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A B S T R A C T   

Cell pyroptosis, a Gasdermin-dependent programmed cell death characterized by inflammasome, plays a com
plex and dynamic role in Gastric cancer (GC), a serious threat to human health. Therefore, the value of 
pyroptosis-related genes (PRGs) as prognostic biomarkers and therapeutic indicators for patients needs to be 
exploited in GC. This study integrates single-cell RNA sequencing (scRNA-seq) dataset GSE183904 with GC 
transcriptome data from the TCGA database, focusing on the expression and distribution of PRGs in GC at the 
single-cell level. The prognostic signature of PRGs was established by using Cox and LASSO analyses. The dif
ferences in long-term prognosis, immune infiltration, mutation profile, CD274 and response to chemotherapeutic 
drugs between the two groups were analyzed and evaluated. A tissue array was used to verify the expression of 
six PRGs, CD274, CD163 and FoxP3. C12orf75, VCAN, RGS2, MKNK2, SOCS3 and TNFAIP2 were successfully 
screened out to establish a signature to potently predict the survival time of GC patients. A webserver (https://p 
umc.shinyapps.io/GastricCancer/) for prognostic prediction in GC patients was developed based on this signa
ture. High-risk score patients typically had worse prognoses, resistance to classical chemotherapy, and a more 
immunosuppressive tumor microenvironment. VCAN, TNFAIP2 and SOCS3 were greatly elevated in the GC while 
RGS2 and MKNK2 were decreased in the tumor samples. Further, VCAN was positively related to the infiltrations 
of Tregs and M2 TAMs in GC TME and the CD274 in tumor cells. In summary, a potent pyroptosis-related 
signature was established to accurately forecast the survival time and treatment responsiveness of GC patients.   

1. Introduction 

Gastric cancer (GC) is one of the common malignant tumors world
wide, with high morbidity and mortality [1]. China is one of the 
high-incidence areas of GC, accounting for about 40% of the global 
annual new cases and deaths [2]. Although the comprehensive treat
ment of GC is constantly updated and improved, its 5-year overall sur
vival rate remains dismal [3]. In recent years, immunotherapy was the 
first-line therapy for advanced cancer, but only a few patients with GC 
can benefit from the treatment of immune checkpoint inhibitors (ICIs) 
[4,5]. It has been reported that multi-gene signatures can effectively 
elevate the survival time and treatment response to chemotherapy or 

immunotherapy of GC patients [6,7]. Hence, it is urgent to investigate 
and establish appropriate biomarkers to forecast the prognosis and 
treatment response of patients for selecting the optimal therapies to 
prolong the survival time of patients with GC. 

Cell pyroptosis is an identified way of regulated cell death, which is 
characterized by the continuous expansion until the cell membrane 
ruptures, resulting in releasing cell contents and triggering strong in
flammatory responses [8–10]. Further, cell pyroptosis not only exerts its 
critical roles in immune response, antagonizing infections and trans
mitting endogenous signals and but is also involved in the initiation and 
progression of tumors [11–14]. 

Single-cell RNA sequencing (scRNA-seq) eliminates heterogeneity in 
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tissues by clustering cells, which is of significance for the progress of 
precision therapy [15]. In addition, scRNA-seq can accurately evaluate 
the role of genes in specific cell types, which is more conducive to the 
exploration of molecular mechanisms in initiation and development of 
malignancies [16,17]. In view of the abovementioned advantages, more 
and more studies have identified novel biomarkers by integrating 
scRNA-seq and bulk RNA-seq. Hence, we decided to integrate scRNA-seq 
and transcriptome RNA-seq to establish a signature for improving 
prognostic prediction and optimizing the selection of therapeutic 
methods of GC by using bioinformatics analysis. 

In this research, we constructed a pyroptosis-related signature to 
potently forecast the survival time and treatment response of GC by 
integrating scRNA-seq and transcriptome RNA-seq. The survival differ
ence was clearly discriminated between the two groups divided by the 
pyroptosis-related signature. Patients with high risk scores not only had 
shorter survival times but also were more resistant to classical chemo
therapy drugs and prone to immunosuppressive tumor microenviron
ment (TME) in GC. Additionally, MKNK2, RGS2, TNFAIP2, VCAN, 
SOCS3, C12orf75, CD274, CD163 and FoxP3 were detected in the tissue 
array of GC. In summary, a potent signature was constructed to accu
rately forecast the survival time and treatment responsiveness of GC 
patients using six pyroptosis-related genes (PRGs). 

2. Materials and methods 

2.1. Tissue specimen 

The tissue array containing 54 paired GC tissues and corresponding 
adjacent tissues was gathered from the Department of General Surgery, 
Peking Union Medical College Hospital (PUMCH) from September 2021 
to December 2022. The pathological results of GC in patients were 
validated by physicians from the Department of Pathology of PUMCH. 
Dissected tissues were fully soaked and fixed in liquid formaldehyde and 
embedded in paraffin within one week for subsequent long-term pres
ervation and immunohistochemical staining. All patients signed a con
sent form with full knowledge before the tissue samples were collected. 
This study was permitted by the Ethical Committee of PUMCH (I- 
22PJ035). 

