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Abstract

Learning in biologically relevant neural-network models usually relies on Hebb learning

rules. The typical implementations of these rules change the synaptic strength on the basis

of the co-occurrence of the neural events taking place at a certain time in the pre- and post-

synaptic neurons. Differential Hebbian learning (DHL) rules, instead, are able to update the

synapse by taking into account the temporal relation, captured with derivatives, between the

neural events happening in the recent past. The few DHL rules proposed so far can update

the synaptic weights only in few ways: this is a limitation for the study of dynamical neurons

and neural-network models. Moreover, empirical evidence on brain spike-timing-dependent

plasticity (STDP) shows that different neurons express a surprisingly rich repertoire of differ-

ent learning processes going far beyond existing DHL rules. This opens up a second prob-

lem of how capturing such processes with DHL rules. Here we propose a general DHL

(G-DHL) rule generating the existing rules and many others. The rule has a high expressive-

ness as it combines in different ways the pre- and post-synaptic neuron signals and deriva-

tives. The rule flexibility is shown by applying it to various signals of artificial neurons and by

fitting several different STDP experimental data sets. To these purposes, we propose tech-

niques to pre-process the neural signals and capture the temporal relations between the

neural events of interest. We also propose a procedure to automatically identify the rule

components and parameters that best fit different STDP data sets, and show how the identi-

fied components might be used to heuristically guide the search of the biophysical mecha-

nisms underlying STDP. Overall, the results show that the G-DHL rule represents a useful

means to study time-sensitive learning processes in both artificial neural networks and

brain.

Author summary

Which learning rules can be used to capture the temporal relations between activation

events involving pairs of neurons in artificial neural networks? Previous computational

research proposed various differential Hebbian learning (DHL) rules that rely on the
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activation of neurons and time derivatives of their activations to capture specific temporal

relations between neural events. However, empirical research of brain plasticity, in partic-

ular plasticity depending on sequences of pairs of spikes involving the pre- and the post-

synaptic neurons, i.e., spike-timing-dependent plasticity (STDP), shows that the brain

uses a surprisingly wide variety of different learning mechanisms that cannot be captured

by the DHL rules proposed so far. Here we propose a general differential Hebbian learn-

ing (G-DHL) rule able to generate all existing DHL rules and many others. We show vari-

ous examples of how the rule can be used to update the synapse in many different ways

based on the temporal relation between neural events in pairs of artificial neurons. More-

over, we show the flexibility of the G-DHL rule by applying it to successfully fit several dif-

ferent STDP processes recorded in the brain. Overall, the G-DHL rule represents a new

tool for conducting research on learning processes that depend on the timing of signal

events.

Introduction

Most learning rules used in bio-inspired or bio-constrained neural-network models of brain

derive from Hebb’s idea [1, 2] for which “cells that fire together, wire together” [3]. The core of

the mathematical implementations of this idea is multiplication. This captures the correlation

between the pre- and post-synaptic neuron activation independently of the timing of their

firing.

Time is however very important for brain processing and its learning processes [4]. Differ-
ential Hebbian learning (DHL) rules [5, 6] are learning rules that change the synapse in differ-

ent ways depending on the specific timing of the events involving the pre- and post-synaptic

neurons. For example, the synapse might tend to increase if the pre-synaptic neuron activates

before the post-synaptic neuron, and decrease if it activates after it. As suggested by their

name, DHL rules use derivatives to detect the temporal relations between neural events. Here

we will use the term event to refer to a relatively short portion of a signal that first monotoni-

cally increases and then monotonically decreases. Events might for example involve the activa-

tion of a firing-rate unit in an artificial neural network, or the membrane potential of a real

neuron, or a neurotransmitter concentration change. DHL rules use the positive part of the

first derivative of signals to detect the initial part of events, and its negative part to detect their

final part. By suitably multiplying the positive/negative parts of the derivative of events related

to different signals, DHL rules can modify the synapse in different ways depending on how

their initial/final parts overlap in time.

To the best of our knowledge, current DHL rules are basically two: one proposed by Kosko

[5] and one proposed by Porr, Wörgötter and colleagues [6, 7]. These rules modify the synapse

in specific ways based on the temporal relation between the pre- and post-synaptic events. For-

mulating other ways to modify synapses based on event timing is the first open problem that

we face here.

The development of dynamical neural-network models and learning mechanisms that, as

DHL, are able to take time into consideration is very important. Indeed, the brain is an exqui-

sitely dynamical machine processing the continuous flow of information from sensors and

issuing a continuous flow of commands to actuators so its understanding needs such types of

models [8–11]. In this respect, neuroscientific research on spike timing dependent plasticity
(STDP; [12]) clearly shows how synaptic changes strongly depend on the temporal relation

between the spikes of the pre- and post-synaptic neurons. Given the typical shape of spikes, an
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important class of STDP models, called phenomenological models [13], abstracts over the fea-

tures of the spike signals and directly links the synaptic strengthening, Δw, to the time interval

separating the pre-synaptic and post-synaptic spikes, Δt, on the basis of a function of the type

Δw = f(Δt) [12, 14]. Such a function is usually designed by hand and reflects the synaptic

changes observed in experimental data. [15]. The function f(Δt) generates a typical learning
kernel that when plotted shows a curve where each Δt causes a certain Δw. Phenomenological

models are simple but are applicable only to spike events. In comparison, DHL rules are more

complex but have the advantage of computing the synaptic update as the step-by-step interac-

tion (based on multiplication) between the pre-synaptic and post-synaptic events. Therefore

they are applicable to any complex signal that might exhibit events with variable time courses.

When applied to the study of STDP, the property of DHL rules just mentioned also opens

up the interesting possibility of using them to investigate the actual biophysical neural events

following and caused by the spikes that actually lead to the synaptic change, as first done in

[16]. The chain of processes changing the synapse is also captured by biophysical models (e.g.,

see [14, 17]). These models can capture those processes in much biological detail (mimicking

specific neurons, neuromodulators, receptors, etc.) but at the cost of being tied to specific phe-

nomena. Because the level of abstraction of DHL rules lies between that of phenomenological

models and that of biophysical models, DHL represents an important additional research tool.

Experimental study of STDP [18, 19] shows that different types of neurons, for example

excitatory/inhibitory neurons in different parts of the brain, implement a surprisingly rich rep-

ertoire of learning kernels. It is reasonable to assume that the brain employs such learning

mechanisms to implement different computational functions. In this respect, an interesting

fourth class of models appropriate for studying STDP, which might be called functional models,
aims to derive, or to justify, specific STDP learning kernels based on normative computational

principles [20–23].

Investigating the functions of different STDP kernels is not in the scope of this work. How-

ever, assuming that the variety of learning kernels discovered through STDP experiments sup-

ports different functions relevant to neural processing and that analogous functions might be

needed in artificial neural networks, it is important to understand the computational mecha-
nisms that might generate such a variety of learning kernels. In this respect, an important

question is this: is there a DHL learning rule, or a set of them, that can generate the complete

variety of learning kernels found in the brain? Some existing research shows how different

STDP learning kernels can arise from the same biophysical mechanisms [17], or from the

same DHL-based model [24]. However, these studies propose specific mechanisms to address

a sub-set of STDP data sets rather than proposing a general way to systematically reproduce

STDP learning kernels. Understanding the extent to which DHL can capture the known

STDP phenomena, and how this can be done, is thus a second important open problem that

we address here.

The rest of the paper addresses the two open problems indicated above in the following

ways. As a first contribution of the paper, the Section ‘G-DHL and the systematisation of

DHL’ considers the first open problem—how different DHL rules can be generated in a sys-

tematic fashion—by proposing a general framework to produce DHL rules. In particular,

the section first reviews the DHL rules proposed so far in the literature; then it presents the

G-DHL rule and shows how it is able to generate the existing DHL rules and many others; and

finally it shows how one can filter the neural signals to generate events that correspond to the

features of interest and can use memory traces to apply the G-DHL rule to events separated by

time gaps.

As a second contribution of the paper, the Section ‘Using G-DHL to fit STDP data sets’

deals with the second open problem—understanding if and how G-DHL can be used to
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capture known STDP phenomena. To this end, the section first illustrates how the G-DHL

synapse update caused by a pre- and post-synaptic spike pair can be computing analytically

rather than numerically, and then it presents a collection of computational tools to automati-

cally search the rule components and parameters to fit a given STDP data set.

