potency of the HRLS in immune activity. /e
results showed that the risk scores were closely bound up
with the abundance of TAM, activated mast cells, and CD8
cells, which could offer valuable reference for individual
immunotherapy.

Our nominated HRLS is constituted by nine
HRlncRNAs which were greatly associated with outcomes of
HNSCC cases. Among these nine HRlncRNAs, MSC-AS1
and MYOSLID are underlying hazardous factors, but
LINC00460, AC144831.1, AC116914.2, MIAT, LINC01980
AL357033.4, and LINC02195 underlying favorable

Table 1: Nine prognostic HRlncRNA greatly associated with prognosis of HNSCC cases.

Gene Coefficient Hazard ratio (95% CI) P value
AC116914.2 −0.0346 0.61 (0.43–0.86) 0.005
AC144831.1 −0.1636 0.60 (0.44–0.81) <0.001
AL357033.4 −0.2128 0.67 (0.54–0.84) <0.001
LINC00460 −0.2781 1.32 (1.15–1.51) <0.001
LINC01980 −0.0072 1.16 (1.03–1.30) 0.015
LINC02195 −0.0610 0.76 (0.62–0.94) 0.009
MIAT −0.3569 0.74 (0.58–0.94) 0.013
MSC-AS1 0.0804 1.33 (1.10–1.62) 0.003
MYOSLID 0.1368 1.31 (1.15–1.49) <0.001
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Figure 2: /e relationship between model lncRNA and corresponding mRNA. (a) Model lncRNA-mRNA coexpression network.
(b) Sankey plot showed the correlation of signature lncRNA-mRNA.
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Figure 3: Continued.
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indicators. After searching the available reports, we observed
that LINC00460 AC116914.2, MIAT, MSC-AS1,
LINC01980, MYOSLID, and LINC02195 are proven to be
distinctly associated with various tumors.

Existing literatures show that LINC00460 exerts its role
in the aggressiveness of several cancers. Jiang et al. revealed
the high expression value of LINC00460 in HNSCC cell lines
and uncovered that knockdown LINC00460 could inhibit
cell viability and metastasis by promoting PRDX1 into the
nucleus [21]. In colorectal cancer (CRC), LINC00460 was
shown to serve as an oncogene of CRC that got involved in
carcinogenesis by heightening the stabilization of HMGB1 at
mRNA level [22]. As suggested by Zhou et al., MIAT could
exert oncogenic role in regulation of cell growth and EMT
through binding with miR-150-5p, providing a novel insight
for the management of ovarian cancer [23]. Yao et al.
demonstrated that high expressionMSC-AS1 could facilitate
the malignant behavior of nasopharyngeal cancer via miR-
524-5p/NR4A2 axis [24]. Zhang et al. reported that MSC-
AS1 was associated with aggressiveness and cisplatin sen-
sitivity in osteosarcoma [25]. /e LINC01980 is a new
biomarker studied in digestive system tumors, such as
esophageal squamous cell carcinoma (ESCC) and liver
cancer (LC). Liang found that LINC01980 could aggravate
cell viability and migration in a ceRNA-dependent way,
indicating that it might serve as a possible marker for patient
outcome of ESCC [26]. Additionally, LINC01980 also
triggers the development of LC by targeting caspase 9 [27].

MYOSLID was confirmed as a slug-associated lncRNA
involved in aggravation of cell invasion and metastasis in
HNSCC [28]. Han et al. interrogated the functional effect in
gastric carcinoma and they indicated that downregulation of
MYOSLID markedly blocked cancer cell growth and induced
apoptosis. In regard to the molecular mechanism, MYOSLID
acts as a ceRNA targetingMCL-1 by binding withmiR-29c-3p
[29]. Li et al.’s study reveals that LINC02195was tightly bound
up withMHC I protein in HNSCC cells and could function as
valuable prognostic indicator for HNSCC patients [30]. In
addition, AC116914.2 has been determined as an autophagic
lncRNA to set up a prognostic model in HNSCC [31].
AC144831.1 and AL357033.4 have not been previously re-
ported in cancers.