2.2. Data collection 

In this study, we selected 24 primary gastric cancer tumor samples 
from the GSE183904 dataset [18]. The TCGA data used in this analysis, 
including the TPM profile, Count data matrix, somatic mutation data, 
survival data and clinical information of each patient, were from UCSC 
Xena. We used the annotation file provided by UCSC Xena to re-annotate 
the data with Gene Symbol before subsequent analysis. Then, we sorted 
out the clinical data containing age, gender, pathological stage and 
survival time. To meet the standards of analysis, we only retained GC 
patients with complete prognostic information to establish a prognostic 
signature. Finally, the GSE62254 containing 300 samples and the intact 
clinical information was utilized to verify the accuracy of the 
pyroptosis-related signature in the prognostic prediction of GC patients 
[19]. 

2.3. Quality control of scRNA-seq data using Seurat 

The platform for detecting scRNA-seq data was Illumina NovaSeq 
6000. The result matrix of Seurat (version 4.0) R package imported the 
GSE183904 creates the Seurat object for this analysis [20]. The selection 
criteria were stringent. Firstly, we included samples that exhibited 
gene/feature expression shared by three or more cells in each sample. 
Secondly, only cells displaying gene expression of 500 or more features 
but fewer than 6000 features were considered. Additionally, we 
excluded cells with a mitochondrial RNA percentage greater than 20%. 
“DoubletFinder” was employed to identify doublets using the 

gene-expression data [21]. These rigorous selection criteria and quality 
control steps were implemented to ensure the high quality and reli
ability of our data. The data were first quality-controlled by the original 
standard, and 118887 cells were selected for further analysis. Next, the 
GSE183904 dataset is standardized by the ’NormalizeData’ function. 
The subsequent data processing was consistent with the published 
literature [6]. Then, according to the ElbowPlot function with variable 
genes as input, principal component analysis (PCA) is utilized to identify 
significant principal components (PCs). The top 30 PCs are selected as 
the statistically significant input of t-Distributed Stochastic Neighbor 
Embedding (t-SNE) (dims = 30). 

2.4. Cluster analysis and cell type annotation of scRNA-seq 

Cell clustering and cell type identification of cell clusters were 
analyzed by ’FindClusters’ function. In addition to annotating cell types, 
ScType software also identified the annotations of cell type and further 
searched for differential marker genes between cell populations [22]. 
The ’FindAllMarkers’ function compares the expression of genes be
tween different cell types using the Wilcoxon rank sum test to identify 
differential genes between cell types. 

2.5. Differential expression of PRGs in cells 

51 PRGs are gathered from the Molecular Signatures Database and 
published literature [23]. Supplementary Table S1 provided detailed 
information on 51 PRGs. The overlapping results of PRGs and differ
entially expressed genes (DEGs) between cell types were identified by 
the Venn diagram software package. The heatmap showed the expres
sion of these overlapping results in different immune cells by using the 
’DoHeatmap’ function. Their expression in GC and adjacent tissues were 
compared in the TCGA dataset and statistically significant by t-test. 
When the p-value < 0.05, it was significant. 

We utilized the AUCell package’s AUCell_calcAUC function to 
compute the PRG activity levels for each cell and analyzed the average 
PRG activity within various cell types. Subsequently, we categorized 
these cells into high pyroptosis and low pyroptosis groups based on the 
median value of PRG activity. The DEGs between the two groups of cells 
were further analyzed by the ’FindAllMarkers’ function, which used the 
Wilcoxon rank sum test. Then, genes specifically expressed in the high- 
pyroptosis group were selected as DEGs related to pyroptosis in GC for 
subsequent analysis. 

2.6. KEGG and GO enrichment analysis 

The R package clusterProfiler (version 4.2.0) was utilized to conduct 
KEGG pathway enrichment on DEGs related to pyroptosis to identify 
significantly enriched biological processes [24]. Gene Ontology (GO) 
enrichment was also used to analyze the DEGs related to pyroptosis from 
large-scale functional enrichment at different dimensions and levels. 
Fisher’s exact test was used to calculate the significance of each term. 
The significant threshold of enrichment analysis was p value < 0.05, and 
the enrichment results are further visualized by bubble plots. 

2.7. Construction of a prognostic signature 

A prognostic signature was constructed using the TPM profile of GC 
samples with complete survival data in the TCGA dataset. Univariate 
Cox analysis was used to preliminarily identify PRGs associated with the 
overall survival (OS) of GC patients. Subsequently, LASSO analysis was 
used to screen out the prominent genes, and multivariate Cox analysis 
was further used to construct a prognostic signature. The risk score 
calculation formula is: 

riskScore =
∑n

i
Coef (genei) ∗ Expression(genei)

J. Li et al.                                                                                                                                                                                                                                         



Computational and Structural Biotechnology Journal 23 (2024) 990–1004

992

Coef (genei), expression (genei) and n represent the coefficient of 
multivariate Cox regression, the expression of each gene and the number 
of genes, respectively. 

