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Aim: Acquired molecular changes in Lynch syndrome (LS) colorectal tumors have been largely unstudied.
We identified methylated DNA markers (MDMs) for discrimination of colorectal neoplasia in LS and de-
termined if these MDMs were comparably discriminant in sporadic patients. Patients & methods: For LS
discovery, we evaluated DNA from 53 colorectal case and control tissues using next generation sequenc-
ing. For validation, blinded methylation-specific PCR assays to the selected MDMs were performed on 197
cases and controls. Results: OPLAH was the most discriminant MDM with areas under the receiver oper-
ating characteristic curve ≥0.97 for colorectal neoplasia in LS and sporadic tissues. ALKBH5, was uniquely
hypermethylated in LS neoplasms. Conclusion: Highly discriminant MDMs for colorectal neoplasia in LS
were identified with potential use in screening and surveillance.

First draft submitted: 2 April 2020; Accepted for publication: 26 October 2020; Published online:
22 December 2020

Keywords: biomarkers • colorectal neoplasms • colorectal neoplasms • colorectal prevention and control • hereditary
nonpolyposis • DNA methylation • colorectal physiology

Lynch syndrome (LS) is the most common form of familial colorectal cancer (CRC), with population prevalence
of 1 in 280 [1]. LS accounts for at least 3% of all newly diagnosed CRC cases and nearly 10–20% of early-onset
CRC [2,3]. LS results from germline inactivation of mismatch repair (MMR) genes MLH1, MSH2, MSH6, PMS2
or loss of expression of MSH2 due to germline deletion in the EPCAM gene, increasing the risk of developing
CRC and extra-colonic cancers including endometrial, small bowel, ureteral, renal pelvis, gastric, hepatobiliary and
ovarian [4]. Without effective screening and surveillance, the lifetime risk of CRC in individuals with LS ranges
between 10 and 80% and differs based on specific MMR alteration [5]. An international multicenter collaboration
which aimed to prospectively determine the incidence of cancer and survival stratified by MMR pathogenic variant,
age and gender showed that cumulative incidences at 75 years for CRC were 46, 43 and 15% in pathogenic MLH1,
MSH2 and MSH6 carriers; for endometrial cancer 43, 57 and 46%; for ovarian cancer 10, 17 and 13%; for upper
gastrointestinal (gastric, duodenal, bile duct or pancreatic) cancers 21, 10 and 7%; for urinary tract cancers 8, 25 and
11%; for prostate cancer 17, 32 and 18%; and for brain tumors 1, 5 and 1%, respectively [6]. Except for endometrial
and prostate cancer, typical LS cancers were not diagnosed in pathogenic PMS2 carriers. Upper gastrointestinal,
urinary tract and prostate cancers occurred predominantly at older ages and ovarian cancer occurred predominantly
premenopausally [6], which is in contrast to ovarian cancers in carriers with a pathogenic variant in BRCA 1 and
BRACA 2 genes.
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The LS phenotype is characterized by a predominance of cancers on the right side of the colon and a predisposition
for synchronous and metachronous CRCs [3]. Accelerated progression through the adenoma–carcinoma sequence or
carcinoma arising from non-neoplastic crypt foci occurs in LS due to MMR deficiency that compromises the ability
to repair base-pair (bp) mismatches in DNA and confers predisposition to CRC [3,7,8]. Consequently, screening and
surveillance guidelines recommend colonoscopy every 1–2 years [9], and such intensive surveillance has been found
to be effective in reducing CRC mortality in LS [9,10]. However, CRCs develop within surveillance programs [11],
related to accelerated carcinogenesis, operator-dependent colonoscopy with variable adenoma detection rates [12–

14], suboptimal effectiveness of current approaches to detect proximal lesions [10,15–19], and reported suboptimal
compliance rates of surveillance colonoscopy in LS patients (as low as 50%) [20].

For patients with hereditary risk for CRC, such as LS, there are no current options for effective non-invasive
screening. Accurate noninvasive detection tools may have value as complements to colonoscopic surveillance in
LS kindreds and mitigate the impact of noncompliance to colonoscopy. Such tests would target markers which
highly discriminate the presence of CRC and precursor lesions. Unlike the well-established germline pathogenic
variants in MMR which help identify the syndrome, much less is known about acquired molecular alterations
in precursor colorectal neoplasms which might serve as early detection markers for screening and surveillance.
However, several studies have demonstrated differences in the profiles of acquired genetic and epigenetic changes
in colorectal neoplasms between LS and sporadic patients [21–24].