Addressing the same second open problem, and as a third contribution of the paper, the

Section ‘Using G-DHL to fit STDP data sets’ uses those computational tools to show how the

G-DHL rule is able to reproduce several learning kernels from the STDP literature. To this

end, the section first uses G-DHL to fit the classic STDP data set of Bi and Poo [25]; then it

illustrates how the G-DHL components found by the fitting procedure can be heuristically use-

ful to search for the biophysical mechanisms underlying a given STDP data set; and finally it

shows how to apply the G-DHL rule to systematically capture different aspects of all the STDP

data sets reviewed by Caporale and Dan [18] (such as their temporal span, long-term potentia-

tion/depression, and variability around zero inter-spike intervals—e.g. sharp depression-

potentiation passages, non-learning plateaus, Hebbian/anti-Hebbian learning).

The Section ‘Discussion’ closes the paper by analysing the main features of G-DHL and its

possible development. All software used for this research is available for download from inter-

net (https://github.com/GOAL-Robots/CNR_140618_GDHL).

Methods

G-DHL and the systematisation of DHL

Existing differential Hebbian learning rules. Since DHL rules have been contrasted to

the Hebb rule [5], we start by presenting the continuous-time formulation of it:

_w ¼ ð1=tÞ � u2 � u1; ð1Þ

where u1 and u2 are respectively the pre- and post-synaptic neuron activations, and _w is the

instantaneous change of the connection weight. Since this Hebb rule captures the pre- and

post-synaptic neuron activation co-occurrence, it is ‘symmetric in time’: the more two neurons

activate distantly in time, the lower the synaptic update, independently of the temporal order

of their activation. Indeed, even in this dynamical formulation the Hebb rule is not a DHL rule

(see Section 1.1 in S1 Supporting Information).

In a relevant work, Kosco [5] highlighted some key elements of Differential Hebbian Learn-

ing (DHL), also introducing this name. First, he shifted attention from correlation to causality

and as a consequence stressed the importance of considering that a “cause temporally precedes

its effect”. Second, he proposed that to capture causality one should focus on concomitant vari-
ations rather than on concomitant activations as in the Hebb rule. He thus proposed a learning

rule leading to “impute causality” when the activations of the two neurons change in the same

direction, and to impute “negative causality” when they move in opposite directions, based on

the first derivative of the activation of the neurons:

_w ¼ ð1=tÞ � _u2 � _u1: ð2Þ

Kosko learning rule indeed implies strengthening of the synapse when the pre- and post-

synaptic neurons activate at the same time, as their activations increase/decrease at the same

time, and to weaken it when their activations do not fully overlap in time (see Section 1.1 in S1

Supporting Information). However, the rule’s learning kernel is symmetric in time as it does

not discriminate the sign of the temporal difference between the events.

The timing of events is a central element of most quantitative definitions of causality (e.g.,

in Granger causality, a popular statistical approach to capture ‘causality’ [26]). The importance

of the temporal ordering of neural events was articulated by Porr, Wörgötter and colleagues
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[6, 7] who proposed the learning rule:

_w ¼ ð1=tÞ � _u2 � u1: ð3Þ

This rule leads to an asymmetric learning kernel (see Section 1.1 in S1 Supporting Informa-

tion). Indeed, when the activation u1 of the pre-synaptic neuron has a transient increase before
an increase in the activation u2 of the post-synaptic neuron, then u1 mainly overlaps with the

positive portion of the derivative _u2, rather than with its following negative part, so the weight

is enhanced. Conversely, if u1 has a transient increase after a transient increase of u2, then u1

mainly overlaps with the negative portion of the derivative _u2, so the weight is depressed.

This mechanism based on the derivative works only if the activations of the neurons exhibit a

smooth increase followed by a smooth decrease (‘event’). In the case of a sharp activation (e.g.,

a neuron spike), such smoothness can be obtained by filtering the signals before applying the

rule, for example with a low-pass filter. This filtering indeed formed an integral part of the

original proposal of the rule [6]. For higher clarity and control, however, here we will separate

the core of DHL rules from the filters possibly applied to the signals before the rules.

As discussed in [7], Porr-Wörgötter rule has a close relation with learning rules previously

proposed within the reinforcement learning literature [27, 28]. Indeed, to our knowledge

Barto and Sutton [29] were the first to propose various learning rules that might be now con-

sidered DHL rules (although not yet called and studied as such), for example to model how in

classical conditioning experiments animals learn to anticipate an unconditioned stimulus y on

the basis of a cue x: Dw ¼ _y � �x (where �x is a decaying memory trace).

The different behaviour of the three rules presented above can be best understood by con-

sidering their learning kernels. As mentioned in the introduction, learning kernels can be

directly expressed as mathematical relations involving the time separating the events, Δt, and

the resulting synaptic update, Δw. For example phenomenological models of STDP often use

an exponential function to express such a relation [13, 14]:

Dw ¼

(
e� Dt

t if Dt > 0

� eDt
t if Dt � 0:

ð4Þ

In the context of DHL, learning kernels can be computed by integrating (summing) over

time the multiple instantaneous weight changes caused by the learning rule:

Dw ¼
Z þ1

� 1

ð1=tÞ _wðu1ðtÞ; u2ðtÞÞ dt; ð5Þ

where _wð�; �Þ is the function giving the instantaneous weight change produced by the learning

rule, as given, for example, by Eqs 1, 2 or 3. Fig 1 shows the learning kernels of the Hebb,

Kosko, and Porr-Wörgötter learning rules obtained with events based on a cosine function.

Only the Porr-Wörgötter rule causes a positive synapse update for Δt> 0 and a negative one

for Δt< 0.

The Porr-Wörgötter learning rule was the first DHL rule used to model empirical data on

STDP [16]. In this respect, its learning kernel resembles the kernel observed in the most stud-

ied form of STDP [25]. This resemblance was also used to formulate hypotheses about the bio-

physical mechanisms underlying the target STDP data [16], an interesting idea also followed

here.

The systematisation of Hebb rules. Given the large number and heterogeneity of Hebb

rules, Gerstner and Kistler [30] proposed a way to systematise many of them into one
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composite formula. We now briefly describe the approach they used because the formulation

of the G-DHL rule shares some analogies with it.

The rule proposed by Gerstner and Kistler combines the possible multiplications between

the power functions of degree 0, 1, and 2 of the activations of the pre- and post-synaptic neu-

rons. The elements multiplied are therefore fu0
1
; u1

1
; u2

1
g for the pre-synaptic neuron and

fu0
2
; u1

2
; u2

2
g for the post-synaptic neurons (the subscript indexes, ‘1’ and ‘2’, respectively refer

to the pre-/post-synaptic neurons; the superscript indexes indicate powers). The proposed rule

was then:

Dw ¼ a0;0þ

a1;0 � u1 þ a0;1 � u2þ

a1;1 � u1 � u2 þ a2;0 � u2
1
þ a0;2 � u2

2

ð6Þ

Multiplications involving higher-degree powers, and other elements of the sum, might be

needed to include other Hebb rules. For example, a power 4 is needed to represent an interest-

ing Hebb rule implementing independent component analysis [31]: Δw = u1 � u2
3 − w.

General differential Hebbian learning (G-DHL) rule. While the Gerstner-Kistler’s sys-

tematisation relies on power functions of neuron activations, the systematisation of G-DHL

relies on the positive and negative parts of the derivatives of such activations. To show this, we

first give a more accurate definition of the events on the basis of which such derivatives are

computed. As mentioned, an event is intended here as a portion of the signal, lasting for a

relatively short time, featuring a monotonically increasing value followed by a monotonically

decreasing value. The Section ‘From neural signals to events’ discusses how G-DHL can be

applied to any signal, for example directly to the neural signals, thus responding to events

embedded in them, or to pre-filtered signals, thus responding to events generated by the filters.

Events are important for G-DHL because it uses the increasing part and the decreasing part

of the pre- and post-synaptic events to capture, through the derivatives, their temporal rela-

tion. Indeed, the increasing part of an event marks its starting portion whereas its decreasing

part marks its following ending portion (see Section 1.2 in S1 Supporting Information). The

time overlap between these portions of the events allows G-DHL to detect their temporal rela-

tion, as we now explain in detail.