2.8. Construction of a predictive nomogram 

The risk scores and clinicopathological features were incorporated 
through the RMS package (version: 5.1–4) to generate a nomogram and 
calibration curve. The calibration curve is evaluated by mapping the 
predicted survival probability to the actual survival probability, and the 
45◦ line represents the best predictive value. Subsequently, the survival 
package was used to draw a forest map to visualize the effects of each 
clinicopathological features (gender, age, T stage, N stage, M stage and 
AJCC stage) and risk score on prognosis. 

2.9. An online prediction tool for survival probability of GC patients 

A webserver containing a dynamic nomogram was built up to fore
cast the survival probability of GC patients using the “DynNom” and 
“Shiny” R packages based on the Shiny website (https://www.shin 
yapps.io/). Detailed user guides, including how to use the server, 
interpret the output results, and apply the results to specific issues, were 
provided in the supplementary File S1. 

2.10. Estimation of immune cell infiltration 

CIBERSORTx is an analytical tool for evaluating immune cell infil
tration [25]. The assumed immune cell abundance was estimated using 
a reference set containing 22 immune cell subtypes and 1000 permu
tations. Combined with the LM22 characteristic gene matrix, the sam
ples with p value < 0.05 were screened out to obtain the immune cell 
infiltration matrix. Then the data with immune cell enrichment fraction 
greater than zero are retained, and the final results of immune cell 
infiltration matrix are obtained. Pearson correlation analysis was per
formed on the infiltrating immune cells and 6 PRGs. 

2.11. Immune infiltration and immune checkpoint analysis based on the 
pyroptosis-related signature 

The abundance of immune cells in two groups was compared. The 
correlation between risk scores and immune cell infiltration was 
analyzed by Spearman correlation. In addition, common immune 
checkpoints (ICG_genes_pmid_310434170) were compared in two 
groups. The relationship between CD274 and PRGs in the signature was 
analyzed. P value < 0.05 was considered significant. 

2.12. Analysis of somatic mutations and chemosensitivity 

The somatic mutation data of TCGA-STAD were acquired through 
the R package of ’TCGAbiolinks’, sorted into the mutation annotation 
format file, and analyzed using the R package ’maftools’. The method of 
chemosensitivity analysis was consistent with previous publication [6]. 

2.13. Immunohistochemistry (IHC) 

The procedures of IHC were consistent with the previous publica
tions [26,27]. First, tissue sections were deparaffinized in xylene and 
rehydrated through graded alcohol. Second, antigen repair was per
formed according to the corresponding requirements. Third, endoge
nous peroxidase was blocked by 3% hydrogen peroxide. Fourth, 3% 
bovine serum albumin was used to block the tissue sections. Fifth, VCAN 
(Sangon Biotech, D223532), TNFAIP2 (Sangon Biotech, D123384), 
RGS2 (Sangon Biotech, D221197), MKNK2 (Sangon Biotech, D225598), 
SOCS3 (Abcam, ab280884), C12orf75 (Signalway antibody, #37781), 
CD274 (Abcam, ab282458), CD163 (Abcam, ab182422), and FoxP3 
(Abcam, ab215206) are the primary antibodies used in the IHC staining. 

The dilution ratio of each primary antibody was under the product in
structions. Two fields of each tissue were randomly chosen under the 
40 × objective lens. Then, Image-Pro Plus software was used to evaluate 
the expression of each protein using the integrated optical density (IOD) 
method consisting of staining area and intensity. The sum of the IOD of 
two random fields is the final IOD value of each tissue. 

2.14. Statistics analysis 

R (version 4.1) (https://www.r-project.org/) was used to conduct 
the data calculations and statistical analyses. Analysis of transcriptome 
RNA sequencing and scRNA-seq data were statistically significant at p 
value < 0.05 or adj. p value < 0.05. 

3. Results 

3.1. Identification of cell type by scRNA-seq analysis 

As shown in Fig. 1, the flow chart presented the detailed procedures 
of this study. First, the scRNA-seq data of 118887 cells from 24 GC pa
tients was obtained from GSE183904 dataset after strictly screening 
with quality control. Fig. S1A presented the detected gene numbers, the 
depth of sequencing and the gene ratio of mitochondrial and hemoglo
bin in each specimen. 3000 variable genes were chosen to further 
analysis after data normalization (Fig. S1B). PCA analysis was used to 
reduce dimensionality and visualize the data, and the top 30 PCs were 
selected as the input of t-SNE (Fig. S1C). The results of t-SNE shown that 
the total cells were divided into 33 clusters (Fig. S1D and Fig. 2A). 33 
clusters were classified into 11 cell types (cancer cells, CD8+ NKT− like 
cells, endothelial, mast cells, memory B cells, memory CD8+ T cells, 
myeloid cells, neuroendocrine cells, neutrophils, non− classical mono
cytes and stromal cells) by using ScType (Fig. 2B). In addition, the 
specific number of each cell type was presented in Fig. 2C. Moreover, the 
proportion of cell type was also investigated in each GC sample 
(Fig. 2D). The violin plot revealed the most representative marker gene 
in each cell type (Fig. 2E). Furthermore, the top 10 marker genes in each 
cell type were also demonstrated (Fig. 2F). In summary, 11 cell types 
were successfully classified by using the scRNA-seq data of 118887 cells. 

