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Genome–wide association study for risk taking
propensity indicates shared pathways with body
mass index
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Risk-taking propensity is a trait of significant public health relevance but few specific genetic

factors are known. Here we perform a genome-wide association study of self-reported risk-

taking propensity among 436,236 white European UK Biobank study participants. We identify

genome-wide associations at 26 loci (P < 5 × 10−8), 24 of which are novel, implicating genes

enriched in the GABA and GABA receptor pathways. Modelling the relationship between

risk-taking propensity and body mass index (BMI) using Mendelian randomisation shows a

positive association (0.25 approximate SDs of BMI (SE: 0.06); P= 6.7 × 10−5). The impact of

individual SNPs is heterogeneous, indicating a complex relationship arising from multiple

shared pathways. We identify positive genetic correlations between risk-taking and waist-hip

ratio, childhood obesity, ever smoking, attention-deficit hyperactivity disorder, bipolar dis-

order and schizophrenia, alongside a negative correlation with women’s age at first birth.

These findings highlight that behavioural pathways involved in risk-taking propensity may

play a role in obesity, smoking and psychiatric disorders.
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R isk-taking propensity describes a tendency to engage in
reward-seeking actions despite the possibility of negative
consequences1. While risk-taking peaks during adoles-

cence, individual differences show longitudinal stability and risk-
taking propensity is considered a stable trait2,3 representing an
established risk factor for health-related behaviours including
smoking, alcohol use and binge-eating4–7. Results from experi-
mental and population-based studies have generated interest in
the possible association between risk-taking propensity and body
mass index (BMI)8,9.

Risk-taking, measured using varied methods, has been asso-
ciated with obesity in experimental and cross-sectional observa-
tional studies8. Compared to their normal weight peers,
adolescents with a BMI >99th percentile for their age and sex
exhibit greater odds of ever having smoked and having used drugs
or alcohol before their last sexual encounter10. Other evidence
suggests that obese individuals are more likely to neglect long-
term outcomes in decision-making11. Indeed, risk-taking pro-
pensity has been associated with impulsivity12, a trait char-
acterised by a tendency to act without adequate forethought and
associated with obesity13–16, weight gain9 and binge-eating17.

Studies of attention-deficit hyperactivity disorder (ADHD)
support the existence of an association between impulsivity and
BMI18. Those with ADHD are more likely to take risks19,20,
binge-eat21 and be obese22 than those without ADHD. Further,
obese individuals with ADHD exhibit more severely disordered
eating patterns than obese individuals without ADHD23. Weight
management among ADHD sufferers is improved by pharma-
cological ADHD treatments22. In one study, psychostimulant
ADHD drug treatment decreased binge-eating, impulsive food
selection and BMI among a group of severely obese adults
recently diagnosed with ADHD24.

While studies suggest an association between risk-taking pro-
pensity and obesity, evidence of causality is lacking. ADHD-like
symptoms observed in ~80% of homozygous carriers of MC4R
mutations, resulting in severe obesity, suggests the possibility of
reverse causality or shared pathways25. An informative approach
to exploring the causal relationship between risk-taking and BMI
is Mendelian randomisation (MR) using genetic variants asso-
ciated with risk-taking as instrumental variables. Heritability
estimates for risk-taking range between 0 and 55%, indicating
that genetic approaches may be possible2,26.

Previous genome wide association studies (GWAS) of risk-
related behaviours have been reported. Among 125,667 adults
from UK Biobank, 38 loci were identified for age at first sexual

intercourse27. One SNP, intronic to CADM2 (rs57401290), has
subsequently been associated with risk-taking propensity assessed
by the question: Overall, do you feel comfortable or uncomfortable
taking risks? in an independent sample of 140,487 participants
from 23andMe using a ‘phenome-scan’ for associations between
CADM2 and personality traits (rs1865251; r2 with rs57401290=
0.78)28. A GWAS of risk-taking propensity has been conducted
among 116,225 UK Biobank participants based on the question:
Would you describe yourself as someone who takes risks? The
study identified two genome-wide significant loci, one within
CADM2 and one within the human leukocyte antigen (HLA)
region on chromosome 6. Genetic correlations between risk-
taking and schizophrenia, bipolar disorder (BPD), ADHD, post-
traumatic stress disorder, smoking and obesity were also
identified29.

To identify specific genetic variants robustly associated with
risk-taking propensity, we perform a GWAS among 436,236
white Europeans and link the findings to other genome-wide
results for gene expression, as well as for mental health and other
outcomes. We identify genome-wide associations at 26 loci. MR
modelling suggests a complex relationship between risk-taking
and BMI, resulting from multiple shared pathways. Genetic
correlations highlight links between risk-taking propensity and
obesity, smoking and psychiatric disorders.

Results
Population characteristics. The GWAS sample comprised
436,236 UK Biobank (UKB) participants of white European
descent. The mean age of participants at enrolment was 56.8 years
(SD= 8.0) and 54.1% were women. Of this sample, 113,882
(26.1%) responded ‘Yes’ and 322,354 (73.9%) responded ‘No’ to
the question: Would you describe yourself as someone who takes
risks?

Risk-taking propensity was recorded on repeat occasions in a
sub-set of participants. Repeat measures multivariate analysis of
variance showed that risk-taking propensity at each time point
was very strongly associated with risk-taking propensity at later
time points (P= 6.02 × 10−6). Of all participants in UK Biobank
with repeated measures, including those of non-European
ancestry, 16,385 out of 19,006 (86.2%) recorded the same
response between baseline and their first follow-up, 10,102 of
12,084 (83.6%) recorded the same response between baseline and
their second follow-up and 3300 of 3816 (86.5%) recorded the
same response between their first and second follow-ups. ‘Risk-

Table 1 Descriptive information by UKB participants’ answers to the question: Would you describe yourself as someone who takes
risks?