In recent years, tumor microenvironment (TME) has
been a hot spot in oncology research and cancer therapy. It is
identified as an intricate cellular environment with the
presence of tumor cells, various immunocytes, and stromal
cells [32]. Among these tumor-infiltrating immunocytes,
TAM is the predominant immune component in TME. TAM
is recognized crucial factor in tumor development and is
bound up with tumor growth, migration, and therapy failure
[33]. As we all known, TAM can be transformed into two
phenotypes: M1 polarization and M2 polarization. Research
showed that M1 polarization might be involved in antitumor
process and proinflammatory regulation. M2 polarization can
motivate tumor proliferation and induce immunosuppressive
effects in TME [34, 35]. Moreover, M2-like macrophage
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Figure 3: Predictive power of the HRLS. (a) /e layout of risk score, (b) the survival status, (c) survival curves, (d) and ROC curves of the
HRLS in the discovery cohort. (e–l) /e verification sets using test and entire cohorts.
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considered valuable indicator which could forecast the poor
prognosis of patients with HNSCC [32]. Our analysis revealed
that M0 macrophage and M2 macrophage had positive rel-
evance to high risk, suggesting that dismal prognosis of
HRLS-high group might be associated with higher M2

macrophage infiltration. In our project, HRLS-low group
presented higher proportions of CD8 T cells and activated
mast cells. CD8 T cell, important player in cancer manage-
ment, is essential in human body defense against tumor [36].
Also, the infiltration level of CD8 T cell is closely related to
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patient outcome of HNSCC cases [37]. In addition, activated
mast cells could release tissue kallikrein (TK1), which in turn
boosts the viability and invasion of tumor cells through
upregulation of angio-permeability [38].

GSEA presented that the HRLS-high groups were
concentrated on the hallmarks including “epithelial-mes-
enchymal transition,” “angiogenesis,” “hypoxia,” “p53
pathway,” “NOTCH signaling,” and “TNF-beta signaling.”
Epithelial-mesenchymal transition (EMT) is a cellular
procedure in which cells undergo a transition between

epithelial and mesenchymal phenotypes, characterized by
changes in the expression of EMT-related markers [39].
Research proved that EMT pathway plays a central part in
tumor migration and invasion. For example, NGF/TrkA axis
could reduce the chemotherapy sensitivity through EMT
signaling in HNSCC [40]. In addition, TRAF6 is closely
related to EMT pathway and cancer cell stemness, which
mediate migration and invasion of HNSCC cells [41].
Consistent with the predictions of our model, hypoxia was
notably enriched in the HRLS-high group. Hypoxia, a
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Figure 5: Subgroup analysis of the HRLS for HNSCC samples. (a) Age. (b) Gender. (c) Grade. (d) Stage.
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Figure 6: Analysis of the independence of the HRLS. (a) Univariate regression analysis. (b) Multivariate regression analysis.
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Figure 8: Continued.
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frequent condition in HNSCC, has been reported to be a
critical component of malignant behavior and treatment
resistance [42]. Xu et al. demonstrated that MFAP5 could
boost EMT process by activation of AKT under hypoxia
status [43]. After hypoxia treatment in HNSCC cell lines, the
expression of SRGN was increased by secretion of cancer-
associated fibroblasts, which in turn stimulates tumor ex-
acerbation via Wnt/β-catenin axis [44]. Moreover, p53 is a
classical tumor suppressor biomarker in different cancers.
NR5A2, a novel target in cancer management, was proved to
be involved in regulation of HNSCC cell viability through

p53-dependent way [45]. Study showed that NOTCH
pathway plays a dual role in carcinogenesis of HNSCC.
NOTCH1, for example, could function as a suppressor in
HNSCC in an inactivating mutations manner. On the other
hand, NOTCH1 also might exacerbate cell proliferation and
progression of HNSCC through activating mutations [46].

Nevertheless, several parts of the present project warrant
improvement. Firstly, both external cohort and prospective
research are required to confirm the performance of our
proposed HRLS. In addition, we need to further uncover the
concrete mechanisms of HRLS through wet experiments.
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In summary, we screened nine specific hypoxia-corre-
lated lncRNAs which were included to develop a prognostic
signature. /e HRLS could forecast the prognosis and im-
mune landscape of HNSCC cases, subsequently providing
favorable therapeutic option for HNSCC patients.
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