A multi-target stool DNA test (MT-sDNA), clinically available as Cologuard R© (Exact Sciences, WI, USA), has
emerged as an accurate noninvasive molecular approach for detection of sporadic CRC and high risk precancers,
and is approved by the US FDA for average risk population-based screening. MT-sDNA targets two aberrantly
methylated genes (BMP3 and NDRG4) and seven KRAS mutations, normalized to β-actin, plus hemoglobin [25]. In
two blinded cross-sectional screening studies [26,27], the test achieved point sensitivities of 94–100% for early stage
CRC and 40–42%, 62–66% and 68–80% for adenomas >1 cm, >2 cm and >3 cm, respectively. Simple model
estimates suggest that cumulative polyp detection rates by MT-sDNA with repeated testing at 3 year intervals
may compare favorably to those of colonoscopy done at 10 year intervals [28]. However, it is not known whether
MT-sDNA would perform similarly in detecting colorectal neoplasms from LS patients. Based on a preliminary
study [29], the methylated DNA markers BMP3 and NDRG4 targeted by the MT-sDNA panel did not appear to
discriminate CRC or adenomas in LS tissues as well as they did in sporadic colorectal tissues.

Since the development of the MT-sDNA test, our group has identified highly discriminant methylated DNA
markers (MDMs) for detection of sporadic colorectal neoplasia based on extensive unbiased next generation
sequencing and tissue validation [30,31]. Using selected MDM candidates from this effort, we found that a panel
of MDMs alone applied to stool can detect CRC and high-grade dysplasia in inflammatory bowel disease patients
with sensitivities and specificities above 90% [30]. These novel MDMs, however, have not been tested on colorectal
neoplasms from LS patients and, to our knowledge, sequencing-based discovery to identify MDM candidates in
LS has not been done.

Thus, the aims in the present study were to identify MDM candidates for detection of colorectal neoplasia
in LS based on discovery by methylome sequencing with subsequent validation in independent tissues, evaluate
discrimination accuracy for colorectal neoplasms by top candidate MDMs selected from the LS discovery and from
our prior discovery in sporadic tissues using well-characterized colorectal tissues from LS and sporadic patients, and
compare discrimination accuracy for the detection of colorectal neoplasia in LS and sporadic colorectal tissues by
these novel MDM candidates with that of methylated BMP3 and NDRG4, the MDMs targeted by MT-sDNA.

Materials & methods
Study overview
This investigation comprised two sequential case-control studies, both using well-characterized archival paraffin
embedded colorectal tissues. In the first, candidate MDMs to discriminate colorectal neoplasia in LS were identified
by reduced representation bisulfite sequencing (RRBS) on DNA extracted from well-characterized case (adenomas
and CRCs) and control (normal appearing mucosa) tissues. In the second, a blinded biological validation study was
conducted. Top MDM candidates from the above discovery effort in LS samples, selected novel MDM candidates
from a prior whole methylome discovery effort in sporadic samples [30,31], and the two MDMs (BMP3 & NDRG4)
in the MT-sDNA test panel were assayed in an independent set comprising case and control tissues from both LS
and sporadic patients. This study was approved by the Mayo Clinic Institutional Review Board.
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Study population & sample sources
All patient tissues from this study were obtained from Mayo Clinic archives. By convention [2,3], LS patients were
classified as “definite” (genetically-confirmed) if testing showed a germline pathogenic variant in MMR genes
(MLH1, MSH2, MSH6 and PMS2) as well as the gene EPCAM. LS patients were classified as “suspected” if tissue
immunohistochemistry (IHC) showed absence of MSH2, MSH6 and/or PMS2 proteins and germline testing was
not available to confirm a pathogenic variant in the MMR genes. Cases with only tissue IHC showing absence of
MLH1 but lacking confirmation of a germline pathogenic variant were excluded since these may represent biallelic
somatic methylation induced silencing of the MLH1 promoter. Given the retrospective nature of the study, we had
to rely on data available in the medical record.

Discovery

Formalin-fixed paraffin-embedded (FFPE) colorectal samples were selected from the institutional tissue registries
at Mayo Clinic (Rochester, MN, USA) and were reviewed by an expert gastrointestinal pathologist (T.C.S.) to
confirm correct histological classification. LS case tissues comprised CRCs (all adenocarcinomas) and adenomas
(classical or sessile serrated ≥1 cm); LS control tissues included histologically normal colorectal epithelium from
LS patients. An effort was made to match cases and controls on age and sex. Tissue specimens had been collected
after informed consent from patients undergoing colonoscopy or colectomy at Mayo Clinic and were procured at
the time of these procedures. The Mayo Component Laboratory contributed de-identified buffy coat samples to
serve as leukocyte controls.

Biological validation

An independent set of case and control FFPE colorectal tissues from LS patients plus a set of case and control FFPE
tissues from sporadic patients were obtained from the Mayo Clinic Tissue Registry and histologically confirmed as
above. Case and control definitions were per Discovery set.

Technical procedures
Sample processing

Following micro-dissection of FFPE tissues, DNA was extracted using the QIAamp FFPE DNA Tissue Kit (Qiagen,
Hilden Germany). Buffy coat sample DNA was purified with the QIAamp DNA Mini kit. Quantification of total
DNA was performed using the Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific, MA, USA).

Reduced representation bisulfite sequencing

Library preparation
DNA samples were repurified and size selected (>500 bp) using 0.6X AMPure XP (Beckman Coulter, CA, USA).
Sequencing libraries were prepared as we have previously described [30,32,33].