Yes (n= 113,882) No (n= 322,354) P value

Female 39.5% 59.2% <1 × 10−200

Age 55.8 (8.2) 57.1 (7.9) <1 × 10−200

BMI (kg/m2)a 27.7 (4.7) 27.3 (4.8) 3.1 × 10−81

Age at first birthb 25.2 (4.9) 25.4 (4.5) 1.1 × 10−20

Ever smokeda 53.3% 43.3% <1 × 10−200

Alcohol frequency (self-report)a Median—‘three or four times a week’ Median—‘once or twice a week’ <1 × 10−200

Drug addiction (self-report)a 0.33% 0.11% 4.4 × 10−32

Any eating disorder (self-report)a 0.08% 0.07% 0.22
Schizophrenia (self-report)a 0.12% 0.11% 0.17
Depression (self-report)a 6.18% 5.96% 2.3 × 10−14

Age completed educationa 16.7 (2.4) 16.6 (2.1) 6.5 × 10−6

BMI body mass index
Values are mean (SD) or %, except for alcohol frequency where the responses were on a six point scale ranging from ‘Never’ to ‘Daily or almost daily’
a Age- and sex-adjusted models used to calculate the P value in a regression model—linear for continuous phenotypes, logistic for binary phenotypes and ordered categorical for alcohol frequency
b Data for women only, the P value is from a model with only age adjustm`ent
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takers’ were more likely to be male, younger and have a higher
BMI (Table 1). Compared to non-risk-takers, they were also more
likely to report specific risk-taking behaviours, such as ever
having smoked or experienced substance addiction. Further,
among women who reported having had children, risk-takers
gave birth to their first child at a younger age. We did not find
any association with clinical eating disorders or schizophrenia,
both of which were reported in very small numbers of individuals
in this sample; but there was a positive association between risk-
taking and depression. Surprisingly, risk-takers reported older age
at leaving education. However, the SD for this outcome variable
was also significantly larger among the risk-takers than the non-
risk-takers (Levene’s test P < 1 × 10−8) indicating more variability
in those identifying as risk-takers.

Genomic loci. Chip heritability for risk-taking propensity in UKB
was estimated to be 0.084 (SE= 0.002). This estimate is on the
observed scale, precluding comparison to other estimates30.
Twenty-six loci were associated with risk-taking propensity at
genome-wide significance (P < 5 × 10−8) (Fig. 1; Table 2). The
odds of self-reported risk-taking propensity ranged from 1.022 to
1.049 per allele. The strongest signal, rs6762267 lies intronic in
CADM2. This SNP is in high linkage disequilibrium (LD) with
both SNPs previously reported in association with risk-taking,
which were also intronic in CADM2 (rs57401290: r2= 0.78;
rs13084531: r2= 0.49)27,29. Other correlated CADM2 variants
have also previously been reported in association with BMI
(rs13078960: r2= 0.21)31, educational attainment (rs62263923:
r2= 0.27; rs55686445: r2= 0.27)32,33 and alcohol consumption
(rs9841829: r2= 0.49)34. The second strongest signal that we
identified for risk-taking propensity, rs727644 lies intronic in
FOXP2, which has previously been associated with age at first
birth in women (rs10953766: r2= 0.14)35. We observed a low
intercept value for the LD score regression GWAS (1.02, SE:
0.01), indicating that the vast majority of test statistic inflation
(lambda genomic control (GC)= 1.37) is due to polygenicity
rather than population structure.

As a sensitivity analysis, we repeated the GWAS of risk-taking
using data measured at the two later time points. A total of 18,768
individuals of European ancestry reported risk-taking at the first
follow-up assessment. At this time point, 22 of 26 SNPs showed
directional consistency with our baseline GWAS (binomial test
for directional consistency between time points: P= 0.0005). A
total of 11,887 individuals reported risk-taking at the second
follow-up assessment. At this time point, 19 of 26 SNPs showed
directional consistency with our baseline results (binomial test: P
= 0.029).

In addition, while true replication of our results was not
possible due to lack of available, independent data, we conducted
a GWAS of ‘ever smoking’ in UK Biobank for the purpose of
looking up genome-wide significant SNPs for risk-taking. The
sample contained 207,229 ever smokers (46%) and 243,177 never
smokers. The results are presented in Supplementary Table 1.
Eleven of the 26 risk-taking SNPs showed Bonferroni significant
associations with ever smoking (corrected for 26 tests: P < 0.0019)
and 13 reached nominal significance (P < 0.05). All of these
showed directionally consistent associations between risk-taking
and ever smoking. In total, 21 of the 26 SNPs were directionally
consistent.

Other notable association signals include rs58560561 within
SDCCAG8, which has been reported in association with
educational attainment (rs2992632: r2= 0.76)[32] ; rs6923811
near POM121L2 and rs3117340 near OR14J1, which have both
been reported in association with autistic spectrum disorder
(rs141342723: r2= 0.13; rs115329265: r2= 0.24, respectively)36;
and rs4801000 near TCF4 (rs9636107: r2= 0.46) and rs283914
within TBC1D5 (rs4330281: r2= 0.58), which have been reported
in association with schizophrenia37. In addition, NEGR1 has
previously been reported in association with BMI31, although our
signal appears to be independent of that reported signal
(rs3101336; r2 with our signal (rs4233093)= 0.02).

