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Simple Summary: Breast cancer patients and survivors exposed to chemotherapy face
challenges with cognitive impairment, for which the underlying brain changes are not fully
understood. Neuroimaging studies are exploring the structural and functional impacts of
chemotherapy on the human brain but are limited by small sample sizes. Our study aims
to synthesize volumetric neuroimaging data to highlight consistent findings in regional
brain volume changes in breast cancer patients and survivors treated with chemotherapy.

Abstract: Background/Objectives: Breast cancer chemotherapy patients and survivors
face cognitive side effects that are not fully understood. Neuroimaging can provide a
unique way to study these effects; however, it can be difficult to recruit large numbers of
subjects. Our meta-analysis aims to synthesize volumetric neuroimaging data to highlight
consistent findings in regional brain volume changes to further advance our understanding
of the chemotherapy-related cognitive impairments faced by breast cancer patients and
survivors. Methods: An Activation Likelihood Estimation analysis was conducted across
the data from eight voxel-based morphometry experiments examining changes in the
brains of breast cancer patients and survivors exposed to chemotherapy over time and
three voxel-based morphometry experiments comparing chemotherapy-exposed subjects
to controls with and without breast cancer. Results: There were consistent volume reduc-
tions across the whole brain in both experiment groups. The subjects’ over-time analysis
showed peak consistency among the studies in the right inferior frontal gyrus and the
left insula. Conclusions: Chemotherapy for non-central nervous system cancers such as
breast cancer can cause physical changes throughout the brain that can be quantitatively
measured by neuroimaging methodologies and may underlie persistent cognitive deficits
in some individuals.

Keywords: chemotherapy; chemotherapy-related cognitive impairment; cancer-related
cognitive impairment; breast cancer; neuroimaging; magnetic resonance imaging (MRI);
meta-analysis; voxel-based morphometry (VBM); brain volume; activation likelihood
estimate (ALE)
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1. Introduction
Chemotherapy has been shown to be associated with temporary and long-term cog-

nitive impairment in many studies over the last several decades, with both self-reported
cognitive issues and poorer performance compared to controls in multiple tests of executive
function, attention, and processing speed [1–7]. However, the exact changes in structure
and function of the brain that cause these changes are not fully understood. Additionally,
there is not enough information on the specific chemotherapy regimens most associated
with reported cognitive impairment nor the genetic and/or environmental factors that
increase an individual’s chance of being affected. It is critical that we gather more infor-
mation on these matters, as the use of chemotherapy has increased cancer survival rates,
leaving many survivors for whom late effects of chemotherapy could impact quality of life.

Chemotherapy has been standard practice for invasive breast cancer for several
decades, and the potential for neurocognitive damage has been under investigation for
over forty years [8]. Many studies have shown that chemotherapy-exposed breast cancer
survivors report more depression, anxiety, fatigue, and memory decline than age-matched
control participants without cancer or breast cancer survivors who had not been exposed to
chemotherapy [9]. Studies have also reported decreases in executive function and process-
ing speed test scores based on neuropsychological tests such as the Mini-Mental State Exam,
the Digit Span test, and the Stroop word test [10,11]. These tests are designed to assess
general and specific mental functioning, such as memory, executive function, and process-
ing speed. Subjects are also typically given questionnaires to determine self-perceived
changes in cognitive function, memory, and mood [12–14]. Examples of these include the
Behavioral Rating Inventory of Executive Function (BRIEF), the Clinical Assessment of
Depression (CAD), and the Functional Assessment of Cancer Therapy-Cognitive Function
(FACT-Cog) [15–17].