Fig 1. Learning kernels produced by the rules of Hebb, Kosco, and Porr-Wörgötter. Each graph has been plotted by

computing the connection weight update resulting from different Δt inter-event delays ranging in [−1.0, 1.0]. Events were

represented by a cosine function ranging over (−π, +π) and suitably scaled and shifted (see Section 1.1 in S1 Supporting

Information for details).

https://doi.org/10.1371/journal.pcbi.1006227.g001
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G-DHL detects the increasing part of an event in the neural signal ui on the basis of the pos-

itive part of the first derivative _ui, namely with ½ _ui�
þ

(where [�]+ is the positive-part function
for which [ui]+ = 0 if ui< 0 and [ui]+ = ui if ui� 0). G-DHL detects the decreasing part of the

event on the basis of the absolute value of the negative part of the first derivative of the signal,

namely with ½ _ui�
�

(where [�]− is the negative-part function for which [ui] = 0 if ui> 0 and

[ui]− = −ui if ui� 0). Assuming the neural signals ui are positive (if they are not, they can be

suitably pre-processed to this purpose), and since the functions [�]+ and [�]− always return pos-

itive or null values, we can assume G-DHL always works on positive or null values.

The basic G-DHL rule studied here is formed by combining through multiplication the

pre-synaptic elements up to the first order derivative, fu1; ½ _u1�
þ
; ½ _u1�

�
g, with the post-synaptic

elements up to the first order derivative, fu2; ½ _u2�
þ
; ½ _u2�

�
g. This generates 3 × 3 = 9 possible

combinations (but one combination is not used, as explained below) that are then summed.

The G-DHL formula changing the synapse between two neurons is then:

_w ¼ sp;p � ½ _u1�
þ
� ½ _u2�

þ
þ sp;n � ½ _u1�

þ
� ½ _u2�

�
þ

sn;p � ½ _u1�
�
� ½ _u2�

þ
þ sn;n � ½ _u1�

�
� ½ _u2�

�
þ

Zs;p � u1 � ½ _u2�
þ
þ Zs;n � u1 � ½ _u2�

�
þ

Zp;s � ½ _u1�
þ
� u2 þ Zn;s � ½ _u1�

�
� u2;

ð7Þ

where σ and η are coefficients, _w is the instantaneous change of the synapse, u1 and u2 are the

activations of respectively the pre- and post-synaptic neurons, _u1 and _u2 are their derivatives,

and the subscript indexes {s, p, n} refer respectively to the neuron activation ui, its derivative

positive part ½ _ui�
þ

, and its derivative negative part ½ _ui�
�

.

The σ and η coefficients are very important as: (a) they establish, with their positive/negative

sign, if the components to which they are associated either depress or enhance the synapse: in

a biological context they establish if the component causes a ‘long term potentiation’—LTP—

or a ‘long term depression’—LTD (see the Section ‘Results’); (b) they assign a weight to the

contribution of each component to the overall synaptic change. On this basis, the coefficients

allow the generation of many different learning kernels. The fact that the rule is based on a lin-

ear combination of kernels also facilitates its application. In particular, it facilitates setting its

parameters manually or through automatic search procedures.

G-DHL is formed by eight components: four components involving derivative×derivative

multiplications and coefficients σ, henceforth called differential components; and four compo-

nents involving signal×derivative multiplications and coefficients η, henceforth called mixed
components. The signal×signal combination is not considered as it gives rise to the ‘non-differ-

ential’ Hebb rule that is already obtained by two differential components, namely the ‘positive

derivative×positive derivative’ component and the ‘negative derivative×negative derivative’

component. In general, any DHL rule based on the multiplication between two events that are

derived in the same way from the pre- and post-synaptic signals leads to a symmetric Hebb

rule that maximally changes the synapse when the two events coincide in time.

Fig 2 shows the learning kernels of the G-DHL components. Some components overlap

because here we considered symmetric events (cosine functions). Section 1.3 in S1 Supporting

Information shows the learning kernels of the different G-DHL components resulting from

both symmetric and asymmetric events: in the asymmetric case the eight kernels do not

overlap.

Analogously to the combination of exponential terms of the neural activations in [30], the

G-DHL rule could be extended by considering derivatives beyond the first order, i.e., by
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multiplying the pre-synaptic elements fu1; ½ _u1�
þ
; ½ _u1�

�
; ½€u1�

þ
; ½€u1�

�
; :::g with the post-synaptic

elements fu2; ½ _u2�
þ
; ½ _u2�

�
; ½€u2�

þ
; ½€u2�

�
; :::g [32, 33]. Here we focus only on DHL involving first-

order derivatives: the study of DHL rules involving higher-order derivatives might be carried

out in the future.

The G-DHL captures different DHL rules. Fig 2 illustrates that the G-DHL kernels cover

the time intervals around the critical value of zero in a regular fashion. This implies that the

linear combination of the kernels implemented by the rule through the σ and η coefficients

can be very expressive, i.e., it is able to capture several different possible temporal relations

between the pre- and post-synaptic events (hence the name General DHL—G-DHL). Linearly

combining kernels is commonly used in machine learning to approximate target functions, for

example, in radial-basis-function neural networks and support vector machines [34, 35]. The

number of G-DHL kernels is small compared to the number used in common machine learn-

ing algorithms, but as we shall see it is rich enough to incorporate existing DHL rules and to

model a large set of STDP phenomena.

Note that although this relationship to kernel methods is relevant, it is also important to

consider that the kernels of the G-DHL rule are not directly designed to capture the ‘time-

delay/weight-update’ mapping of a specific STDP dataset, as it would happen in machine

learning kernel-based regression methods. Rather, the G-DHL kernels are generated by the

step-by-step interaction of different combinations of the pre-/post-synaptic events and their

derivative positive/negative parts. Thus, the fact that the resulting kernel profiles form a set of

basis functions covering the inter-event interval in a regular fashion is a rather surprising and

welcome result. As shown in Section 1.3 in S1 Supporting Information, if the events are asym-

metric then none of the eight kernels overlap and they form an even more dense set of regu-

larly distributed basis functions.

Fig 2. Superposition of learning kernels of the G-DHL rule components. The learning kernels considered correspond

to different inter-event intervals, with events represented by a cosine function as in Fig 1. The kernels are indicated with

pairs of letters referring respectively to the pre- and post-synaptic neuron, where ‘S’ refers to [ui], ‘P’ to ½ _ui�
þ

, and ‘N’ to

½ _ui�
�

. PS/SN kernels overlap, and so do SP/NS kernels.

https://doi.org/10.1371/journal.pcbi.1006227.g002
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The DHL rules proposed in the literature are special cases of the G-DHL rule. As a first

case, we consider the Kosko learning rule [5] (Eq 2). G-DHL generates this rule with the fol-

lowing parameter values:

sp;p ¼ 1; sp;n ¼ � 1; sn;p ¼ � 1; sn;n ¼ 1;

Zs;p ¼ 0; Zs;n ¼ 0; Zp;s ¼ 0; Zn;s ¼ 0;
ð8Þ

for which the G-DHL rule becomes:

_w ¼ ½ _u1�
þ
� ½ _u2�

þ
� ½ _u1�

þ
� ½ _u2�

�
� ½ _u1�

�
� ½ _u2�

þ
þ ½ _u1�

�
� ½ _u2�

�
¼

½ _u1�
þ
�
�
½ _u2�

þ
� ½ _u2�

�
�
þ ð� ½ _u1�

�
Þ �
�
½ _u2�

þ
� ½ _u2�

�
�
¼ _u2 � _u1;

ð9Þ

where _u2 � _u1 is Kosco DHL rule.

As a second case, we consider the Porr-Wörgötter rule [6] (Eq 3). The G-DHL generates

this rule using the following coefficients:

sp;p ¼ 0; sp;n ¼ 0; sn;p ¼ 0; sn;n ¼ 0

Zs;p ¼ l; Zs;n ¼ � l; Zp;s ¼ 0; Zn;s ¼ 0;
ð10Þ

where λ is a positive parameter. With these parameters the G-DHL rule becomes:

_w ¼ l � u1 � ½ _u2�
þ
� l � u1 � ½ _u2�

�
¼

l � u1 �
�
½ _u2�

þ
� ½ _u2�

�
�
¼ l � _u2 � u1;

ð11Þ

where _u2 � u1 is the Porr-Wörgötter DHL rule.

The G-DHL rule can generate many other possible DHL rules. As an example, Fig 3 shows

how different combinations of the G-DHL components can generate a ‘causal’ rule (similar to

the Porr-Wörgötter rule), a truly ‘anticausal’ rule (using Kosko’s expression), a ‘coincidence-

detection’ rule (similar to the Kosko rule), and a causal rule not changing the synapse for inter-

vals around zero (called here ‘flat-at-zero causal rule’). These examples were not chosen arbi-

trarily: the Section ‘Results’ will show that each of these rules models one class of STDP

processes found in the brain.