Several of the genes that co-locate with risk-taking signals are
reported to be mutated in rare disorders of central nervous
system (CNS) functioning and neuro-developmental delay. For
example, CDH23 is mutated in Usher syndrome, characterised by
profound deafness38, CYP7B1 is mutated in a rare form of spastic
paraplegia39, SIX3 is mutated in holoprosencephaly resulting in
major mental retardation40, and mutations in FOXP2 are
associated with speech and language disorder 141. Further,
mutations in SOX2-OT are associated with CNS abnormalities
and neuro-developmental delay42 and mutations in SDCCAG8
are associated with Bardet–Biedl Syndrome, features of which
include obesity and neuro-developmental delay43. Other signals
co-localise near genes that regulate CNS or sensory neural
function. These include, NEGR1 which is involved in neuronal
growth44, OR14J1, which is involved in sensory experience45, and
PDGFD, which is involved in human neocortical development46.
One lead SNP (rs62519827) is in high LD (r2= 0.98) with a
missense variant (rs62519835) in BHLHE22, which encodes a
transcription factor involved in neuronal differentiation and is
also an eQTL for CYP7B1.

Four identified loci showed genome-wide significant associations
with BMI (Table 3), including two novel signals for BMI (rs891124,
which is an eQTL for CALB2 and rs35914833 at PRIMA1). These
loci were derived from a combination of UK Biobank and the
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Fig. 1 Manhattan plot of the GWAS of risk-taking propensity . The plot illustrates the results of the GWAS of 436,236 participants of white European
descent in UK Biobank. Negative log-transformed P values for each SNP (y axis) are plotted by chromosomal position (x axis). The red-dashed line
indicates the threshold for statistical significance (P= 5 × 10−8). The blue dots indicate SNPs within a 1-Mb region of a genome-wide significant signal
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GIANT consortium data and have not been reported in any
previous BMI GWAS studies. Signals at CADM2 and ZBTB10 have
previously been associated with BMI31. However, the four signals
did not show directionally consistent associations. The risk-
increasing variants at CADM2, CALB2 and PRIMA1 were
associated with higher BMI, while the risk-increasing variant at
ZBTB10 was associated with lower BMI. Signals at CALB2, ZBTB10
and PRIMA1 showed nominally significant associations (P < 0.05)
with TV snacking, skipping breakfast and daily energy intake,
respectively (Table 3). None of these loci were associated with

emotional eating (EE), uncontrolled eating (UE) or cognitive
restraint (CR) in the Fenland cohort (all P > 0.10) (Supplementary
Table 2).

Risk-taking to BMI, dietary patterns and eating behaviour.
Using results from the present GWAS and an unpublished meta-
analysis of BMI involving 772,825 individuals from GIANT and
UK Biobank, we conducted a bi-directional MR analysis of risk-
taking and BMI. In an inverse-weighted variance (IVW) model,

Table 2 Twenty-six genome-wide significant loci for risk-taking propensity from the UK Biobank study

Variant Chr Pos Implicated gene SNP
location

Allelesa Allele
freq.b

OR 95% CI P value Gene-associated disorders
and phenotypes

rs6762267 3 85513115 CADM2N,E Intronic C/A 0.38 1.049 1.041–1.058 6.60 ×
10−31

—

rs727644 7 114109349 FOXP2N,E Intronic G/A 0.60 1.031 1.023–1.040 4.00 ×
10−14

Speech and language disorder 1

rs62519827 8 65481947 CYP7B1E,M Intergenic T/C 0.89 1.042 1.029–1.055 6.00 ×
10−11

Spastic paraplegia

rs9841382 3 181408124 SOX2-OTN Intronic C/T 0.14 1.038 1.026–1.049 7.10 ×
10−11

CNS abnormalities;
development delay

rs58560561 1 243537729 SDCCAG8N,E Intronic G/T 0.65 1.028 1.019–1.036 7.20 ×
10−11

Educational attainment;
Bardet–Biedl syndrome

rs992493 4 106180264 TET2N Intronic T/C 0.19 1.033 1.023–1.043 2.50 ×
10−10

—

rs6923811 6 27289776 POM121L2N Intergenic T/C 0.68 1.027 1.019–1.036 3.90 ×
10−10

Autistic spectrum disorder

rs7817124 8 81404008 ZBTB10N Intronic C/G 0.24 1.030 1.020–1.039 6.10 ×
10−10

—

rs4801000 18 53456943 TCF4N Intergenic G/A 0.34 1.025 1.017–1.034 3.40 ×
10−9

Schizophrenia

rs4653015 1 33776431 ZNF362E Intergenic T/C 0.26 1.027 1.018–1.037 3.80 ×
10−9

—

rs12476923 2 145830053 DKFZp686O1327N Intronic A/C 0.34 1.025 1.017–1.034 4.70 ×
10−9

—

rs283914 3 17330649 TBC1D5N,E Intronic T/C 0.53 1.024 1.016–1.032 5.30 ×
10−9

Schizophrenia

rs4233093 1 73446245 NEGR1N Intergenic A/G 0.52 1.024 1.016–1.032 5.30 ×
10−9

Neuronal growth

rs7829912 8 33479228 DUSP26N Intergenic T/C 0.56 1.024 1.016–1.032 5.90 ×
10−9

—

rs3117340 6 29210596 OR14J1N Intergenic G/T 0.62 1.024 1.016–1.033 7.00 ×
10−9

Autistic spectrum disorder;
sensory experience

rs1381287 14 98597552 RP11-61O1.1N,E Intergenic T/C 0.46 1.023 1.015–1.032 9.90 ×
10−9

—

rs28520003 22 46411969 LINC00899E Intergenic G/A 0.69 1.025 1.016–1.034 1.10 ×
10−8