Sequencing & bioinformatics
Sequencing was performed by the Mayo Medical Genomics Facility using the HiSeq 2000 (Illumina, CA, USA).
Reads were processed by Illumina pipeline modules for image analysis and base calling. Secondary analysis was per-
formed using SAAP-RRBS [29]. Briefly, reads were cleaned-up using Trim-Galore and aligned to the GRCh37/hg19
reference genome build with BSMAP. Methylation ratios were determined by calculating C/(C+T) or conversely,
G/(G+A) for reads mapping to reverse strand, for CpGs with coverage ≥10× and base quality score ≥20.

PCR assays for tissue validation

Quantitative methylation-specific PCR
Primers for each marker were designed to target bisulfite-modified methylated CpGs within each target sequence.
A CpG agnostic region in the β-actin gene (ACTB) was used as a reference for total DNA. Designs were created
using either Methprimer software [34] or by manual methods. Assays were tested and optimized by quantita-
tive methylation-specific PCR on universally methylated and unmethylated genomic DNA controls. Annealing
temperatures were determined empirically.

FFPE sample DNA (purification described above) was bisulfite-converted using the Zymo EZ-96 DNA Methy-
lation kit (Zymo Research, CA, USA) and amplified (10 ng/marker) with SYBR Green dye (Thermo Fisher
Scientific) detection using the LightCycler 480 instrument and reagents (Roche Diagnostics, IN, USA).
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Quantitative allele specific real-time target & signal amplification
Several of our sporadic MDM assays had been previously configured in the quantitative allele specific real-time
target & signal amplification format, which is a similar amplification-based platform to quantitative methylation-
specific PCR and run on the same instrument [35]. These assays were also optimized using the same controls and
ACTB as a reference gene. Sample DNA was prepared and used as above. Details of the assay methods have been
reported [33].

Statistical methods
Discovery

From the RRBS data, individual CpGs which had a minimum of 10× vertical read coverage were ranked by
hypermethylation ratio, namely the number of methylated cytosines at a given locus over the total cytosine count
at that site. For cases, the ratios were required to be ≥20% but ≤5% for controls. CpGs that did not meet
these criteria were discarded. Subsequently, candidate CpGs were binned by genomic location into differentially
methylated regions (DMRs) ranging from approximately 60–200 bp in length with a minimum cut-off of five CpGs
per region. DMRs with excessively high CpG density (>30%) were excluded to avoid GC-related amplification
problems in the validation phase. For each candidate region, a 2D was created which compared individual CpGs in
a sample-to-sample fashion for both cases and controls. These were then compared back to the reference sequence
to assess whether neighboring CpGs had been discarded during the initial filtering. From this subset of regions, final
selections required coordinated and contiguous hypermethylation of individual CpGs across the DMR sequence
on a per sample level in cases. Conversely, control samples had to have at least tenfold less methylation than cases
and the CpG pattern had to be more random and less coordinated. The most discriminant DMRs meeting these
criteria were selected as candidate MDMs for testing in subsequent biological validation. Assuming an average
read depth of 40 per CpG, 18 patients per group provided 80% power to detect a minimum difference of 4% in
methylation rates (e.g., 2 vs 6%) with a two-sided significance level of 5%.

MDMs from previous sporadic discovery/validation studies & MT-sDNA

For the biological validation, we also selected 12 additional markers to evaluate in the validation set. These
included ten high performing methylated markers (ARHGEF4, SFMBT2 897, OPLAH, LRRC4, ELMO1, VAV3,
DAB2IP, PDGFD, CHST2 7889, AK055957) from earlier RRBS and independent validation studies on sporadic
colorectal tissue samples that had not been assessed in the context of LS. Each of these MDMs had demonstrated
excellent discrimination (AUC 0.90–0.98) when comparing both sporadic CRC and adenoma to normal colonic
mucosa [30,31]. In addition, we tested two MDMs (BMP3 and NDRG4) incorporated into the FDA approved and
clinically available MT-sDNA (Cologuard R©, Exact Sciences) [25].

Biological tissue validation

Individual marker distributions were displayed using boxplots. Marker combinations were then studied using
recursive partitioning trees (rPart). Briefly, rPart was used to first select a single MDM that provided the greatest
separation between cases and controls (branch split). Once split, rPart searched for additional MDMs that provided
the greatest separation between cases and controls under each branch. The rPart technique was applied to the
entire MDM set, upon which an rPart predicted probability of colorectal neoplasia was calculated. Discrimination
accuracy was evaluated using the area under the receiver operating characteristic curve (AUC) with corresponding
95% confidence interval. The effect of age and sex on the diagnostic accuracy of MDMs and panels was investigated
by comparing stratified AUC values.