From neural signals to events. We have seen that G-DHL operates on neural events

defined as relatively short portions of a signal that first monotonically increases and then

monotonically decreases. This aspect of the G-DHL requires some specifications. First, the fact

that the G-DHL operates on events might seem to restrict its applicability. This is not the case

because [36]: (a) signals can carry information only if they change; (b) events can be generated

from any type of signal change, as we show here.

Second, there are different possible signal changes that an artificial neural network or the

brain might need to process: which changes are relevant depends on the specific filters applied

to the signals before they enter the G-DHL rule. For example, the models proposed in [6] and

[37] use bandpass/resonator filters. Many other filters could be used to detect different changes

[36]. In the brain, these filters might be implemented by the multitude of electro-chemical pro-

cesses responding in cascade to neuron activation and operating up-stream with respect to

other processes implementing the DHL synaptic update (see [38, 39] for some reviews).

Clearly distinguishing between the information processing done by filters, which associate

events to the features of interest of the neural signals, and the effects of G-DHL, which modify

the synapse on the basis of the temporal relation between those events, is important for best

understanding G-DHL. It is also important for the application of G-DHL that involves a

sequence of two operations related to such distinct functions: (a) the application of filters to
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detect the events of interest (in some cases this operation might be omitted, as discussed

below); (b) the application of the G-DHL to the resulting signals encompassing such events.

The function of filters related to the generation of events should not be confused with their

possible second use to create memory traces and smooth signal with discontinuities, e.g. neural

signals with spikes (see the Section ‘Traces: overcoming the time gaps between events’).

Fig 4 presents the results of two simulations showing how different filters can be applied to

the same signals to detect different changes of interest, and how this leads to different synaptic

updates even when using the same DHL rule. The example also shows that the G-DHL can be

applied to any type of complex signal beyond the simple ones used in previous sections. The

two simulations are implemented through three steps: (a) both simulations start from the

same pair of signals: these might represent the activation of two firing-rate neural units linked

by a connection; (b) the simulations apply different filters to those signals: the first applies a fil-

ter to both signals that generates an event for each ‘increase change’; the second applies a filter

to the first signal that generates an event for each ‘increase change’, and a filter to the second

signal that generates an event for each ‘decrease change’; (c) both simulations then use the

Fig 3. Examples of learning kernels generated by the G-DHL rule. The signals involved events generated with a cosine

function (as in Fig 1). In the examples, the G-DHL coefficients were set as follows (the rule names are arbitrary): Causal

rule: σp,p = σp,n = σn,p = σn,n = ηp,s = ηn,s = 0, ηs,p = 1, ηs,n = −1. Anticausal rule: σp,p = σp,n = σn,p = σn,n = ηs,p = ηp,s = 0, ηs,n =

1, ηn,s = −1. Coincidence rule: ηs,p = ηs,n = ηp,s = ηn,s = 0, σp,p = σn,n = 1, σp,n = σn,p = −1. Flat-at-zero rule: σp,p = σn,n = ηs,p =

ηs,n = ηp,s = ηn,s = 0, σp,n = −1, σn,p = 1.

https://doi.org/10.1371/journal.pcbi.1006227.g003
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same DHL rule to compute the update of the connection weight, here the ‘causal’ Porr-Wör-

götter DHL rule (but any other DHL rule might have been used to show the point).

The results show that in the first simulation the connection weight tends to decrease

because the increase-changes of the first signal tend to follow the increase-changes of the sec-

ond signal. In contrast, in the second simulation the connection weight tends to increase as the

increase-changes of the first signal tend to anticipate the decrease-changes of the second-sig-

nal. Overall, the simulations show how deciding on the filters to use to associate events to the

changes of interest is as important as deciding on which DHL rules to use.

The simulations also show how, through the use of suitable filters, one can apply G-DHL to

any pair of signals independently of their complexity. The G-DHL can also be directly applied

to the initial signals without any pre-filtering, as done in the examples of the Section ‘The

G-DHL captures different DHL rules’. In this case the rule will work on the events already

Fig 4. Different filters applied to the same neural signals detect different desired changes and produce different events

on which the G-DHL rules can work. The two columns of graphs refer to two different simulations. The simulations start

from the same neural signals (top graphs) but use different filters (middle graphs) leading to a different synaptic update even

if the same DHL rule is applied (bottom graphs). Top graphs: each graph represents two signals u1 and u2 each generated as

an average of 4 cosine functions having random frequency (uniformly drawn in [0.1, 3]) and random amplitude (each cosine

function was first scaled to (0, 1) and then multiplied by a random value uniformly drawn in (0, 1)). Middle graphs: events

resulting from the filters ½ _u1�
þ

and ½ _u2�
þ

(left) and from the filters ½ _u1�
þ

and ½ _u2�
�

(right; these filters should not be confused

with the analogous filters used within the G-DHL rule). Bottom graphs: step-by-step update of the connection weight (thin

curve), and its level (bold curve), obtained in the two simulations by applying the Porr-Wörgötter DHL rule to the filtered

signals.

https://doi.org/10.1371/journal.pcbi.1006227.g004
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present in the signals. G-DHL can even be applied to capture the temporal relations between

changes not resembling ‘canonical’ events (i.e., a transient increase followed by a transient

decrease). For example, assume there is a first signal having a constant positive value and a sec-

ond signal that is generally constant but also increases of a random amount at each second.

Even if none of the two signals exhibits canonical events, one could still apply some G-DHL

rule components to capture some information. For example, the component ½u1�½ _u2�
þ

would

train a connection weight keeping track of the sum of all increases of the second signal. In gen-

eral, however, the lack of canonical events prevents a useful application of some G-DHL com-

ponents (e.g., in the example just considered the G-DHL differential components would leave

the connection weight unaltered).

A second observation concerns the fact that in the simulations of Fig 4 we used ½ _u�þ and

½ _u�� as filters to detect events in the signals. These are the same functions used inside the

G-DHL rule. This is not by chance. Indeed, when such functions are used inside the G-DHL

they are employed to detect two ‘sub-events’ inside the original-signal neural event, namely

its ‘increasing part’ and its ‘decreasing part’ that are then temporally related with those of the

other signal. This observation suggests that one might generate other versions of the G-DHL

rule by using other types of filters, in place of ½ _u�þ and ½ _u�� , inside the rule itself.

Traces: Overcoming the time gaps between events. A brain or an artificial neural net-

work might need to capture the relations between events separated by a time gap. In this case,

G-DHL, like any other learning process, can capture the temporal relation between the events

only if the first event leaves some ‘memory representation’ (or ‘eligibility trace’) that lasts after

the first event ceases for a time sufficient to overlap at least in part with the second event.

Memory traces, obtained with suitable filters, have been largely employed in STDP modeling

and machine-learning (e.g. [28, 40]).

Fig 5 shows an example of how DHL rules applied to events separated by a time gap cannot

produce a synapse change, whereas they can if applied to memory traces of them. The trace of

each event was obtained with a leaky integrator filter (called ‘leaky accumulator’ if discrete

time is considered), one of the most popular and simple operators usable to this purpose

(other non-memoryless operators might be used to this purpose, [36]). The implementation of

traces can be obtained through the same filter functions used to create events. This means that

Fig 5. Example of how eligibility traces allow the G-DHL rule to capture temporal interactions between events separated by

a time gap. Left: Two neural signals exhibiting an event each, and the related traces. The trace signals mi,t at time step t were

numerically computed by applying a leaky accumulator process to the initial signals ui,t as follows: mi,t = mi,t−1 + (Δt/τ) � (−mi,t−1

+ ui,t−1), with Δt = 0.001 and τ = 1. Right: the connection weight resulting from the application of the G-DHL rule component

½u1�½ _u2�
þ

to the initial signals or to their memory traces.

https://doi.org/10.1371/journal.pcbi.1006227.g005
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the same filter can be used for two purposes: capturing the events of interest and facing the

time-gap problem.

Using G-DHL to fit STDP data sets

As discussed in the introduction, different types of neurons exhibit surprisingly different

STDP learning kernels. For this reason we tested the flexibility of G-DHL by using it to capture

several different STDP learning kernels involving pairs of pre- and post-synaptic spikes. In the

future G-DHL could be extended to capture STDP processes involving spike triplets or qua-

druplets ([41]; see [42] for a model) by considering three or more multiplication elements

rather than only two as done here.