—

rs12115650 9 126367705 DENND1AN Intronic G/A 0.72 1.026 1.017–1.035 1.50 ×
10−8

—

rs11226319 11 104221573 PDGFDN Intergenic A/G 0.16 1.032 1.021–1.043 1.50 ×
10−8

Neocortical development

rs1358391 7 115111838 SNORA25N Intergenic G/T 0.51 1.023 1.015–1.031 1.50 ×
10−8

—

rs12617392 2 27336827 CGREF1N,E Intronic C/A 0.56 1.023 1.015–1.031 1.80 ×
10−8

—

rs542883 2 45143382 SIX3N,E Intergenic C/G 0.56 1.023 1.015–1.031 2.20 ×
10−8

Holoprosencephaly

rs10823791 10 73338334 CDH23N Intronic T/A 0.40 1.023 1.015–1.031 3.60 ×
10−8

Usher syndrome; profound
deafness

rs34905321 6 109131107 ARMC2N Intergenic T/C 0.57 1.022 1.014–1.031 3.90 ×
10−8

—

rs891124 16 71440756 CALB2N Intergenic T/C 0.71 1.024 1.016–1.033 4.10 ×
10−8

—

rs35914833 14 94182383 PRIMA1N Intergenic T/C 0.68 1.024 1.015–1.033 5.00 ×
10−8

—

OR odds ratio, N nearest gene, E eQTL, M missense
a Effect allele/other allele
b Effect allele frequency
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genetically predicted risk-taking propensity predicted higher BMI
(0.25 approximate SDs of BMI (SE= 0.06); P= 6.7 × 10−5), while
genetically predicted BMI did not predict risk-taking propensity
(P= 0.23) (Table 4).

There was a high level of between SNP heterogeneity in this
analysis (P= 9.9 × 10−8), with individual risk-taking SNPs
showing strong associations with either higher or lower BMI
(Fig. 2). We performed a leave-one-out analysis, whereby we
repeated the MR analysis of risk-taking to BMI 26 times with
each of the genome-wide significant SNPs for risk-taking
removed in turn. The results suggested that all four of the
individually genome-wide significant SNPs had a substantial
effect on the heterogeneity of the data (Supplementary Fig. 1). We
performed a further MR analysis of risk-taking to BMI excluding
the four risk-taking SNPs that were also genome-wide significant
for BMI, and found no association between risk-taking propensity
and BMI (beta from IVW MR= 0.01 (SE= 0.07); P= 0.91) or
evidence of heterogeneity (P= 0.24). Similarly, a random effects
IVW MR model, combining the estimates calculated when
treating each risk-taking associated SNP as an individual
instrument, also provided no evidence for an overall causal
relationship between risk-taking and BMI (Supplementary Fig. 2).

In the Fenland cohort study, we performed a polygenic risk
score (PRS) analysis. Genetically predicted risk-taking propensity
showed positive associations with emotional eating in men, after
adjustment for multiple testing, and nominally significant positive
associations with total daily calorie, fat and protein intake in the
combined cohort of men and women (Table 5).

The ranges of the eating behaviours were as follows: CR: 0–100;
UE: 0–96.3; EE: 0–100. The food-related behaviour variables were
initially ordered categorical variables. However, their distribu-
tions were markedly non-normal. To account for this, they were
dichotomised and logistic regression was performed. In all cases,
the category containing the majority of participants was split
from the rest of the sample. This was designed to increase the
sample size of the comparison group and maximise the power of
the analyses. The analysis revealed a nominally significant
association between genetic risk-taking propensity and the higher
odds of skipping breakfast more than twice a week (odds ratio
(95% confidence interval)= 1.05 (1.02, 1.07)). No associations
were observed between the risk-taking PRS and UE, CR or total
daily fibre, fruit and vegetable or carbohydrate intake. Genetic
risk-taking propensity did not predict the odds of eating home-
cooked meals or snacking front of the television (Table 5).

Tissues and pathways associated with risk-taking. Tissue
enrichment analysis using the GTEx database indicated that genes

collocated with risk-taking variants were enriched for expression in
the CNS (P= 1.80 × 10−9) and immune system (P= 8.20 × 10−4)
(Fig. 3a). Of specific CNS tissues, the hippocampus, frontal cortex,
cortex, anterior cingulate cortex and hypothalamus showed
enrichment of expression after correction for multiple testing
(Fig. 3b).

To identify mechanisms that may influence risk-taking
propensity, we performed a systematic test of all annotated
biological pathways for enrichment of genes located near risk-
taking propensity-associated variants using MAGENTA. Two
overlapping pathways were associated with risk-taking: the GABA
pathway (false discovery rate (FDR) based on 75% cutoff= 0.006)
and GABA receptor pathway (FDR based on 75% cutoff= 0.04).
Full MAGENTA output is provided (Supplementary Data 1).
Overlap between the two identified pathways is depicted in
Supplementary Fig. 3.

Genetic correlations. The genetic correlations between risk-
taking propensity and 12 adiposity-related, risk behaviour and
psychological traits were calculated using LD score regression.
After correction for multiple testing, risk-taking propensity
showed positive genetic correlations with: waist-hip ratio (WHR),
childhood obesity, ever smoking, ADHD, BPD and schizo-
phrenia; and negative genetic correlations with age at first birth in
women (all P < 0.004) (Fig. 4).

Discussion
In this study, we identify 26 genetic loci associated with self-
reported risk-taking propensity in a sample of 436,236 partici-
pants from the UK Biobank study, 24 of which are novel. Much

Table 3 Associations between the four risk-taking loci that were genome-wide significant signals for BMI and diet-related traits

Variant Implicated
gene

BMI TV snacking Home-cooked meals Skipping breakfast Energy (kcal/day)

Beta (SE) P value Beta (SE) P
value

Beta (SE) P
value

Beta (SE) P
value

Beta (SE) P
value

rs891124 CALB2 0.01 (0.002) 3.5 × 10
−10

0.12 (0.05) 0.02* 0.04 (0.03) 0.21 0.01 (0.03) 0.86 3.86
(11.0)

0.73

rs35914833 PRIMA1 0.02 (0.002) 5.3 × 10
−14

−0.05
(0.05)

0.34 −0.03
(0.03)

0.33 −0.04
(0.03)

0.20 30.3
(11.0)

0.01*

rs6762267 CADM2 0.02 (0.002) 1.7 × 10
−15

0.09 (0.05) 0.07 0.02 (0.03) 0.45 −0.03
(0.03)