3.2. Screening of differentially expressed PRGs in GC 

To investigate the role of pyroptosis in GC, 51 PRGs were extracted 
from the Molecular Signatures Database and published literature [23]. 
The results of Venn diagram produced the 9 overlapping differentially 
expressed PRGs between the PRGs and marker genes (Fig. 3A). The 
expression of 9 PRGs (CHMP2A, CHMP4B, CYCS, GZMB, HMGB1, IL1B, 
IRF1, GPX4 and PYCARD) was investigated in GC at single cell level and 
presented with violin plots (Fig. S2) and t-SNE distribution (Fig. S3), 
from which we can find that most of PRGs were enriched in 
immune-related cells. In addition, the heatmap shown the expression of 
9 differentially expressed PRGs in each cell type (Fig. 3B). Notably, 
CHMP4B and CHMP2A are significantly upregulated in cancer cells; 
GZMB and IRF1 show increased expression in T cells; IL1B, PYCARD, 
and GPX4 are significantly upregulated in Myeloid cells. Additionally, 
GPX4 also shows increased expression in Mast cells and Neuroendocrine 
cells. HMGB1 is upregulated in Endothelial cells; IL1B is increased in 
Non-classical monocytes, and CYCS is upregulated in Neuroendocrine 
cells. These analyses will help to better understand the mechanisms of 
action of PRGs in gastric cancer and their specific roles in different cell 
types (Fig. S2 and Table S2). The results of GO analysis indicated that the 
9 PRGs mainly exerted its role on the regulation of immune cells (Fig. 3C 
and Table 1). Furthermore, the PRGs not only acted the role of pyrop
tosis, but also affected the process of cell apoptosis and necroptosis by 
the KEGG analysis (Fig. 3D and Table 1), which was in consistent with 
previous studies [28]. 
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3.3. Scoring the cell type based on the expression of 9 PRGs 

Due to the critical roles of pyroptosis in tumor progression, we scored 
each cell on the basis of 9 PRGs expression by using the ‘AUCell’ func
tion. The t-SNE distribution displayed the pyroptosis score of each cell 
(Fig. 4A). We compared the PRG activity among different cell types, with 
Myeloid cells and monocytes exhibiting higher PRG activity, while 
CD8 + NKT-like cells displayed the lowest activity (Fig. 4B). Then, we 
divided the cells into two groups (high-pyroptosis and low-pyroptosis) 
according to the median value of pyroptosis score. The t-SNE offered a 
visual distribution of two groups at single cell level, from which we can 
learn that high-pyroptosis of cell mainly enriched in the cancer cells, 
myeloid cells and non− classical monocytes (Fig. 4C). Volcanic plot 
presented the DEGs between the GC and adjacent normal tissues through 
analyzing the transcriptome RNA sequencing from TCGA (Fig. 4D). The 
1209 DEGs in high-pyroptosis group were screened through comparing 
with the low-pyroptosis group. Next, 152 overlapping DEGs were ob
tained after comparing the DEGs and 1209 DEGs in high-pyroptosis 
group (Fig. 4E). The results of GO and KEGG analysis indicated that 
152 overlapping DEGs mainly regulated the recruitment and viability of 
immune cells by regulating classical signaling pathways including TNF 
pathway and NF-kappa B pathway, thereby accelerating the progression 
of GC (Fig. 4F). Therefore, these 152 overlapping DEGs were chosen to 
further analysis. 

3.4. Construction and validation of prognostic models based on PRGs 

Univariate Cox analysis was first utilized to screen the values of 152 
overlapping DEGs for the prognostic prediction of GC patients. Then, 
LASSO and multivariate Cox analysis were used to screen out the 6 
prominent genes (C12orf75, VCAN, RGS2, MKNK2, SOCS3 and 
TNFAIP2), and calculate the coefficient of each gene in formula of risk 
score (Figs. 5A and 5B). Risk score = (0.135316 × VCAN) 
+ (− 0.29069 × MKNK2) + (0.148085 × RGS2) + (0.185646 × SOCS3) 
+ (− 0.2081 × TNFAIP2) + (0.166387 × C12orf75). We also analyzed 
the correlation of each gene with GC prognosis and plotted KM curves, 
finding that all six genes are related to prognosis of patients (Fig. S4). 
Subsequently, GC patients were classified into two groups on the basis of 
the median value of all patients’ risk scores. The heatmap displayed the 
expression of C12orf75, VCAN, RGS2, MKNK2, SOCS3 and TNFAIP2 in 
two groups (Fig. 5C). As shown in Figs. 5D and 5E, the proportion of 
death was higher in the GC patients with higher risk scores. In addition, 
patients with higher risk scores had shorter long-term survival time 
compared with patients with lower risk scores by using Kaplan-Meier 
survival analysis (Fig. 5F). Then, the risk signature was utilized to pre
dict the long-term survival probability of GC patients. The accuracy of 
signature for the predictive probability of 1-, 3- and 5-year all out
stripped 0.65 in GC (Fig. 5G). A nomogram comprised of risk signature 
and various clinicopathological features was successfully constructed to 