To apply G-DHL to spike pairs, we first outline the procedure used to derive the formulas

to compute G-DHL analytically, rather than numerically as done so far. The procedure is illus-

trated in detail in Section 2.1 in S1 Supporting Information in the case in which one assumes

that spikes and traces are described with some commonly used formulas. Sections 2.7 and 2.8

in S1 Supporting Information show a method that leverages these formulas to use G-DHL to

fit STDP data sets; examples of this fitting are shown in the Section ‘Results’.

Before presenting the formulas, we discuss two important points. The closed-form formulas

for synaptic updates by the G-DHL rule have two main advantages. First, they allow the mathe-

matical study of the G-DHL rule (see Sections 2.2 and 2.6 in S1 Supporting Information).

Second, the formulas allow a computationally fast application of G-DHL by computing the

synaptic update through a single formula rather than as a sum of many step-by-step synaptic

updates as done in its numerical application, an advantage exploited in the computationally

intensive simulations of the Section ‘Results’.

A second observation concerns the relation between the G-DHL explicit formulas and

phenomenological models discussed in the introduction. The G-DHL explicit formulas have

the form Δw = f(Δt) typical of phenomenological models. This shortcut is possible because

spikes have a fixed shape: this implies that Δt is the only information relevant for computing

G-DHL. The resulting synaptic update is however the same as the one that would be obtained

by numerically simulating the step-by-step interaction between the pre- and post-synaptic

neural events mimicking more closely what happens in the real brain. Therefore, the possibility

of computing Δw = f(Δt) formulas for DHL rules does not violate what we said in the introduc-

tion, namely that G-DHL captures the mechanisms causing the synaptic update at a deeper

level with respect to phenomenological models.

Computing G-DHL explicit formulas for spike pairs. The procedure to compute the

explicit formulas of G-DHL leads to different results depending on the mathematical expres-

sion of the spikes and eligibility traces. The steps of the procedure are however general: (a)

decide the mathematical function to represent all spikes and a second function to represent

all eligibility traces: this is necessary to abstract over their shape; (b) compute the time deriva-

tives of the eligibility traces: this is necessary to compute the G-DHL components; (c) for each

G-DHL component, identify the zero points of the functions corresponding to the pre-/post-

synaptic trace signals, and of their derivative positive/negative parts: these points are needed to

compute the definite integrals of the next step; (d) for each G-DHL component, formulate the

definite integrals (usually 3 to 4) ‘summing up over time’ the instantaneous synaptic update

of the component for a given Δt: the lower and upper limits of these integrals depend on the

time-overlap between the signal/derivative parts considered by the component and can be dif-

ferent for different Δt values; (e) for each G-DHL component, compute the explicit formulas

of its definite integrals, e.g. using a symbolic computation software. Notice how this procedure

could be applied to only the sub-set of G-DHL components of interest.
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Section 2.1 in S1 Supporting Information applies the procedure to compute all G-DHL

component formulas assuming: (a) a spike represented with a Dirac δ-function, as commonly

done in the literature [14, 43]; (b) an eligibility trace represented by an α-function, as often

done to model the excitatory post-synaptic potentials (EPSP) evoked by pre-synaptic spikes

[14, 43]. Sections 2.2 and 2.4 in S1 Supporting Information present the formulas computed

under these conditions in the cases in which the time constants of the eligibility traces, τ1 and

τ2, either differ or are equal.

The explicit formulas can be used to compute the synaptic update for a given Δt, and hence

yield the learning kernels of the G-DHL components, as shown in Figs 6 and 7. For each com-

ponent, the figures show the case in which τ1 = τ2 and also two example cases in which τ1 > τ2

and τ1 < τ2. In the figures, the σ and η parameters are both set to +1, thus producing a synaptic

enhancement. Negative values would produce a synaptic depression. The maximum of each

curve is also shown: this can be computed analytically (see Sections 2.3 and 2.5 in S1 Support-

ing Information) and marks the delay between the pre- and post-synaptic events causing the

maximum change.

The analysis of the figures and formulas indicates that the different G-DHL components

have distinct features. These differences are at the basis of the G-DHL capacity to generate dif-

ferent STDP learning kernels and to allow one to select the G-DHL components, or combina-

tions of them, required to obtain different synaptic updates in artificial neural networks. The

features can be summarised as follows. The component ‘pp’ is strongly Hebbian, leading to a

Fig 6. Learning kernels of the four G-DHL differential components for a pair of pre-/post-synaptic spikes. The three

columns of graphs refer respectively to: t1 ¼
3

2
t2; τ1 = τ2; t1 ¼

3

4
t2. The four rows of graphs refer to the G-DHL different

components: ‘p’ indicates the positive part of the eligibility-trace derivative and ‘n’ indicates its negative part. Small gray circles

indicate maximum synaptic changes.

https://doi.org/10.1371/journal.pcbi.1006227.g006
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sharp synaptic update for Δt values close to zero and always peaking at zero. The components

‘np’ and ‘pn’ change the synapse only for respectively Δt> 0 and Δt< 0, and leave it unaltered

for Δt values with opposite signs. The component ‘nn’ is Hebbian, like pp, but it has a larger Δt
scope; for τ1 > τ2 and τ1 < τ2 it leads to a maximum synaptic change for respectively positive

and negative Δt. The components ‘ps’ and ‘sp’ lead to strong synaptic updates for respectively

negative and positive Δt values close to zero, and to a modest synaptic change for Δt values

having opposite signs. The components ‘ns’ and ‘sn’ are similar to the previous two compo-

nents, but in this case they cause a relevant synaptic change for Δt values having opposite

signs.

Automatic procedure to fit STDP data sets with G-DHL. G-DHL can be used to obtain

particular STDP kernels by hand-tuning its parameters, for example to fit STDP data to some

degree of approximation. This can be done on the basis of the synaptic updates caused by the

different G-DHL components, shown in Figs 6 and 7, and it is facilitated by the linear-combi-

nation structure of the rule.

Alternatively, one can employ an automatic procedure to fit the data more accurately. To

show this, we used a procedure illustrated in detail in Sections 2.7 and 2.8 in S1 Supporting

Information and for which we now provide an overview. For a given STDP data set, the proce-

dure searches for the best combination of the rule components (combinations can have from 1

to 8 components), their parameters σ and η, and the parameters κ, τ1, and τ2. The search for

the best combination of components employs a model-comparison approach using the Bayes-
ian information criterion (BIC; [44]) to ensure an optimal balance between model complexity

(number of components, and hence parameters, used) and accuracy of fit. The search for the

Fig 7. Learning kernels generated by the four mixed components of the G-DHL rule applied to a pair of pre-/post-

synaptic spikes. Graphs are plotted as in Fig 6, with ‘s’ indicating the eligibility-trace signal.

https://doi.org/10.1371/journal.pcbi.1006227.g007
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parameter values is done via a genetic algorithm [45] optimising the accuracy of fit as measured

by the fraction of variance unexplained (FVU).

The Section ‘Results’ shows how this procedure produces an accurate and stable fit of sev-

eral different STDP data sets. This outcome might appear to be limited by the fact that the

G-DHL rule involves many parameters. This is not the case because: (a) G-DHL can be seen as

a set of DHL rules corresponding to its eight components; (b) each combination of the G-DHL

components (formed by 1 to 8 components) is considered as a single model to perform an

independent regression and the model comparison procedure penalises the models using a

higher number of parameters; (c) as a consequence, the best model usually has only few com-

ponents/parameters, about 2 or 3 (in addition to κ, τ1, τ2).

Results

Using G-DHL to fit the STDP data set from Bi and Poo

The procedure for the automatic fit of STDP data sets was first employed to fit the classic

STDP data set of Bi and Poo from rat hippocampal neurons [25]. Fig 8a summarises the results

(for ease of reference, henceforth we will refer to synapse strengthening/weakening as ‘LTP—

long term potentiation’ and ‘LTD—long term depression’). The model comparison technique

selected two G-DHL components: an LTP component (σpp = 0.73) and an LTD component

(ηps = −0.025). The parameters σ and η differ in scale as they refer to differential and mixed

G-DHL components involving signal-derivative or derivative-derivative multiplications.