0.36 12.3
(10.2)

0.23

rs7817124 ZBTB10 −0.01
(0.002)

1.8 × 10−9 0.09 (0.06) 0.10 −0.03
(0.03)

0.36 0.08 (0.03) 0.02* 12.4
(11.5)

0.28

SNPs were aligned to the risk-taking propensity-increasing allele. Effect estimates (beta and SE) were derived from linear or logistic regressions of the variant to the named trait, adjusted for age and sex.
BMI was a continuous outcome standardised within the BMI meta-analysis. TV snacking was coded: 0 never/rarely; 1 occasionally/ usually/ always; skipping breakfast was coded: 0 skips breakfast <2
times a week; 1 skips breakfast ≥2 times a week; home-cooked food was coded: 0:>5 meals a week home-cooked, 1:<5 meals a week are home-cooked
*Nominally significant (P < 0.05)

Table 4 Mendelian randomisation analyses of BMI to risk-
taking and risk-taking to BMI

Analysis Beta (SE) P value

Risk-taking propensity to BMI
Conventional MR (IVW) 0.251 (0.063) 6.7 × 10−5

MR Egger 0.885 (0.985) 0.37
Weighted median MR 0.091 (0.121) 0.45
BMI to risk-taking propensity
Conventional MR (IVW) 0.004 (0.004) 0.23
MR Egger 0.002 (0.017) 0.88
Weighted median MR −0.008 (0.007) 0.26
Between SNP heterogeneity Not applicable 9.9 × 10−8

BMI body mass index, MR mendelian randomisation, IVW inverse-weighted variance
MR Egger intercept was not significant
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previous research has focussed on the environmental and psy-
chological determinants of risk-taking behaviours in specific age
groups, primarily adolescents, or communities, such as those
involved in extreme sports47–49. We found several independent
genetic signals for risk-taking, which facilitated investigation of its
consequences and elucidated the mechanisms of its association

with important health outcomes, including obesity, substance
abuse and smoking4,8,50.

Our findings suggest that the genetic component of risk-taking
acts, in large part, through the CNS. We identified four specific
brain regions, in addition to the cortex, that show enriched
expression for genes associated with risk-taking propensity. All of
these regions have previously been implicated in risk-taking-
related traits by functional magnetic resonance imaging studies.
Activity in the pre-frontal cortex has been linked to behavioural
measures of risk-taking51,52, the hippocampus has an established
role in behavioural inhibition53, the anterior cingulate cortex has
been implicated in assessing the value associated with exercising
control when performing a task54, and the hypothalamus is
involved in the processing of innate and learned fear, including
the fear of pain, predators and aggression55. Additionally, enri-
ched expression of risk-associated genes in the immune system
supports growing evidence for the influence of the immune sys-
tem on the brain and human behaviour56. While research to date
has primarily concerned clinically relevant mood and behavioural
aberrations, including depression57, an association between
immune function and personality has also been proposed58.

Genetic correlations between risk-taking and schizophrenia,
BPD and ADHD confirm the findings of a smaller, overlapping
GWAS of risk-taking among 116,255 UKB participants29. Given
the genetic and symptomatic overlap between major mental
disorders, as well as diagnostic migration and co-segregation
within families, traits with trans-diagnostic relevance are impor-
tant to understanding shared vulnerabilities and mechanisms.
Perhaps surprisingly, there was no genetic correlation between
risk-taking and years of schooling. Given that the two top hits
from this analysis lie within genes involved in cognitive processes
(CADM2 and FOXP2), this suggests that there may be a few,
specific pleiotropic signals for both traits rather than broader
shared mechanisms.

Novel genetic correlations between risk-taking propensity and
both childhood obesity and WHR were identified. However,
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Fig. 2 Effect of genome-wide significant SNPs for risk-taking on BMI. Each
data point represents one of the 26 risk-associated SNPs. The SNP-specific
MR estimate for the association of risk-taking with BMI (x axis) is plotted
against the SE (y axis). The summary estimate is marked by the solid black
line. The grey-dotted lines, originating from the summary estimate,
represent 95% confidence limits. The red-dotted line indicates the null

Table 5 Polygenic risk score for risk-taking propensity (created using summary statistics from UKB) related to diet and eating
behaviours in the Fenland study

Variable Total (N) Effect (95% CI) r2 P value

All participants—nutrient intake
Energy (kcal/day) 8981 803.5 (140.1, 1466.8) 0.042 0.02*
Total fat (g/day)a 8981 0.52 (0.12, 0.92) 0.042 0.01*
Fruit and vegetables (g/day)a 8844 0.46 (−0.07, 0.99) 0.044 0.09
Protein (g/day)a 8981 0.36 (0.06, 0.66) 0.010 0.02*
Fibre (g/day)a 8981 0.28 (−0.10, 0.66) 0.005 0.15
Carbohydrates (g/day)a 8981 0.25 (−0.10, 0.60) 0.028 0.16
Men only—eating behaviours
Emotional eating 1646 94.6 (35.7, 153.6) 0.007 0.002**
Cognitive restraint 1646 −2.62 (−48.0, 42.7) 0.005 0.91
Uncontrolled eating 1646 32.0 (−9.3, 73.3) 0.019 0.13
Women only—eating behaviours
Emotional eating 1869 −21.2 (−82.7, 40.6) 0.002 0.50
Cognitive restraint 1869 −21.2 (−63.3, 20.8) 0.005 0.32
Uncontrolled eating 1869 14.8 (−24.0, 53.6) 0.013 0.45
All participants—food-related behaviours OR (95% CI)
TV snackingb 4414 1.03 (0.99, 1.06) — 0.46
Skipping breakfastb 11,441 1.05 (1.02, 1.07) — 0.03*
Home-cooked foodb 11,439 0.99 (0.97, 1.01) — 0.59