Results
Marker discovery in LS
Patient & lesion characteristics

For whole methylome sequencing by RRBS, we selected 53 well-characterized colorectal tissues from LS patients;
samples comprised 18 normal mucosa, 18 adenomas ≥1 cm and 17 adenocarcinomas. For discovery, 15/18 (83%)
of control, 10/18 (56%) of adenoma and 12/17 (71%) of CRC tissues came from LS patients classified as ‘definite’
and the remainder came from those classified as ‘suspected’. The clinico-pathologic characteristics are summarized
in Table 1.
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Table 1. Patient and lesion characteristics for discovery and validation phases.
Patient/lesion characteristic Discovery Biological validation

Lynch Sporadic Lynch

Normal mucosa:

n 18 35 23

Definite LS 15 (83%) n/a 13 (57%)

Age, median (IQR) 53 (44.8–62.5) 64 (53.5–71.5) 50 (37.5–57)

Sex, % female 61% 49% 57%

Advanced adenoma:

n 18 38 39

Definite LS 10 (56%) n/a 26 (67%)

Age, median (IQR) 57 (53.3–66.3) 64.5 (56–76.3) 59 (50.5–69)

Sex, % female 33% 40% 59%

Site, % proximal 55% 76% 51%

Tubular adenoma 18 13 37

Sessile serrated polyp 0 25 2

Adenocarcinoma:

n 17 36 26

Definite LS 12 (71%) n/a 14 (54%)

Age, median (IQR) 59 (54–71) 68.5 (57.8–80.5) 46.5 (36.5–58.8)

Sex, % female 41% 50% 46%

Site, % proximal 6159% 47% 46%

IQR: Interquartile range; LS: Lynch syndrome; n: Number of patients.

MDM candidates

Among DMRs observed, the nine that met pre-established filtering criteria were selected as candidate MDMs.
These candidates were located on USP44, STK32B, CBLN2, ADCY4, CNTFR, PITX1, ANTRX1, ALKBH5 and
ADM genes. For both CRC and adenomas, fold-change increases ranged from 13 to >200. Discrimination metrics
for each MDM selected are summarized in Supplementary Table 1.

Biological validation & comparison in colorectal tissues from LS & sporadic patients
In this study phase, the nine MDM candidates listed in Table 2 from the above LS discovery, ten MDM candidates
from prior sequencing on sporadic colorectal neoplasia (ARHGEF4, SFMBT2 897, OPLAH, LRRC4, ELMO1,
VAV3, DAB2IP, PDGFD, CHST2 7889, AK055957) and the two MDMs (BMP3 and NDRG4) in the MT-sDNA
test were assayed in blinded fashion on independent tissues not previously tested from LS and sporadic patients.

Patient & lesion characteristics

We evaluated 197 independent paraffin-embedded colorectal tissues, which included 88 from LS patients (23
normal mucosa, 39 advanced adenomas [37 classical, two sessile serrated) and 26 adenocarcinomas] and 109
from sporadic patients (35 normal mucosa, 38 advanced adenomas [13 classical, 25 sessile serrated] and 36
adenocarcinomas). In the LS validation set, 13/23 (57%) of normal, 26/39 (67%) of adenoma and 14/26 (54%)
of cancer tissues came from LS patients classified as ‘definite’ and the remainder from those classified as ‘suspected’.
The clinico-pathologic characteristics are shown in Table 1.

Marker distributions

Numerous MDM candidates from each discovery pathway showed excellent separation between normal mucosa
and colorectal neoplasms in tissues from both LS and sporadic patients, as illustrated with boxplots of OPLAH,
ARHGEF4, USP44 and STK32B (Figure 1A). With these MDMs, tissue levels were negligible or minimal in
normal mucosa and consistently elevated with substantial fold changes in both adenomas and cancers from LS and
sporadic patients.

In contrast, the degree of separation in tissue levels between normal and neoplastic tissues differed in LS and
sporadic groups with a few MDMs. Two candidate MDMs identified from the LS discovery effort, ALKBH5 and
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Figure 1. Box plot distributions of selected methylated DNA marker candidates in colorectal tissues from Lynch
syndrome and sporadic patients from biological validation phase. (A) MDMs showing similarly high neoplasm
discrimination across Lynch syndrome and sporadic patients. (B) MDMs showing relatively higher neoplasm
discrimination in Lynch syndrome patients. (C) MDMs showing relatively higher discrimination in sporadic patients.
A: Adenoma; C: Colorectal cancer; MDM: Methylated DNA marker; N: Normal.
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Table 2. Biological validation of methylated DNA marker candidates in independent colorectal tissues from Lynch
syndrome and sporadic patients.
Discovery method MDM Adenoma Cancer