predict the survival time of GC patients (Fig. 5H). The validity and ac
curacy of the nomogram for the predictive probability of 1-, 3- and 5- 
year were validated through calibration curve (Fig. 5I). Further, a 
webserver (https://pumc.shinyapps.io/GastricCancer/) was con
structed to make full use of the nomogram in prognostic prediction for 
GC patients. The quick response code provided a convenient entrance 
using the online tool in clinical practice for physicians (Fig. 5J). For the 
rigor of this study, the Asian Cancer Research Group (ACRG) cohort 
(GSE62254) was utilized to validate the clinical values of signature. The 
signature not only well distinguished the OS and DFS between the two 
groups, but also precisely forecasted the 1-, 3-, and 5-year OS and DFS of 
GC patients (Figs. 5K and 5L). In summary, we preliminarily investi
gated and validated the direction and value of using PRGs to predict the 
prognosis of GC patients in clinical translation. 

3.5. GSEA and functional enrichment analyses 

The significance of survival time in the two groups meant that there 
was a great heterogeneity of the genome between them. GSEA analysis 
was used to clarify the underlying mechanisms in two groups (Table S3). 
As shown in Figs. 6A and 6B, classical signaling pathways were involved 
in the high-risk group, including activation of cell cycle and oxidative 
phosphorylation and inhibition of MAPK pathway, JAK-STAT pathway, 
TGF-β pathway, PD-1 signaling, Ecm receptor interaction, focal adhe
sion, cell adhesion molecules cams, cytokine cytokine receptor inter
actior and pathways in cancer. In addition, the results of GO analysis 
also proved that DEGs in two groups greatly regulated the biological 
process and various cell functions to aggravate the tumor development 
(Figs. 6C and 6E). The data of KEGG analysis validated the profound 
effects of DEGs in two groups on these critical signaling pathways 
(Figs. 6D and 6F), which was finally reflected in the prognostic disparity 
between the two groups of GC patients. 

3.6. Estimation of tumor immune microenvironment 

The relationship of tumor immune microenvironment and risk 
signature was also investigated. As shown in Fig. 7A, the risk scores were 
negatively related to the immune clearance, while positively related to 
the immunosuppression of various immune cells, such as CD8+ T cells 
decreased with the risk scores increased. Furthermore, the results of 
correlation between the 6 PRGs and immune cells were presented in the 
Fig. 7B. VCAN was mainly positive correlations to M2 macrophages and 
negative correlations to the activation of dendritic cells. While C12orf75 
and TNFAIP2 were mainly positive correlations to M0 and M1 macro
phages. RGS2 was a positive correlation to mast cells resting. And 
MKNK2 was negative correlations to activation of mast cells. SOCS3 was 
negative to function of memory B cells. The data revealed that the 6 
PRGs that constructed the risk signature profoundly regulated the im
mune microenvironment of GC. The somatic mutation profile was 

Fig. 1. The analysis flow of this study.  
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Fig. 2. Identification of cell type by scRNA-seq analysis. A T-SNE distribution of 32 independent cell clusters. B T-SNE distribution of cell types identified by marker 
genes. C The total number of each cell type identified by marker genes. D The distribution of cell types in different specimens. E Violin plots represent the expression 
levels of the marker genes for the eleven cell types. F Bubble diagram shows the top 10 marker genes in each annotated cell types. 
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detected in the total samples and two groups. From the integrated 
samples, the TTN, TP53, MUC16, ARID1A and LRP1B were the top five 
frequently mutated genes (FMGs) in GC (Fig. S5A). TTN and TP53 were 
both the top two FMG in two groups. However, the MUC16, ARID1A and 
CSMD3 were the resting three FMG of top five in high-risk group 
(Fig. S5B). LRP1B, MUC16 and SYNE1 were the FMG of top five in low- 
risk group (Fig. S5C). 

3.7. The clinical application of risk signature in GC 

Lack of typical symptoms and the low prevalence of screening result 

in a low diagnosis rate of early-stage GC in China [2]. This phenomenon 
warranted postoperative adjuvant chemotherapy and the use of immune 
checkpoint inhibitors (ICIs) for comprehensive treatment. Patients with 
low risk scores were often good response to 5 − Fluorouracil, lapatinib, 
methotrexate and paclitaxel. While patients with high risk scores were 
more sensitive to cisplatin treatment (Fig. 8A). In addition, the 
increasing expression of VCAN, MKNK2, SOCS3 and TNFAIP2 often 
meant the elevation of CD274 in GC (Fig. 8B). Similarly, the BTLA, VSIR, 
CD200, CD200R1, CD244, CD276, CD28, CD40, CD40LG, CD48, CD80, 
CD86, HAVCR2, ICOS, LAIR1, NRP1, PDCD1LG2, TNFRSF4, TNFRSF8, 
TNFRSF9, TNFSF14, TNFSF18 and TNFSF4 were significantly 

Fig. 3. Differentially expressed pyroptosis-related genes (PRGs) in gastric cancer at single cell level. A Venn diagram of differentially expressed PRGs and marker 
genes. B Heatmap showed the expression of 9 PRGs in each annotated cell types. C The GO analysis of the differentially expressed PRGs. D The KEGG analysis of the 
differentially expressed PRGs. 
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upregulated in high-risk group, while LGALS9, TNFRSF14 and 
TNFRSF18 were increased in low-risk group (Fig. 8C). The above data 
revealed that the risk signature contained 6 PRGs can be used to guide 
the therapy selection for GC patients in the foreseeable future. 