All models were linear or logistic regressions of the PRS for risk-taking to the variable, adjusted for age and sex. Sex-stratified models were only adjusted for age
TV snacking was coded: 0 never/rarely; 1 occasionally /usually/always; skipping breakfast was coded: 0 < 2 times a week; 1 ≥ 2 times a week; home-cooked food was coded: 0; > 5 meals a week home-
cooked, 1; < 5 meals a week are home-cooked
*Nominally significant (P < 0.05)
**Bonferroni significant after adjustment for 15 tests (P < 0.003)
a Log-transformed
b Logistic regression
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despite previous observed associations between risk-taking and
BMI8,10,11, we found no genetic correlation between risk-taking
and adult BMI. By contrast, the IVW MR analysis links some risk-
taking pathways to adult BMI. The high levels of heterogeneity in
the MR analysis suggests that the overall genetic correlation (which
assumes a linear association between effect sizes for risk-taking and
BMI across the genome) may not be the best model to show the
complex association between these two traits.

Of the MR analyses performed, only the IVW analysis gener-
ated a significant result. While this analysis generally assumes the

absence of horizontal pleiotropy, which could not be eliminated
here, it has the highest statistical power of the MR analyses
performed and is more reliable than the other methods
in situations where the effect estimates for associations to the
exposure do not vary greatly between SNPs59. Our finding of four
SNPs with strong associations with both risk-taking and BMI,
and with variable directional consistency, suggests that there are
diverse pleiotropic pathways that link these two traits.

The complexity of the association between risk-taking pro-
pensity and BMI is supported by the directionally inconsistent
effects of the four genome-wide significant loci for BMI among
the 26 risk-taking propensity-associated loci. The risk-taking
increasing variant at three of these four loci is associated with
higher BMI, but the risk-taking increasing variant at the
remaining signal is associated with lower BMI.

In PRS analysis relating risk-taking propensity to obesogenic
behaviours in the Fenland cohort study, we found some sugges-
tion that genetic risk-taking propensity may be associated with
emotional eating in men as well as higher daily calorie, fat and
protein intake and greater odds of regularly skipping breakfast.
These findings require replication in larger data sets. How-
ever, they speculatively indicate that obesogenic eating behaviours
and practices provide a mechanism through which specific facets
of risk-taking propensity are related to BMI.

Risk-taking is a complex phenotype with heterogeneity in
methods of measurement between studies and no gold-standard.
Studies most often use self-report but behavioural measures are
also used. Where studies rely on self-report, questionnaires
including multiple items are often used15. In the present study,
risk-taking propensity was self-reported and based on the answer
to a single question that has not previously been used in other
studies. Individuals’ responses were stable in the sub-set of par-
ticipants with repeated measures and self-identification as a risk-
taker was associated with risk-taking behaviours, including
alcohol consumption, ever smoking, drug addiction and age at
first birth, in the anticipated ways. Regardless, research among
those involved in extreme sports cautions against assuming psy-
chological or behavioural homogeneity in risk-taking popula-
tions47. While some risk-takers in these studies may be impulsive,
others may take risks in response to feelings of confidence and
self-efficacy, justified by experience and the development of
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Fig. 4 Genetic correlations for risk-taking. Whole-genome LD score
regression tested genome-wide SNP associations for risk-taking against
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associations, after adjustment for multiple testing. After correction for
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expertise47,60. The risks that this latter group of individuals are
taking are planned, rather than impulsive. The lack of clarifying
questions to determine why respondents self-identify as risk-
takers is an important limitation of the present study.

The results of the present study advance our understanding of
the genetic basis for risk-taking and highlight a common genetic
basis for risk-taking and important health-related phenotypes
including WHR, depression, schizophrenia and ADHD. Further,
the findings indicate the presence of multiple and diverse path-
ways linking risk-taking to BMI, building on previous observa-
tions from non-genetic studies. In particular, these findings
suggest a multi-faceted association between risk-taking and BMI,
involving pathways that may influence eating and food-related
behaviours.

Methods
Study populations. UK Biobank: The GWAS was conducted among 436,236 white
European participants in UK Biobank with both genotype and risk-taking data.
UKB is a population-based cohort study of volunteers aged between 40 and 69
years, who were registered with the National Health Service and living within ~25
miles of one of the 22 UKB assessment centres throughout the United Kingdom at
the time of recruitment. Recruitment took place between 2006 and 2010. Overall,
503,325 participants were recruited to the cohort after sending invitations to ~9.2
million people61. All participants provided written informed consent. The study
was approved by the National Research Ethics Service Committee North
West–Haydock and all study procedures were performed in accordance with the
World Medical Association Declaration of Helsinki ethical principles for medical
research.

The Fenland cohort study: Eating behaviour, diet and food-related behaviour
phenotypes among participants enrolled in the Fenland cohort study were used in
the present analysis. The Fenland study is a population-based cohort study of
volunteers recruited from participating General Practices in Ely, Wisbech and the
surrounding Cambridgeshire region between 2004 and 201562. Eligible individuals
were adults registered at a collaborating General Practice and residing in
Cambridgeshire at the time of recruitment. Exclusion criteria were: clinically
diagnosed diabetes mellitus, inability to walk unaided, terminal illness (life
expectancy of ≤1 year at the time of recruitment), clinically diagnosed psychotic
disorder, pregnancy or lactation. All participants attended a visit to an MRC
Epidemiology Unit testing centre where eating behaviour data was collected.
Written informed consent was attained from all participants and the study was
approved by the Cambridge Local Research Ethics Committee.