Fig 8b shows the target data and their fit obtained with the G-DHL components and param-

eters shown in Fig 8a. The G-DHL regression fits the data accurately (FVU = 0.2725). While

the original paper performed the fit with the usual exponential function for both positive and

negative Δt, the G-DHL regression captures the LTP with the σpp ‘sharp’ component (Fig 6),

concentrated on small positive inter-spike intervals, and the LTD with the ηps = −0.025 ‘softer’

component (Fig 7), concentrated on negative intervals.

Searching for biophysical mechanisms underlying STDP

We now illustrate with an example the idea of using the components found by the G-DHL

regression to heuristically search for biophysical mechanisms possibly underlying a target

STDP data set. This example involves the Bi and Poo’s data set [25] analysed in the previous

section. The idea relies on the observation that each multiplication factor of the G-DHL com-

ponents identified by the regression procedure has a temporal profile that might correspond

to the temporal profile of the pre-/post-synaptic neuron electrochemical processes causing the

synaptic change.

The steps of the procedure used to search the biophysical mechanisms are as follows: (a)

identify with an automatic procedure the G-DHL components and parameters fitting the tar-

get STDP data set; (b) define the temporal profile of the two pre-/post-synaptic factors of each

found component, and the LTP/LTD effects caused by the component; (c) identify possible

biophysical processes having a temporal profile similar to the one of the identified factors; (d)

design experiments to verify if the hypothesised biophysical processes actually underlie the tar-

get STDP phenomenon in the brain. We now give an example of how to apply the steps ‘a’ and

‘b’, and some initial indications on the step ‘c’, in relation to the Bi and Poo’s data set [25]. The

example aims to only furnish an illustration of the procedure, not to propose an in-depth anal-

ysis of this STDP data set.

Regarding step ‘a’, Fig 8 shows that the G-DHL regression identified two LTP and LTD

components.
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Regarding step ‘b’, Fig 9 shows the temporal profile of the factors of the two components.

The first component is a ‘positive-derivative/positive-derivative’ component (½ _u1�
þ
½ _u2�

þ
; Fig

9a, left graph) with two factors (Fig 9b, left graph): (a) a relatively long pre-synaptic factor

(½ _u1�
þ

) lasting about 30 ms; (b) a shorter post-synaptic factor (½ _u2�
þ

) lasting about 7 ms. These

two factors, amplified by a positive coefficient (σpp = + 0.73), produce LTP concentrated on

small positive inter-spike intervals (0 ms< Δt< 30 ms; Fig 9a, left graph).

The second component is a ‘positive-derivative/signal’ component (½ _u1�
þu2; Fig 9a, right

graph) with other two factors (Fig 9b, right graph): (a) a relatively long pre-synaptic factor

(½ _u1�
þ

) lasting about 30 ms; (b) a longer post-synaptic factor (u2) lasting about 50 ms. The two

factors, amplified by a negative coefficient (ηps = −0.025), produce LTD covering negative-pos-

itive inter-spike intervals (−30ms< Δt< 20ms; see Fig 9a, right graph).

Fig 8. Results of the model comparison and fitting procedures used to regress the classic STDP data set from Bi

and Poo [25]. (a) Data on the left: regression results. Top-right graph: BIC values obtained using 1 to 8 G-DHL

components. Bottom-right graph: size of the parameters of the selected components. (b) Left graph: data points and

exponential regression from [46] (reproduced from data). Right graph: G-DHL fit using the parameters in ‘a’.

https://doi.org/10.1371/journal.pcbi.1006227.g008
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When the two components are summed, LTP more than cancels out LTD for positive

delays (0ms< Δt< 20ms). This causes the sharp passage from LTD to LTP around the critical

Δt values close to zero, which characterise the target kernel (Fig 8).

Regarding step ‘c’ of the procedure, directed to identify possible biological correspondents

of the component factors identified in step ‘b’, we now discuss some possible candidate mecha-

nisms that might underlie the factors identified for the Bi and Poo’s data set. Note that these

brief indications are only intended to show the possible application of the procedure, not to

make any strong claim on the possible specific mechanisms underlying such STDP data set.

Pioneering studies on hippocampus have shown that a repeated stimulation of the perfor-

ant path fibres enhances the population response of downstream dentate granulate cells (long-
term potentiation–LTP; [47–49]). LTP also takes place in other parts of brain such as the cortex

[50], amygdala [51], and the midbrain reward circuit [52]. Other studies have shown the exis-

tence of long-term depression (LTD), complementary to LTP, in various parts of brain, for

example hippocampus [53, 54] and motoneurons [55]. More recent research has shown that

LTP and LTD, and their intensity, depend on the duration of the temporal gap separating the

pre- and post-synaptic spikes (spike time-dependent plasticity—STDP; e.g. [56], see [18] for a

review). The relation between the time-delay and the synaptic change depends on the types of

Fig 9. G-DHL components, and related factors, for the Bi and Poo’s learning kernel. (a) Components found by the

G-DHL regression of the Bi and Poo’s data set [25]. (b) Temporal profile of the factors of the components shown in ‘a’,

plotted for the Δt that causes the maximum synaptic change.

https://doi.org/10.1371/journal.pcbi.1006227.g009
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neurons involved (e.g., glutamatergic vs. GABAergic neurons [57, 58]), the position of the syn-

apse (e.g., [59]), and the experimental protocols used (e.g., [60]).

Early findings that blocking NMDA receptors (NMDARs) can prevent both LTP and LTD,

while a partial blocking can turn an LTP effect into an LTD, has led to the proposal of several

calcium-based models of synaptic plasticity (e.g., [61–64]). One view proposes that two inde-
pendent mechanisms can account for the classic STDP learning kernel [19, 65]. This is in line

with the two components, and their factors, found by our G-DHL based regression of Bi and

Poo data set. The first component was an LTP ‘positive-derivative/positive-derivative’ compo-

nent (½ _u1�
þ
½ _u2�

þ
) formed by two factors. The first factor was a pre-synaptic factor (½ _u1�

þ
) last-

ing about 30 ms, compatible with a short-lived effect involving the pre-synaptic glutamatergic

neuron spike and affecting the post-synaptic NMDARs [66]. The second factor was a post-

synaptic factor (½ _u2�
þ

) lasting about 7 ms, compatible with a back-propagating action potential

(BAP; [67]). The second component was a ‘positive-derivative/signal’ LTD component

(½ _u1�
þu2) formed by two factors: a relatively slow pre-synaptic element, (½ _u1�

þ
), lasting about

30 ms, and a slow post-synaptic element, (u2), lasting about 50 ms. Different biological mecha-

nisms might underlie these two factors. In this respect, there is evidence that post-synaptic

NMDARs might not be necessary for spike-timing-dependent LTD [68], while this might be

caused by metabotropic glutamate receptors (mGluR; [69]), voltage gated calcium channels

(VGCC; [25, 69]), pre-synaptic NMDAR [70], or cannabinoid receptors [68, 69].

Modelling different STDP classes with G-DHL

We tested the generality of G-DHL by fitting all STDP kernels reported in the review of Capor-

ale and Dan [18]. The data sets addressed in this review encompass many different STDP

experiments reported in the literature and proposes a taxonomy to group them into distinct,

and possibly exhaustive, classes. The taxonomy is first based on the excitatory or inhibitory

nature of the pre- and post-synaptic neurons, giving the classes: (a) excitatory-excitatory; (b)

excitatory-inhibitory; (c) inhibitory-excitatory; (d) inhibitory-inhibitory. Some neurons in dif-

ferent parts of brain belong to the same class but exhibit different STDP learning kernels: in

[18], these have been grouped in ‘subtypes’ (sub-classes) called ‘Type I’, ‘Type II’, etc.

For the G-DHL regressions we used the original data when the authors of the experiments

could furnish them. When this was not possible, we used the data extracted from graphs in the

publications. Figs 10 and 11 summarise the outcome of the G-DHL-based regressions for the

different data sets. For each data set, the figures report this information: (a) left graph: original

data and, when available, regression curve of the original paper; (b) right graph: regression

curve based on G-DHL; (c) top-center small graph: function with which the review [18] pro-

posed to represent the STDP class of the data set. In the following, we illustrate the salient fea-

tures of these regressions. Section 3 in S1 Supporting Information presents more detailed data

on all the regressions as those presented in Fig 8 for the data set of Bi and Poo.