Lynch Sporadic p-value Lynch Sporadic p-value

Lynch discovery PITX1 0.86 0.97 0.034 0.98 1 0.201

CBLN2 0.86 0.95 0.11 0.97 0.82 0.025

USP44 0.85 0.96 x0.066 0.96 0.97 0.671

STK32B 0.79 0.9 0.15 0.95 0.95 0.932

CNTFR 0.79 0.93 0.031 0.92 0.87 0.378

ALKBH5 0.68 0.44 0.015 0.89 0.45 �0.001

ADCY4 0.81 0.75 0.508 0.88 0.93 0.415

ADM 0.63 0.62 0.872 0.81 0.42 �0.001

ANTXR1 0.53 0.96 �0.001 0.71 0.79 0.378

Sporadic discovery ARHGEF4 0.89 0.97 0.127 0.99 0.97 0.554

SFMBT2 897 0.80 0.96 0.007 0.99 0.9 0.082

OPLAH 0.99 0.99 0.83 0.97 1 0.416

ELMO1 0.78 0.85 0.368 0.92 0.84 0.25

LRRC4 0.86 0.88 0.795 0.92 0.98 0.188

VAV3 0.73 0.95 0.001 0.87 0.89 0.829

DAB2IP 0.78 0.89 0.134 0.81 0.87 0.478

PDGFD 0.72 0.9 0.02 0.79 0.88 0.293

CHST2 7889 0.68 0.88 0.013 0.77 0.91 0.08

AK055957 0.62 0.87 0.003 0.62 0.76 0.192

MT-sDNA test BMP3 0.57 0.86 �0.001 0.77 0.8 0.746

NDRG4 0.60 0.93 �0.001 0.69 0.9 0.02

MDM: Methylated DNA marker; MT-sDNA test: Multi-target stool DNA test.

ADM, showed greater separation between tissue types in LS patients than in sporadic patients (Figure 1B); this was
particularly striking with ALKBH5, where levels were clearly higher in neoplasms than normal mucosa from LS
patients yet there was essentially no separation seen between tissue types from sporadic patients. Likewise, some of
the MDMs studied showed strikingly better separation between normal and neoplastic tissues in sporadic patients
than in LS patients, as exemplified in boxplots of BMP3 and CHST2 7889 (Figure 1C).

The degree of separation across tissue types for each MDM can also be illustrated by heat matrices, which show
individual MDM presence and signal intensity for each patient in case and control tissues (Figure 2). Overall
separation and differences in signal density between normal and neoplastic tissues are generally high for most
candidate MDMs across both LS patients (Figure 2A) and sporadic patients (Figure 2B). Distributions of these
MDMs were not significantly different on the basis of ‘suspected’ versus ‘definite’ LS; representative plots are shown
in Supplementary Figure 1.

Neoplasm discrimination

Discrimination for colorectal adenomas and CRC as assessed by AUCs is shown for each candidate MDM in
Table 2. Of the nine MDMs carried forward from the discovery phase in LS, AUCs >0.79 were observed on
biological validation in independent LS tissues with six MDMs for adenomas and eight MDMs for cancers;
eight MDMs were above this AUC threshold in sporadic adenomas and seven MDMs in sporadic cancers. Of
the ten MDMs selected from the prior discovery effort in sporadic tissues, four were above the AUC threshold of
>0.79 in LS adenomas and in cancers; all (100%) were above this threshold in sporadic adenomas and all except
AK055957 were above this AUC threshold for sporadic cancers. Individually, neither of the MT-sDNA MDMs
had AUCs >0.79 in LS neoplasms but both were above this threshold in sporadic neoplasms.

Overall, the individual MDM found to be most discriminant for adenomas and cancer in both LS and sporadic
patients was OPLAH. With OPLAH, the AUCs for adenomas were 0.99 (95% CI: 0.97–1.00) in LS and 0.99 (0.96–
1.00) in sporadic patients and for cancers were 0.97 (0.92–1.00) and 1 (0.99–1.00), respectively. Other candidate
MDMs found to be highly discriminant for adenomas and cancers in both LS and sporadic patients included
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Figure 2. Heat matrices: methylation intensity of methylated DNA marker candidates in independent colorectal
tissues from biological validation phase. (A) Lynch syndrome and (B) sporadic tissues. Increasing intensity of
yellow-red color spectrum in boxes indicates methylation strand counts in deciles above the 90th percentile values for
the control groups (histologically normal mucosa) of each candidate methylated DNA marker (rows) in each tissue
sample (columns). Black boxes indicate values falling below the 90th percentile in controls.

ARHGEF4, PITX1, USP44, LRRC4 and STK32B. A dramatic exception was ALKBH5, which as suggested by the
distributions in Figure 1B, was substantially and significantly more discriminant for both adenomas (p = 0.015)
and cancers (p < 0.001) in LS patients compared with sporadic patients (Table 2).