Phenotypes. Risk-taking propensity : As part of the baseline assessment, UKB
participants completed a touchscreen questionnaire that included the question
Would you describe yourself as someone who takes risks? Possible responses were:
Yes, No, Don’t know or Prefer not to say. A total of 482,173 participants responded
either ‘Yes’ (n= 129,877) or ‘No’ (n= 352,296). Those who answered ‘Don’t know’
or ‘Prefer not to say’ (n= 19,538) were excluded from this analysis. During follow-
up, the question was asked again to a sub-set of participants. As the sample sizes
were substantially decreased between follow-ups, in order to maximise sample size
and increase power, we used the baseline responses of all participants for the
primary GWAS analysis.

Eating behaviour: Eating behaviour was measured in the Fenland cohort using
the 18-item version of the Three-Factor Eating Questionnaire (TFEQ-R18)63.
Three eating behaviours are measured by the questionnaire: CR (6 items), UE (9
items) and EE (3 items). Each item was scored on a 4-point scale (1–4), with higher
value indicating more of the behaviour. The items for each of the eating
behaviours were then added together and transformed to a 0–100 scale using the
following equation: [((raw score− lowest possible raw score)/possible raw score
range) × 100]64. Scores were generated on an individual basis, for all Fenland study
participants who completed the TFEQ-R18. EE describes a tendency to eat in
response to dysphoric emotions, UE indicates a tendency to overeat accompanied
by a subjective sense of loss of control over consumption and CR describes the
intention to limit food intake in order to influence shape or weight.

A total of 3515 individuals (53.2% women; 98.5% self-reported white ethnicity)
aged 35–64 years with intersecting eating behaviour and genotype data were
included in the present analysis. Individuals lacking data regarding eating
behaviour, age or sex were excluded. The eating behaviour analyses were sex-
stratified based on evidence that the behaviours are all significantly higher among
women (P < 0.0001 for UE and EE; P < 0.01 for CR) and reported sex modification
of the association between BMI-associated loci and CR65.

Food-related behaviour: Food-related behaviour was measured as part of the
general questionnaire administered to Fenland participants at baseline. To assess
snacking while watching television, participants answered: Apart from meals, how
often do you snack on foods while watching television? Possible answers were: Never
or rarely, Occasionally, Usually, Always. To assess frequency of eating home-cooked
meals, participants answered the question: When you eat your main meal at home,

how often do you usually eat home cooked meals? Possible answers were: Never or
less than once a month, 1–2 time per week, 3–5 times per week, 5+ times per week.
Finally, to assess the frequency of breakfast eating, participants answered: How
often do you usually eat breakfast? Possible answers were: Never or less than once a
month, 1–2 times per week, 3–5 times per week, 5+ times per week.

As the food-related behaviour groups were not continuous, we coded the
variables for analysis in logistic regression models. In general, 0 was coded as the
more healthy, and 1 as the less healthy response. Frequency of eating home-cooked
food was coded: 0 for 5+ times a week; 1 for <5 times a week. Snacking in front of
the TV was coded: 0 for never or rarely; 1 for occasionally, usually or always.
Frequency of eating breakfast was coded: 0 skips breakfast <2 times a week; 1 skips
breakfast ≥2 times a week.

Dietary information: Average daily calorie, fat, protein, carbohydrate, fruit,
vegetable and fibre intakes were measured using the food frequency questionnaire
(FFQ). The FFQ is a validated 130-item semi-quantitative questionnaire that aims
to measure self-reported habitual dietary intake over the previous year. Food intake
frequency was converted to daily energy (kcal/day) and nutrient intakes (g/day)
using FETA 2.53 software66. A total of 8981 participants (52.8% women; 98.6%
self-reported white ethnicity) aged 30.5–64 years had intersecting genotype, dietary
and food-related behaviour data and were included in the present analysis.

Statistical analysis. Genotyping, imputation and quality control procedures: We
analysed data from the 2017 imputed genetic data, based on the Haplotype
Reference Consortium (HRC) panel release from UKB, comprising 7,736,308
million SNPs. Genotyping, imputation, phasing and quality control are described
in detail elsewhere67. Briefly, 487,409 of the UKB participants were genotyped
using the Affymetrix Applied Biosystems UK Axiom array (Santa Clara, CA, USA),
designed to optimise imputation performance in GWAS studies. A small number
of participants (n= 49,950) were genotyped using the Affymetrix Applied Bio-
systems UL BiLEVE Axiom Array68. The arrays share 95% of their marker con-
tent67. SNPs were excluded prior to imputation if they were multi-allelic, had
missing data or had a minor allele frequency (MAF) < 1%. Phasing was performed
using a modified version of the SHAPEIT2 algorithm. Imputation was performed
using IMPUTE 2 and a merged reference panel comprised of the 1000 Genomes
Project Phase 3 and UK10K haplotype reference panels. In addition to quality
control procedures employed by UKB, we defined a white European ancestry set
based on a k-mean clustering using the first five genetic principle components.

Genome-wide association analyses: GWAS testing for associations between
SNPs and self-reported risk-taking was performed using a linear mixed model
(LMM) implemented in BOLT-LMM69. This approach minimises any effect of
population structure and permits the inclusion of related individuals in the
analysis, maximising statistical power. As all of the top 10 principal components
were significantly, but minimally, associated with odds of risk-taking, this approach
was appropriate (Supplementary Table 3). SNPs were established based on distance
based clumping, using a distance of 1Mb. Sex, age and genotyping array were
included as covariates. SNPs were filtered based on info >0.5 and MAF >1%.
Individuals were excluded based on ancestry, withdrawal from the UK Biobank
study, mismatch between genetic sex and reported gender and failure of genetic
quality control. A total of 436,236 individuals of white European ancestry and
7,736,308 variants were included in the analysis.

Heritability analyses were performed using restricted maximum likelihood
implemented in BOLT-LMM, which computes heritability on the observed scale69.
Genetic variance was calculated for all genotyped autosomal SNPs (N= 612,622)
for which quality control was performed, adjusting for chip status, age, sex and the
top 10 genetically determined principal components. Only unrelated individuals of
white European ancestry were included in this analysis (N= 339,414).