Excitatory-excitatory synapses. Fig 10 addresses data sets published in [71] (Kenyon cells

onto downstream targets in locust), [72] (pyramidal neurons in layer 2/3 of rat visual cortical

slices), [73] (pyramidal neurons in layer 2/3 of rat entorhinal cortex), and [74] (rat hippocam-

pus CA1-CA3 synapses). Based on the similarity of the curves, Caporale and Dan [18] pro-

posed to group the first three data sets into a first sub-type corresponding to the classic STDP

kernel modelled with two exponential curves. Instead, they classified the fourth data set as a

second sub-type captured with an exponential function for negative inter-spike intervals and a

positive/negative function for positive intervals. Exponential fitting curves were also used by

the authors of the second data set [72] (Fig 10b). Instead, for the first data set [71] (Fig 10a)

the authors used a piece-wise regression based on three components, namely two exponential
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Fig 10. Different STDP data sets, representative of typical STDP learning kernels, fitted with the G-DHL rule.

Each group of graphs refers to one STDP class/subtype and shows: (1) left graph: data and fitting curve from the

original article (in ‘a’ and ‘b’: reprinted with permission from respectively [71] and [72]; in ‘c’ and ‘d’: reproduced from

data and graphs published in respectively [73] and [74]); (2) right graph: data and fitting curve obtained with the

G-DHL regression; (3) top-central graph: learning curve suggested in [18] to capture the STDP kernel (reprinted with

permission). When available, the G-DHL regression was based on the original data (graphs with a star: �), otherwise it

used the data extrapolated from the published graphs: (a) data extrapolated from [71]; (b) data extrapolated from [72];
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curves connected by a linear segment centred on t = +4 ms. For the third data set [73] (Fig

10c), the authors used a specific biophysical model capturing the effects on STDP of spike

width, two-amino-5-phosphonovalerate (APV), and nifedipine. For the fourth data set [74],

(Fig 10d) the authors used a difference between two Gaussian functions generating a ‘Mexi-

can-hat’ kernel. Notice the heterogeneity of the approaches used to fit the different data sets,

suggested by their different features.

The G-DHL-based automatic regression applied to the four data sets found two compo-

nents (hence parameters) for each of them: data set of Fig 10a: ηps = −0.47 and ηns = 0.66; data

set of Fig 10b: ηns = −0.60 and ηsp = 0.66; data set of Fig 10c: ηns = −0.4 and ηsp = 0.27; data set

of Fig 10d: ηns = −0.38 and ηsp = 0.17. The fitting of the four data sets show how the procedure

can capture all data sets with the G-DHL smooth kernels, even in cases where the data show a

sharp passage between LTD and LTD (e.g., see Fig 10b). The results also suggest interesting

possibilities with respect to Caporale and Dan’s classification [18]. The first data set is

characterised by LTD for negative spike delays and LTP for positive ones. Accordingly, the

G-DHL-based regression found two components (the first, ½ _u1�
þu2, with a negative coefficient

ηps = −0.47; the second, ½ _u1�
� u2, with a positive coefficient ηns = 0.66) producing LTD and LTP

effects for respectively negative and positive spike delays (see also Fig 7). Instead, for the sec-

ond, third, and fourth data sets the regression identified the same components, ½ _u1�
þu2 and

½ _u1�
� u2, notwithstanding the different graphical appearance of their kernels. A closer consider-

ation of these three data sets shows the reason of this. The three cases tend to exhibit an

LTD-LTP-LTD sequence (the latter LTD covers ‘large’ positive delays). This is caused by an

LTP component (½ _u1�
� u2) having a narrow temporal scope fully contained within the larger

temporal scope of the LTD component (½ _u1�
þu2). Since the synaptic changes of the two com-

ponents sum, the resulting learning kernel shows LTD for negative and for large positive spike

delays, and an intermediate LTP for small positive delays (cf. [75]).

These results prompt two observations. First, there might actually be two distinct biophysi-

cal mechanisms underlying the last three data sets, with LTD spanning beyond LTD for both

negative and positive inter-spike intervals. Second, G-DHL might be used to classify STDP

kernels based on their underlying components rather than their graphical appearance. For

example, the four data sets discussed above would be clustered into two subtypes, one encom-

passing the first data set and the second encompassing the last three data sets. This classifica-

tion would separate STDP data sets involving ‘classic’ LTD-LTP kernels (first group) and more

sophisticated LTD-LTP-LTD kernels showing a ‘pre-post LTD’ for large positive spike delays

in addition to the standard LTD for negative delays [74, 75]. These might suggest experiments

to seek the biophysical mechanisms actually underlying the different STDP kernels.

Excitatory-inhibitory synapses. Fig 11a addresses a data set from [76] belonging to the

second STDP class proposed by Caporale and Dan [18] (neurons from tadpole tectum). The

kernel mirrors, with respect to the x-axis, the excitatory-excitatory case (Fig 10b). This means

that the synapse is enhanced when the pre-synaptic spike follows the post-synaptic spike, and

is depressed in the opposite condition. The G-DHL regression produced two components/

parameters: ηsp = −.65 and ηns = .61. These are the same components that the algorithm used

for the data sets of Fig 10b–10d, but with opposite signs: it would be interesting to consider the

actual biophysical mechanisms corresponding to the two different STDP kernels to evaluate if

they share some relations. Notice how the model has no problem in capturing the steep part of

the data curve around Δt = 0. Instead, the authors of the original paper used two exponential

(c) original data from [73]; (d) data extrapolated from [74]. Section 3 in S1 Supporting Information presents more

detailed data on the regressions as in Fig 8.

https://doi.org/10.1371/journal.pcbi.1006227.g010
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Fig 11. Other STDP data sets and classes/types fitted with G-DHL. Graphs plotted as in Fig 10 (graphs on the left in

‘a’ and ‘b’: reprinted with permission from respectively [76] and [77]; graphs on the left in ‘c’ and ‘d’: reproduced from

data and graphs from respectively [78] and [79]). Right graphs: (a) data extrapolated from [76]; (b) original data from

[77]; (c) original data from [78]; (d) original data from [79]. Section 3 in S1 Supporting Information presents more

detailed data on the regressions as in Fig 8.

https://doi.org/10.1371/journal.pcbi.1006227.g011
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curves to fit the data but had to ignore the data points around Δt = 0 where such curves get

−1 or +1 values [76].

Inhibitory-excitatory synapses. Fig 11b and 11c refers to data sets related to the third

STDP class of Caporale and Dan’s taxonomy [18]. Data of Fig 10b are from [77] (neurons

from rat CA1 hippocampus region) and data of Fig 10c are from [78] (culture neurons of

embryonic rat hippocampal). The original papers did not fit the data whereas in [18] they are

fitted with a ‘Mexican hat’ function. The G-DHL regression captured both data sets with the

same three components confirming their class consistency: first data set, σnp = −.52, σpn = −.48,

and σnn = .77; second data set, σnp = −.36, σpn = −.53, and σnn = .63. The two components of σnp
and σpn are symmetric with respect to the y-axis (Fig 6) and, having a negative sign, cause the

two LTD parts of the target STDP kernels for ‘large’ negative and ‘large’ positive Δt values. The

σnn component is instead centred on Δt = 0 and, having a positive sign, is responsible for the

LTP central part of the kernels.

Inhibitory-inhibitory synapses. Finally, Fig 11d addresses the STDP data set presented in

[79] (neurons of the rat entorhinal cortex). To fit the data the authors used a function based on

the two usual exponential functions but multiplied them by (Δt)10 to have a low STDP around

Δt = 0. Instead, Caporale and Dan [18] proposed to capture this kernel with the standard expo-

nential model also used for the excitatory-excitatory class. In line with the regression used by

the authors of the original paper [79], the G-DHL rule found components different from the

excitatory-excitatory class: σnp = .78 and σpn = −.56. These components (Fig 6) can generate

the zero-level plateau shown by the data in proximity of Δt = 0, for which the kernel does not

update the synapse for null or small positive/negative time intervals. The G-DHL regression

thus suggests that this particular feature, not captured by exponential functions, might charac-

terise a different STDP type.

A new STDP taxonomy. Overall, the regressions based on G-DHL suggest the existence

of different STDP classes with respect to those proposed in [18]. These classes are summarised

in Table 1 and might be useful to guide a systematic search for the biophysical mechanisms

underlying different STDP phenomena.