3.8. Validation of PRGs in specimens and its correlation with immune cell 
infiltrations in GC 

We detected the expression of VCAN, TNFAIP2, RGS2, MKNK2, 
SOCS3 and C12orf75 in the GC by using tissue array. As shown in  
Figs. 9A and 9B, VCAN, TNFAIP2 and SOCS3 were greatly elevated in the 
GC tissues while RGS2 and MKNK2 were decreased in the tumor samples 
via IHC staining. There was no significant difference in C12orf75 be
tween GC tissues and adjacent tissues, probably due to the limited 
number of samples (Fig. 9A). Further, by integrating the clinical infor
mation of the sample and the data on PRGs’ expression, we found that 
patients with higher expressions of VCAN frequently predicted worse T 
and AJCC stage; higher expression of TNFAIP2 and SOCS3 usually meant 
worse AJCC stage; lower expressions of MKNK2 often forecasted worse T 
stage and advanced clinical stage and lower expressions of RGS2 
generally signified worse AJCC stage of GC (Table 2). The close re
lationships between 5 PRGs and clinicopathological characteristics also 
verified the logic and accuracy of the pyroptosis-related signature in 
predicting the survival time of GC patients. As the abovementioned 
exploration of the potential relationship between PRGs and immune cell 
infiltrations, we simultaneously detected the infiltrations of regulatory T 
cells (Tregs) (FoxP3) and M2 type of tumor-associated macrophages 
(TAMs) (CD163) and the expression of CD274 in tumor cells in tissue 
microarray. The results indicated that VCAN was positively related to 
the infiltrations of Tregs and M2 TAMs in GC TME and the expression of 
CD274 in tumor cells (Figs. 9C and 9D). However, TNFAIP2, RGS2, 
MKNK2, SOCS3 and C12orf75 were not significantly associated with the 
Tregs and M2 TAMs in TME and the expression of CD274. The above
mentioned data not only demonstrated that PRGs are closely related to 
the clinicopathology of GC patients but also that high expression of 
VCAN is positive to the immunosuppressive TME of GC. 

4. Discussion 

Cell pyroptosis characterized by inflammasome is a Gasdermin- 
dependent programmed cell death and can release plenty of inflamma
tory factors to cause inflammatory responses [9,29]. The role of cell 
pyroptosis in tumors is complex and dynamic [30,31]. On the one hand, 
inflammasomes can induce pyroptosis of tumor cells and inflammatory 
response, thereby inhibiting the proliferation of tumor cells. On the 
other hand, the cumulative effect of inflammasomes can also form an 
appropriate TME for tumor cells and exert a role in promoting tumor 
progression. Therefore, the function of cell pyroptosis in the develop
ment of GC needs to be urgently explored. 

GC is the most common malignant tumor of the digestive system, 
which seriously threatens human health [1,32]. Its incidence is closely 
related to Helicobacter pylori infection, heredity, high nitrite diet, envi
ronmental pollution and other factors [33]. The lack of typical symp
toms and the low prevalence of screening result in a low diagnosis rate of 
early-stage GC (about 10%) [34]. At the same time, there is a lack of 
biomarkers related to treatment response and prognostic predictions, 
and the survival time of patients is dismal [35]. Nowadays, with the 
in-depth investigation of oncogene sequence and pathogenesis, 
gene-based targeted precision medicine has become the primary treat
ment for GC, especially for advanced and recurrent GC [36,37]. Hence, 
the identification of effective biomarkers is crucial to boost the accuracy 
of prognostic prediction and to select the sensitive treatment strategies 
for GC patients. 

scRNA-seq is a cutting-edge technology that reveals the tran
scriptome alterations of cells at the single cell level. It has unique ad
vantages in exploring the heterogeneity of cell populations and 
exploring cell types related to tumorigenesis, development and metas
tasis [15,16]. GC-related cells with different molecular markers were 
clustered by scRNA-seq to identify subgroups that may be associated 
with poor prognosis and drug resistance in patients [16]. In the explo
ration of TME, it is possible to ascertain immune cell subsets related to 
immune evasion and identify novel promising immunotherapy targets in 
GC [17]. The rapid development of scRNA-seq enables researchers to 
better understand the heterogeneity of cells in GC and elucidate the 
complex mechanisms of tumor development and metastasis, providing 
new perspectives for establishing precise treatment strategies for GC. 
The aforementioned facts demonstrated the clinical significance of uti
lizing scRNA-seq and transcriptome RNA-seq to investigate the under
lying mechanism of cell pyroptosis in GC and identify powerful 
biomarkers to predict prognosis and treatment response in GC. 