In the absence of an appropriate data set in which to directly replicate our
results, we compared our results in the baseline data set from UK Biobank, to those
ascertained using data on risk-taking at the first follow-up assessment and,
separately, at the second follow-up assessment. We also conducted a GWAS of a
closely related phenotype, ‘ever smoking’, in the same European ancestry UK
Biobank sample in order to look up our genome-wide significant SNPs for risk-
taking. This sample consisted of 207,229 ever smokers (46%) and 243,177 never
smokers.

Genetic correlations: Genetic correlations (rg) were calculated using LD score
regression70. Genetic correlations between risk-taking and 12 traits available in
publicly available data sets were conducted.

Pathway and tissue enrichment analysis: We used MAGENTA to implement a
gene set enrichment analysis-based approach to test the genome-wide discovery
data for associations with biological pathways defined in Go Term, PANTHER,
KEGG, Biocarta, Reactome and Ingenuity. MAGENTA maps each gene in the
genome to a single index SNP with the lowest P value within the window ranging
from 110 kb upstream to 40 kb downstream of the gene. This P value, representing
a gene score, is then corrected in a regression model for confounding factors such
as gene size, SNP density and LD-related properties. Each mapped gene in the
genome is then ranked by its adjusted gene score. The observed number of gene
scores in a given pathway with a ranked score above 75th percentile threshold was
calculated. This observed statistic is then compared to one calculated from
randomly permuted pathways of identical size. This comparison generates an
empirical GSEA P value for the pathway. An individual pathway was defined as
being significantly enriched when it reached FDR <0.05 in either analysis.
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Tissue enrichment analysis was performed using the genotype-tissue expression
(GTEx) database71. This approach uses stratified LD score regression, a method for
partitioning heritability from GWAS summary statistics, to test whether trait
heritability is enriched in regions surrounding genes with the highest specific
expression in a given tissue72. Significance thresholds were established using
Bonferroni correction for the number of tests performed.

Mendelian randomisation: We conducted a bi-directional MR analysis of risk-
taking to BMI using all genome-wide significant variants for risk-taking from the
present GWAS. An unpublished GWAS meta-analysis of BMI using UKB plus
GIANT data and comprising a total of 772,825 individuals provided effect
estimates for BMI. For the risk-taking to BMI analyses, SNPs were aligned to the
risk-taking increasing allele. For the BMI to risk-taking MR, SNPs were aligned to
the BMI-increasing allele. We used conventional inverse-weighted variance (IVW)
MR, by regressing the SNP effect estimates for risk-taking on the SNP effect
estimates of the outcome of interest. This analysis was conducted in R version 3.3.1.

As IVW MR assumes the absence of horizontal pleiotropy (heterogeneity) and
may be biased by weak instruments, MR Egger and weighted median MR were also
performed. The MR Egger method is similar to that of conventional IVW MR.
However, unlike IVW MR, the regression is not constrained to pass through the
origin. Significant departure of the y intercept from zero indicates pleiotropy73. The
drawback of this method is low statistical power, and susceptibility to bias from
weak instruments, which tend to bias results toward the null59. Weighted median
MR complements MR Egger and allows up to 50% of the information in the MR
analysis to come from SNPs that are invalid instruments, including those that are
invalid as a result of pleitropy59, and yields more precise results than MR Egger if
all genetic variants have similar magnitudes of association with the exposure74. MR
is also limited by factors beyond pleiotropy that cannot be controlled but should be
considered. For example, canalisation and compensation might mitigate the effects
of genetic changes on outcomes and heterogeneity in exposures may make causal
inferences about the dimensions of a trait that are important difficult to infer
without biological knowledge.

In order to identify specific SNPs associated with risk-taking that might drive
overall effects on BMI, we performed a ‘leave-one-out’ analysis. For this analysis,
we repeated the MR of risk-taking to BMI with each of the genome-wide significant
SNPs for risk-taking removed, in turn.

PRS analysis: A weighted PRS for risk-taking was constructed for Fenland
participants (n= 11,249) using the summary statistics from the present UKB
GWAS. The 26 loci showing genome-wide significant associations with risk-taking
were included in the score. At each locus, the number of risk increasing alleles were
summed and multiplied by the effect estimate on risk-taking from our UKB
GWAS. The results across all 26 SNPs were summed for each participant. The
association between the PRS and eating behaviour was examined in the Fenland
study using sex-stratified regression models, adjusted for age. The association
between the PRS and both the diet and food-related behaviour variables was
analysed in Fenland using linear or logistic regression models, as appropriate,
adjusted for age and sex. Outcome variables were log-transformed if they were not
normally distributed, in order to improve the normality of the residuals.

The following 12 traits were analysed using the PRS: EE, UE, CR, total calorie
intake per day, fat intake (g/day), fibre intake (g/day), protein intake (g/day),
carbohydrate intake (g/day), fruit and vegetable intake (g/day), snacking while
watching TV, frequency of skipping breakfast (times per week) and number of home
cooked meals (times per week). This analysis was conducted in Stata version 14.

Code availability. Code is available upon request from the corresponding authors.

Data availability. GWAS summary statistics are available at
https://doi.org/10.22025/2018.20.202.00002. Individual-level data are available
from UK Biobank but restrictions apply to the availability of this data, which was
used under license for the current study. Approved researchers may apply for
access under the UK Biobank access framework (details can be found here: http://
www.ukbiobank.ac.uk/wp-content/uploads/2012/09/Access-Procedures-2011.pdf).
Data from the Fenland study are governed in accordance with the MRC Policy and
Guidance on Sharing of Research Data from Population and Patient Studies and the
terms of the participants’ consent and study ethical approvals. Approved
researchers wishing to access these data should contact the Fenland Study team
(http://epi-meta.medschl.cam.ac.uk/overview.html).
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