Within and across clinical groupings, the best candidate MDMs from the present LS and prior sporadic discovery
pathways were compared with the combination of BMP3 and NDRG4, the MT-sDNA MDMs (Figure 3). For the
combination of BMP3 and NDRG4, discrimination was better for sporadic than LS adenomas with respective AUCs
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Figure 3. Discrimination of selected methylated DNA marker candidates for colorectal neoplasia as assessed by
receiver operator curves. AUC in each graph are shown for OPLAH alone, a panel of novel methylated DNA markers
without OPLAH (ARHGEF4, LRRC4, ANTXR1, PITX1) and the combination of BMP3 + NDRG4 with (A) Lynch adenomas,
(B) Lynch cancers, (C) sporadic adenomas and (D) sporadic cancers.
AUC: Area under the curve.

of 0.89 and 0.65 (p = 0.003) and for sporadic than LS cancers with respective AUCs of 0.96 and 0.79 (p = 0.008),
which is consistent with our preliminary observations [29]. OPLAH alone showed superior discrimination for
neoplasia in all clinical groups compared with the combination of BMP3 and NDRG4. For LS adenomas, the AUC
was 0.99 for OPLAH versus 0.65 for the combination of BMP3 and NDRG4 (p < 0.001); for LS cancers, AUCs were
respectively 0.97 versus 0.79 (p = 0.008); for sporadic adenomas, AUCs were respectively 0.99 versus 0.89 (p = 0.04);
and for sporadic cancers, AUCs were respectively 0.99 versus 0.96 (p = 0.12). At 100% specificity, sensitivity for LS
adenomas was 92% for OPLAH versus 10% for the combination of BMP3 and NDRG4 (p < 0.001). Sensitivities
for LS cancers were respectively 96 versus 27% (p < 0.001); sensitivities for sporadic adenomas were respectively
97 versus 79% (p = 0.03), and sensitivities for sporadic cancers were respectively 97 versus 86% (p = 0.2). Several
combinations of novel MDMs achieved high discrimination comparable to that of OPLAH; for example, a panel
of four markers from the rPart analysis (ARHGEF4, LRRC4, ANTXR1 and PITX1) showed high AUCs essentially
identical to those of OPLAH (Figure 3).

Covariates were explored. For the overall most discriminant MDMs, patient variables of age and sex did not
affect detection accuracy for either LS or sporadic neoplasms, nor did cancer variables of stage or site or did
adenoma variables of site or histologic type. Within the sporadic pre-cancer subset, OPLAH detected 100% of
tubular adenomas and 92% of sessile serrated adenomas at 100% specificity (p = 0.5). While there were not enough
sessile serrated adenomas in the LS group to make such a comparison, it is noteworthy that each of the two sessile
serrated adenomas in LS was detected by OPLAH. Moreover, neoplasm detection rates by OPLAH did not differ
significantly between LS-Definite and LS-Suspected patients (p > 0.8 for both adenoma and CRC comparisons).
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Table 3. Functions of genes methylated in Lynch syndrome colorectal cancers.
Gene Protein Function Cancer associations/mechanism†

ADCY4 Adenylate cyclase 4 Signal transduction Prostate cancer/hypermethylation

ADM Adrenomedullin Signal transduction CRC, PDAC, renal cell cancer/upregulation

ALKBH5 RNA demethylase ALKBH5 Cell differentiation Glioblastoma, breast cancer/upregulation

ANTXR1 Anthrax toxin receptor 1 Cell attachment and migration CRC, lung cancer, breast
cancer/upregulation

CBLN2 Cerebellin 2 precursor Synapse assembly CRC/hypermethylation

CNTFR Ciliary neurotrophic factor receptor Cellular adhesion/signal transduction Glioma/upregulation

PITX1 Pituitary homeobox 1 Transcriptional regulation CRC, PDAC, gastric, bronchial, prostate,
oral cancers/downregulation

STK32B Serine/threonine kinase 32B Signal transduction Oral squamous cell cancer, breast
cancer/upregulation

USP44 Ubiquitin carboxyl-terminal hydrolase
44

Cell cycle regulation CRC/transcriptional silencing,
hypermethylation

† Information on table based on literature review [32–49].
CRC: Colorectal cancer; PDAC: Pancreatic ductal adenocarcinoma.

Discussion
In this tissue-based discovery and validation study, we identified novel MDMs highly discriminant of adenomas
and CRC in LS patients. Several individual MDMs (e.g. OPLAH) and MDM combinations (e.g., ARHGEF4,
LRRC4, ANTXR1, PITX1) achieved almost perfect discrimination of adenomas and CRC across both LS and
sporadic colorectal tissues. OPLAH alone exhibited not only AUCs approaching 1.0 but also very high fold change
in marker levels between neoplasms and normal mucosa which translates into strong signal strength to facilitate its
detection in media such as stool or blood. These novel MDMs that we found to be highly discriminant in tissue
have potential for application as a novel screening modality that can complement colonoscopy to optimize early
detection of colorectal neoplasia in LS.

While some have used chip-based and other discovery methods to evaluate methylation differences in LS
compared with sporadic colorectal neoplasms [21–24], to our knowledge, this is the first study to identify candidate
MDMs for detection of LS colorectal neoplasms through discovery by unbiased next-generation methylation
sequencing followed by independent tissue validation. All MDM candidates in our study were intentionally
selected to represent aberrantly hyper-methylated sequences, as neoplasia-associated hypomethylation is a more
subtle effect relative to the normal state and thus more difficult to measure in distant media. The ratio of case to
control methylation was more than 20% for cases and <5% for controls. Regions of hypomethylation did not reach
this degree of aberrancy. Most of the MDM candidates we describe from this LS discovery effort and those carried
over from our previous discovery in sporadic colorectal neoplasia have not been previously described in LS [30,31].