The scRNA-seq data from 24 GC patients was obtained from 
GSE183904 dataset after strictly screening with quality control. 33 cell 
clusters were successfully classified into 11 cell types after annotation. 
Then, 9 overlapping differentially expressed PRGs between the PRGs 
and marker genes were selected to further detect at the single-cell level 
in GC. CHMP2A and CHMP4B were specifically enriched in the cancer 
cells and may also exert critical roles in GC in addition to other tumors 
[38–41]. The results of enrichment analysis validated the hypothesis 
that 9 differentially expressed PRGs had effects on signal transduction 
and functional alterations of GC. Due to the critical roles of 9 differen
tially expressed PRGs in tumor progression, we scored each cell based on 
the expression of 9 PRGs. In this study, our primary focus was on 
comparing pyroptosis scenarios among different cell types in gastric 
cancer tissues, with an emphasis on the pyroptosis states of cell groups. 
Moving forward, we intend to extend our focus to the pyroptosis con
ditions of individual cells within each cell population in the future. The 
1209 DEGs in high-pyroptosis group were screened through comparing 
with the low-pyroptosis group. Next, 152 overlapping DEGs were 

Table 1 
The results of Venn diagram between differentially expressed genes in diverse cell types and pyroptosis-related genes.  

Ontology ID Description GeneRatio BgRatio pvalue p.adjust 

BP GO:0042129 regulation of T cell proliferation 4/9 174/18800 8.61e-07 0.0004 
BP GO:0002819 regulation of adaptive immune response 4/9 188/18800 1.17e-06 0.0004 
BP GO:0042098 T cell proliferation 4/9 204/18800 1.63e-06 0.0004 
CC GO:0000815 ESCRT III complex 2/9 11/19594 1.03e-05 0.0003 
CC GO:1904930 amphisome membrane 2/9 11/19594 1.03e-05 0.0003 
CC GO:0044753 amphisome 2/9 13/19594 1.46e-05 0.0003 
MF GO:0070851 growth factor receptor binding 2/9 139/18410 0.0020 0.0400 
MF GO:0005178 integrin binding 2/9 156/18410 0.0025 0.0400 
MF GO:0050786 RAGE receptor binding 1/9 10/18410 0.0049 0.0400 
KEGG hsa04217 Necroptosis 5/9 159/8164 3.11e-07 2.34e-05 
KEGG hsa04625 C-type lectin receptor signaling pathway 3/9 104/8164 0.0002 0.0030 
KEGG hsa04668 TNF signaling pathway 2/9 112/8164 0.0063 0.0364 
KEGG hsa04210 Apoptosis 2/9 136/8164 0.0092 0.0449 
KEGG hsa04621 NOD-like receptor signaling pathway 2/9 184/8164 0.0164 0.0647  
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obtained after integrating the DEGs between the GC and adjacent 
normal tissues and 1209 DEGs in the high-pyroptosis group. These 152 
overlapping DEGs were the panel to establish a pyroptosis-related 
signature. Univariate Cox, LASSO and multivariate Cox analysis were 
utilized to screen out the 6 prominent genes (C12orf75, VCAN, RGS2, 

MKNK2, SOCS3 and TNFAIP2) and construct the risk score formula. GC 
patients were classified into two groups on the basis of the median value 
of all patients’ risk scores. Furthermore, the signature well distinguished 
the survival disparity between the two groups of GC patients and 
remedied the limitations of the clinical practice of TNM staging [42]. In 

Fig. 4. Scoring the cell type based on the expression of PRGs. A T-SNE distribution of pyroptosis score of cells by using AUCell function. B Violin plots of pyroptosis 
score of cell type. C T-SNE distribution of high-pyroptosis and low-pyroptosis group. D Volcanic plot of differentially expressed genes (DEGs) between GC and 
adjacent tissues. E Venn diagram of DEGs between GC and adjacent tissues and specifically expressed genes in high-pyroptosis group. F The results of GO and KEGG 
analysis of DEGs in high-pyroptosis group. 
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Fig. 5. Construction and validation of prognostic models based on PRGs. A LASSO Cox regression analysis of the association between deviance and log(λ). B LASSO 
Cox regression analysis of the association between coefficients of genes and log(λ). C Heatmap showed the differences of 6 PRGs between high risk and low risk 
patients. D The survival status of GC patients ranked by risk score. E The survival time of GC patients ranked by risk score. F Kaplan-Meier analysis between high-risk 
groups and low-risk groups. G Time-dependent ROC curve of risk score predicting the 1-, 3-, and 5-year overall survival (OS). H Details of the nomogram. I The 
calibration curve for predicting 1-, 3-, and 5-year OS. J The quick response code of online dynamic nomogram K The OS discrepancy between the high-risk and low- 
risk groups and the ROC curve of risk score predicting the 1-, 3-, and 5-year OS using the GSE62254 dataset. L The DFS discrepancy between the high-risk and low- 
risk groups and the ROC curve of risk score predicting the 1-, 3-, and 5-year DFS using the GSE62254 dataset. 