Discussion

Understanding the functioning and learning in dynamical neural networks is challenging

but also very important for advancing our theories and models of the brain—an exquisitely

dynamical machine. Differential Hebbian Learning (DHL) might become a fundamental

means to do so. Existing DHL rules are few, basically two [5, 7], and are not able to model

most spike-timing dependent plasticity (STDP) phenomena found so far in the brain. Building

on previous pioneering research, this work addresses these limitations in multiple ways. First,

it proposes a framework to understand, use, and further develop DHL rules. In particular, it

proposes a general DHL (G-DHL) rule encompassing existing DHL rules and generating

many others, and highlights key issues related to the pre-processing of neural signals before

the application of DHL rules. Second, it proposes procedures and formulas for applying DHL

to model STDP in the brain. Third, it shows how the proposed G-DHL rule can model many

classes of STDP observed in the brain and reviewed in [18].

With respect to other approaches for modelling STDP, DHL represents a complementary

tool in the toolbox of the modeller and neuroscientist. First, DHL differs from ‘phenomenolog-

ical models’. Although simple and elegant, these models update the synapse based on mathe-

matical functions directly mimicking the synaptic changes observed in empirical experiments

in correspondence to different inter-spike intervals [14, 15]. Instead, DHL rules compute the

synaptic update on the basis of the step-by-step interactions between levels of and changes in
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the neural variables of interest. DHL rules also differ from ‘biophysical models’. These models

can reproduce many biological details but have high complexity and rely on phenomenon-spe-

cific mechanisms (e.g., [14, 17]). Instead, DHL rules reproduce fewer empirical details but at

the same time, after the systematisation proposed here, they represent ‘universal mechanisms’

able to capture many STDP phenomena.

G-DHL relies on two main ideas. The first idea, elaborated starting from previous proposals

[5] (see also [29]), is that the derivative of an ‘event’, intended as a monotonic increase fol-

lowed by a monototic decrease of a signal, gives information on when the event starts and ter-

minates. This information is used by G-DHL to update the connection weight depending on

the time interval separating the pre- and post-synaptic neural events. The second idea is that

the actual synaptic update can rely on different combinations of the possible interactions

between the pre-/post-synaptic events and their derivatives, thus leading to a whole family of

DHL rules.

Mathematically, this gives rise to a compound structure of the G-DHL rule which is formed

by a linear combination of multiple components. In this respect, the capacity of G-DHL to

capture different STDP phenomena is linked to the power of kernel methods used in machine

learning [34, 35]. The linear form of the rule facilitates its application through manual tuning

of its parameters, as shown here and in some previous neural-network models of animal

behaviour using some components of the rule [80–82]. The linear form of the rule also facili-

tates the automatic estimation of its coefficients when used to capture STDP data sets, as also

shown here.

G-DHL has a high expressiveness, as shown here by the fact that we could use it to accu-

rately fit multiple STDP data sets. In particular, the G-DHL components form basis functions

that are well suited to model key aspects of STDP, in particular its long-term potentiation/

depression features, its time span, and its variability around the zero inter-spike interval (e.g.,

sharp depression-potentiation passages, non-learning plateau, Hebbian/anti-Hebbian learn-

ing). The regressions of the data sets targeted here employed seven out of eight components of

the rule. The regressions are particularly reliable because the optimisation procedure used here

is highly robust with respect to local minima, so they show the utility of most G-DHL compo-

nents for modelling different STDP data sets. Future empirical experiments might search for

STDP processes corresponding to the eighth non-used G-DHL component (encompassing a

Table 1. Summary of the regressions of the nine STDP data sets regressed with the G-DHL rule. The table indicates: the species and brain area from which the neurons

have been taken (Hip: hippocampus; VisCtx: visual cortex; EntCtx: enthorinal cortex; Tec: Tectum); the reference where the data were published (Ref.); the parameters of

the G-DHL selected model (i.e., the 2 or 3 parameters of the components of the model chosen by the model comparison technique); the type of pre- and post-synaptic neu-

ron (Exc: excitatory; Inh: inhibitory); the taxonomy with which the STDP data set has been classified in Caporale and Dan [18] (C.&D. classes); our taxonomy proposed on

the basis of the components found by the G-DHL regression. Our classes: ‘E’ and ‘I’ refer to the excitatory/inhibitory neurons involved, specifying the class, and the num-

bers refer to the subtypes within the class.

Species Brain Area Ref. Component Neurons C.&D. classes Our classes

σpp σnp σpn σnn ηps ηsp ηns ηsn In Out

Rat Hip [25] +.73 -.02 Exc Exc A I EE 1

Locust Kenion [71] -.47 +.66 Exc Exc A I EE 2

Rat VisCtx [72] +.66 -.60 Exc Exc A I EE 3

Rat EntCtx [73] +.27 -.40 Exc Exc A I EE 3

Rat Hip [74] +.17 -.38 Exc Exc A II EE 3

Tadpole Tec [76] -.65 +.61 Exc Inh B I EI 1

Rat Hip [77] -.52 -.48 +.77 Inh Exc C II IE 1

Rat Hip [78] -.36 -.53 +.63 Inh Exc C II IE 1

Rat EntCtx [79] +.78 -.56 Inh Inh C III II 1

https://doi.org/10.1371/journal.pcbi.1006227.t001
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multiplication between the pre-synaptic stimulus and the post-synaptic derivative negative

part): this corresponds to a relatively long LTD peaking at a negative inter-spike interval but

also involving low-value positive intervals.

The results of our regression based on G-DHL of the classic STDP kernel, represented by

the classic Bi and Poo data set [25], suggests the possible existence of two distinct mechanisms

underlying LTP and LTD involved in such STDP learning kernel, so it is interesting to com-

pare this result with different views in the literature. A specific hypothesis on calcium control

of plasticity was formulated in [83] and was followed by significant experimental evidence.

According to this hypothesis, post-synaptic calcium transients above a lower threshold cause

LTD whereas calcium transients above a second higher threshold produce LTP. In a detail

model [84], this phenomenon is captured with a single mechanism for which the synaptic

change is caused by calcium concentrations at the post-synaptic neuron modulated by the

temporal relation between the current at the pre-synaptic neuron (causing NMDAR opening)

and the back-propagating action potential (BAP) at the post-synaptic neuron [67]: low levels

of post-synaptic calcium cause the synapse depression whereas high levels cause its enhance-

ment. Models of such type have been criticised on the basis of empirical evidence. According

to [65], calcium models require a long-fading BAP-induced transients to account for LTD

when the BAP occurs before the pre-synaptic action potential [12]. Moreover, calcium models

also predict a pre-post form of LTD even when the BAP occurs beyond a given time from the

pre-synaptic action potential. While this pre-post form of LTD has been registered in hippo-

campal slices [74], other data [25] indicate that it is not a general feature of STDP. In this

respect, our findings agree with other proposals for which two independent mechanisms

account for LTP and LTD in the classic STDP learning kernel [19, 65]. Future work might

extend these preliminary results. In particular, it could aim to understand in detail how some

of the mechanisms mentioned above implement change detectors and these lead to STDP,

as predicted by the G-DHL core functioning mechanisms based on derivatives. Moreover,

G-DHL could be used to heuristically guide the identification of the biophysical mechanisms

underlying different STDP data sets beyond the classic kernel.

Future work might also investigate, both computationally and empirically, DHL rules dif-

ferent from G-DHL, namely: (a) DHL rules formed by three or more components (useful to

model STDP involving more than two spikes [41]); (b) DHL rules using orders of derivatives

higher than the first one used in G-DHL [32, 33]; (c) DHL rules generated by other types of fil-

ters, rather than ½ _u�þ and ½ _u�� used in G-DHL, to detect the increasing and decreasing parts of

events.

Another line of research might aim to investigate the possible computational and beha-

vioural functions of the different G-DHL components. In this respect, the analysis presented

here on the computational mechanisms underlying STDP might contribute to the current

research on the possible functions of such plasticity [20–23]. Indeed, this research mainly

focuses on the computational function of the classic STDP learning kernel [25], whereas the

research presented here, by stressing how the brain uses different DHL rules, calls for the

investigation of their different possible functions.

A different approach to understand the functions of different DHL rules and STDP kernels

might use embodied neural models to understand their utility to support adaptive behaviour.

The development of G-DHL was in fact inspired by the need to implement specific learning

processes in neural-network models able to autonomously acquire adaptive behaviours [80–

82]. Thus, it could for example be possible to establish a particular target computation or

behaviour and then automatically search (e.g. with genetic algorithms or other optimisation

techniques) the rule components and coefficients that are best suited for them. For example,
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previous work [85] used a learning rule based on Kosco’s DHL rule [5] to obtain interesting/

surprising emergent behaviours in physical simulated agents. This approach might test other

G-DHL components to produce different behaviours.
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