Of importance and supporting potential functional effects of identified aberrant methylation, nearly all of the
candidate MDM sequences discovered in LS tissues are harbored by genes known to be associated with cancer [36–53].
Several of our RRBS discovered markers were found on genes known to be pivotal in tumorigenesis, cell signaling
and differentiation and transcriptional regulation. While none has been implicated to our knowledge in colorectal
neoplasms with LS, genetic or epigenetic aberrations of all nine genes have been described in sporadic cancers from
multiple organ sites (Table 3). Of note in this study, aberrant hypermethylation of ALKBH5 was uniquely seen with
LS colorectal adenomas and cancers but absent in sporadic neoplasms. This gene encodes for an RNA demethylase
which appears to influence pathways related to DNA damage reversal and DNA double-strand break repair [39,54–56].
Diseases associated with ALKBH5 include retinitis pigmentosa, and aberrant expression of ALKBH5 gene has been
reported with several cancer types, but has not been reported with LS neoplasms to our knowledge [39,54–56]. The
single most discriminant MDM for all neoplasm subgroups in both LS and sporadic tissues was OPLAH, which
was identified in our prior whole methylome discovery effort in sporadic tissues, [30,31] the OPLAH gene appears
to be involved in glutathione salvage and abnormal expression has been reported in several cancer types [43].

While most of the top MDM candidates brought to validation were comparably discriminant for colorectal
neoplasia in LS and sporadic tissues, there were significant differences between groups with some MDMs. A key
finding was that hyper-methylation of ALKBH5 (a gene from the ALKBH family of demethylases that repair
both DNA and RNA by removing alkyl lesions) [39,54–58] was exclusively observed in LS neoplasms and absent in
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sporadic neoplasms. In a syndrome characterized by hallmark germline pathogenic variants in DNA MMR genes,
this novel finding of an acquired epigenetic change also related to DNA repair may have significant functional
significance. Given the uniform presence of aberrantly methylated ALKBH5 in LS-related colorectal neoplasms
and its absence in sporadic neoplasms, this MDM could potentially serve as a useful acquired somatic marker to
identify LS associated colorectal neoplasia.

Supporting our earlier preliminary observation [29], we confirmed that the two MDMs (BMP3 and NDRG4)
targeted in the MT-sDNA panel are significantly less discriminant for LS-related colorectal neoplasms than for
sporadic ones. This difference between LS and sporadic groups was particularly marked with detection of adenomas,
highlighting fundamental differences in pathway to CRC in LS and sporadic. In contrast, the novel MDMs described
in the present study achieved high discrimination for neoplasia (advanced adenomas and CRCs) in both LS and
sporadic colorectal tissues, and represent attractive targets for an early detection tool in LS patients that may
complement current screening modalities. However, it should be emphasized that the MT-sDNA test also targets
mutant KRAS and hemoglobin [25], and it cannot be concluded that these MDM findings would translate into
reduced neoplasm detection by MT-sDNA in LS patients without prospective clinical observations on stool.

While this study focused on identification of candidate MDMs for detection of colorectal neoplasms in LS, this
approach to marker discovery can be applied to other gastrointestinal and extra-intestinal organs that are at increased
risk for cancer development in LS [33]. Testing a common distant medium, like stool or blood, to simultaneously
screen multiple organs could have added value by aggregating tumor prevalence and increasing the efficiency
and potential yield of a single screening intervention [59]. We have found highly discriminant MDMs through
whole methylome discoveries in sporadic patients with pancreatic [33], esophageal [60], gastric [32], hepatic [61],
endometrial [62] and ovarian (unpublished observations) neoplasms. Candidate MDMs from these studies and
those of others could be tested in LS-associated tumors from these commonly involved organs to evaluate their
discrimination.