J. Li et al.                                                                                                                                                                                                                                         



Computational and Structural Biotechnology Journal 23 (2024) 990–1004

999

Fig. 6. GSEA analysis and enrichment analyses of differentially expressed genes between high-risk groups and low-risk groups. A-B The GSEA analysis of differ
entially expressed genes between high-risk groups and low-risk groups. C The results of GO analysis. D The results of KEGG analysis. E The results of GO analysis. F 
The results of KEGG analysis. 
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Fig. 7. The correlation between the risk signature and tumor immune microenvironment. A The correlation between the risk score and infiltrated immune cells. B 
The correlation between the 6 PRGs and infiltrated immune cells. 
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addition, an online tool was built to help physicians more easily predict 
the survival probability of GC patients in clinical practice. The 
discrepancy in the activation and inhibition of signal pathways 
explained the differences in the survival time between the two groups at 
the molecular mechanism level. In addition, high risk scores often 
indicated an immunosuppressive TME for promoting tumor progression 
whereas low risk scores meant an unfavorable TME for repressing tumor 
development. The discrepancy in the mutation profile between the two 
groups can be used to guide the treatment methods and drug selection 
for GC patients. As the aforementioned data, chemotherapy was essen
tial for advanced-stage GC patients who accounted for a high proportion 
of China [2]. Nowadays, the emergence of ICIs represented by PD-L1 
was the first-line treatment for advanced-stage GC patients, but only a 
few patients can benefit from the treatment of ICIs [4,43]. Fortunately, 
this signature can be exploited to guide the selection of sensitive 
chemotherapy drugs and appropriate ICIs for GC patients, thereby 
increasing the survival time of patients. For the rigor and accuracy of the 
study, we detected the expression of VCAN, TNFAIP2, RGS2, MKNK2, 
SOCS3 and C12orf75 in 54 paired GC tissues and adjacent normal tissues 
by IHC staining. Consistent with the transcriptome expression in the 
TCGA database, VCAN, TNFAIP2 and SOCS3 were greatly elevated in the 
GC tissues while RGS2 and MKNK2 were decreased in the tumor 

samples. Besides, the expression level of each PRG was closely related to 
the clinical pathological characteristics of GC patients. Abundant studies 
have demonstrated that immunosuppressive TME was an indispensable 
factor in immune evasion and malignant progression of tumor cells. 
When PD-L1 on the surface of tumor cells binds to PD-1 on T cells, the 
proliferation and function of T cells are inhibited, thereby negatively 
regulating the anti-tumor immune response and escaping from immune 
clearance [44]. The critical role of TAMs was widely investigated in GC 
progression [45]. M2 TAMs have been reported to significantly enhance 
malignant development and immune evasion of GC. Tregs are one of the 
CD4+ T cells, which can inhibit the inflammatory response of TME by 
inhibiting the function and migration of immune cells, secreting inhib
itory cytokines and destroying metabolism [46]. Xia et al. found that 
VCAN was indirectly positively correlated with more infiltrations of 
CD8+ T cells in melanoma [47]. Further, VCAN was reported to be 
elevated in GC tissues and enhance cell proliferation and metastasis of 
GC [48]. Nevertheless, the correlation between VCAN and immune cell 
infiltrations in GC TME remains blank. Hence, we try to explore the 
potential relationship between PRGs and immune cell infiltrations in GC 
TME. Surprisingly, tissues with high expression of VCAN frequently 
presented high expression of CD274, CD163 and FoxP3, which meant a 
potential correlation between VCAN and CD274, M2 TAMs and Tregs in 

Fig. 8. Drug sensitivity and immune infiltration level analysis based on the risk model. A The results of drug sensitivity analysis between high-risk and low-risk 
groups. B The correlation between the PRGs and CD274. C The expression of immune checkpoints between high-risk and low-risk groups. 
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Fig. 9. The expression of MKNK2, RGS2, TNFAIP2, VCAN, SOCS3, C12orf75, CD274, CD163 and FoxP3 in GC. A The expression of MKNK2, RGS2, TNFAIP2, VCAN, 
SOCS3 and C12orf75 in 54 paired GC and adjacent normal tissues. B The representative IHC images of MKNK2, RGS2, TNFAIP2, VCAN and SOCS3 in GC and adjacent 
normal tissues (scale bar: 50 µm and 20 µm). C The representative IHC images of VCAN, CD274, CD163 and FoxP3 in the same GC tissues (scale bar: 20 µm). D The 
correlation between VCAN and CD274, CD163 and FoxP3 in the GC tissues. Student’s t-test was used to determine statistical significance: * ** p < 0.001. 
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GC TME. VCAN would be a potent target in immunotherapy by reversing 
the immunosuppressive TME of GC. Additionally, in vivo and in vitro 
experiments and exploration of molecular mechanisms of PRGs in GC 
need to be gradually implemented. 

5. Conclusions 

In summary, we constructed a pyroptosis-related signature to 
potently predict the survival time and treatment response of GC by 
integrating scRNA-seq and transcriptome RNA-seq data. This study may 
guide the research orientation of cell pyroptosis in GC, the selection of 
chemotherapy drugs and ICIs for patients and VCAN as a potential target 
of immunotherapy in the future. 
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