Methodologic strengths of the present discovery and blinded validation study have been mentioned, but several
study limitations merit acknowledgement. First, only FFPE tissues were available for the RRBS discovery in LS
tissues. As formalin fixation damages DNA [63], the amount of high quality DNA with extraction is less than that
obtained from frozen tissues. However, the none candidate MDMs from the LS discovery phase led to several highly
discriminant MDMs on biological validation. MDM candidates carried over from the discovery effort in sporadic
tissues were based on DNA extracted from frozen tissues [31,33]. MSP assays used in the validation phase tend to
perform well on FFPE tissue based on our previous observations [31–33,60,61]. Second, not all patients studied had
confirmation of diagnosis of LS by germline testing. Although genetic testing can have several advantages including
avoiding unnecessary surveillance programs for non-carriers and for carriers the opportunity for tailored screening
and surveillance recommendations, improving survival through early detection, there are differing perceptions and
attitudes toward genetic testing. A study by Keogh et al. which aimed to identify factors affecting the decision
to decline genetic testing, included individuals who had been offered genetic testing for LS or bi-allelic MUTYH
mutations. Factors for declining genetic testing included lack of knowledge of the availability of genetic testing, lack
of trust in genetic test information; a desire to see a stronger benefit from genetic testing before proceeding; and a
sense that there may be more negative than positive outcomes from genetic testing [64]. Other studies have shown
that the most common reasons for refraining from genetic testing include anticipating problems with life insurance
and mortgage, not experiencing any physical complaints and being content with life as it is [65]. Our study was a
retrospective study. All patient tissues from this study were obtained from Mayo Clinic archives. Therefore, we had
to rely on data available in the medical record. Suspected LS patients, defined as having absence of MSH2, MSH6,
PMS2, or EPCAM proteins on tumor IHC with no germline testing available to confirm a pathogenic variant
in the MMR genes, were included in the study. It is possible that the source of defective MMR in these patients
may be secondary to having two somatic pathogenic variants in any DNA MMR gene (Lynch-like syndrome)
or rarely constitutional methylation of MLH1. Cases with only tissue IHC showing absence of MLH1 without
germline testing were excluded, as it is possible that defective MMR may be secondary biallelic somatic methylation
induced silencing of the MLH1 promoter. Third, since not all individuals underwent confirmation of LS diagnosis
with germline testing, MDM results were not stratified by individual germline pathogenic variant. However, as
discrimination for colorectal neoplasms was so universally high with the top MDM candidates across LS tissues, it
is neither likely that specific germline subsets, nor ‘definite versus suspected’ status would have influenced central
results. Fourth, few sessile serrated adenomas/polyps could be found in our archival LS tissues for use in validation.
These lesions serve as important precursor lesions in sporadic CRC and have been shown to exfoliate MDMs in
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sporadic patients, leading to their detection in stool [27,66]. Several studies suggest that sessile serrated polyps are
uncommon in LS and that traditional adenomas are the predominant precursor to CRC in LS [67,68]. Of note,
we found that the top MDMs detected classical and sessile serrated adenomas with equally high discrimination
in sporadic tissues and each of the two sessile serrated adenomas included in the LS group were detected as well.
Fifth, MMR or IHC was not performed on adenomas and it is unknown whether these lesions are going through
an MMR pathway. However, detection rate was high for adenomas and sporadic adenomas are important lesions
to detect in Lynch patients. Finally, despite that the discriminatory accuracy of these MDMs was only validated
in tissue, our findings are novel and lay the groundwork for a future prospective study with a larger number of LS
cases and individuals with deficient MMR expression but lacking mutation (Lynch-like syndrome) to validate the
performance of these markers in other biological samples such as stool.

Conclusion
We have identified novel MDMs that highly discriminate colorectal neoplasia in LS. These MDMs have potential
for testing in media such as stool or blood for application in CRC screening or surveillance in this high-risk group.
Larger prospective studies to validate these MDMs in media such as stool will first require targeted capture and
assays to be developed, optimized and evaluated in carefully designed feasibility studies. Given the high risk of
developing interval cancer among individuals with LS, availability of accurate noninvasive early detection tools
could complement current screening and surveillance approaches with the potential to improve early detection and
reduce morbidity and mortality from CRC.

Future perspective
In this tissue-based discovery and validation study we identified novel highly discriminant methylated markers for
the detection of LS associated neoplasia. Once we validate these markers in other media such as stool in larger
prospective studies, we may develop a panel of top performing markers. A Lynch specific marker panel could
potentially be used to complement colonoscopy to optimize early detection of colorectal neoplasia and improve
compliance in these high-risk patients. Furthermore, this approach to marker discovery can also be applied to other
gastrointestinal and extra-intestinal organs that are at increased risk for cancer development in LS.

Summary points

• Without effective screening and surveillance, the lifetime risk of colorectal cancer (CRC) in individuals with Lynch
syndrome (LS) ranges between 10 and 80% and differs based on specific mismatch repair alteration.

• Accelerated progression through the adenoma-carcinoma sequence or carcinoma arising from non-neoplastic
crypt foci occurs in LS due to mismatch repair deficiency and confers predisposition to CRC.

• Patient compliance with colonoscopic surveillance is suboptimal.
• For patients with hereditary risk for CRC, such as LS, there are no current options for effective non-invasive

screening.
• Accurate noninvasive tools may complement current screening and surveillance approaches with the potential to

improve early detection and reduce morbidity and mortality.
• Novel methylated DNA markers, specifically OPLAH, and methylated DNA marker combinations identified in this

discovery and validation study achieved almost perfect discrimination of colorectal neoplasia across LS and
sporadic tissues.

• Aberrantly methylated ALKBH5, which was exclusively observed in LS neoplasms, could potentially serve as an
acquired somatic marker to identify LS associated colorectal neoplasia.

• Our findings are novel and lay the groundwork for a future larger prospective study to validate the performance
of these markers in other biological samples such as stool.
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