While cognitive impairments occur in a large number of patients [11,18,19], the mech-
anisms behind these impairments remain unclear. Oxidative stress, disruptions to the
blood-brain barrier, genetic polymorphisms, and inflammation are all being investigated
as possible mechanisms [20–23]. To better understand the causes of these neurological
symptoms, researchers should examine quantitative changes in the brain. Therefore, neu-
roimaging provides a critical tool in the study of cancer-related cognitive impairment, as it
provides opportunities to examine the structural and functional changes happening within
the brain associated with exposure to chemotherapy. Changes in global or regional volume,
surface thickness decreases, white matter integrity, blood flow changes, and changes in
functional activation patterns can all be examined in minimally invasive ways with the use
of different neuroimaging techniques and modalities.

However, while neuroimaging is a powerful tool for examining brain structure
and function, many neuroimaging studies have sample sizes with between 9 and
60 subjects [24,25]. Small sample sizes in such studies make it difficult to gather enough
statistical power to test hypotheses about chemotherapy effects.

Therefore, we performed a meta-analysis to synthesize findings from many brain
structural studies and elucidate common discoveries of brain changes due to chemotherapy
in breast cancer patients. Best practices for neuroimaging meta-analysis required that we
narrow our focus to volumetric findings for consistency and comparability [26]. While this
requirement makes pooling heterogeneous studies difficult and removes the option of using
activation studies [26], it ensures that the resulting analysis fairly describes the findings in
the current literature [27]. Brain regional volumes can be measured by segmenting regions
of interest (ROIs) and measuring the total voxels or pixel thicknesses of the segmented area.
However, differences in the chosen atlas can be inconsistent across segmented region-based
studies. Another approach, voxel-based morphometry (VBM), has similar accuracy but
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does not require segmentation [28]. We therefore chose to perform an Activation Likelihood
Estimation (ALE) meta-analysis [28–32] on VBM studies that matched our review criteria
and provided coordinate data.

In a volume-focused VBM study, the brain is divided into 3D cubes mapped to a
brain template [33]. The ‘MNI’ brain templates, originating from and named for the
Montreal Neurological Institute, are prominent in the literature [34]. Voxels are assigned a
value representing the density of the tissue in that location, modified by the values of the
neighboring voxels for smoothing [33]. Comparison studies then examine and report the
coordinates of the voxels of peak difference.

ALE techniques combine coordinates reported in multiple studies and report the
regions of convergence [29,30]. The algorithm takes each coordinate in a single study, then
treats it as the center point of a probability distribution, creating a modeled activation
map [30]. The union of modeled activation maps from all of the included studies and
the resulting coordinates are then tested against the null hypothesis that foci would be
uniformly distributed across the brain [30]. The result is a spatial mapping of those areas
the included studies agree show significant likelihood to be relevant. In our case, these will
be the areas consistently found across studies to have decreased volume in chemotherapy-
exposed breast cancer patients. The target question for our meta-analysis was “What areas
of the brain consistently show volume reductions across studies in breast cancer patients
and survivors exposed to chemotherapy?”. We believe the aforementioned methodology
will allow us to better understand the brain changes underlying chemotherapy-related
cognitive impairment.

2. Materials and Methods
Data gathering for this effort began in April of 2023 and was completed in November

of 2023. We searched the following database repositories: Google Scholar, Embase, and Web
of Science. Medline, the repository behind PubMed, also reports data to Google Scholar and
Embase, so, while PubMed was not queried directly, manuscripts included there would be
included in our search. Google Scholar also returns a broad range of results, sorting the
more relevant results to the front; as such, only the first 100 results were examined in these
queries due to decreasing relevance to the posed query. Eight distinct queries were used
throughout the search process, narrowing the terms over time as the focus of the review
took shape. While this change in search queries is not best practice, it became essential as
fewer studies had comparable datasets than expected. Search query details can be found in
Table 1.

Table 1. Search queries.

Repository Terms Date Performed Filters

Google Scholar “functional connectivity” and
“chemotherapy” and “breast” 6 April 2023 First 100 results, Last 10 years

Google Scholar “breast cancer” “cognitive
impairment” “coordinates” 27 July 2023 First 100 results

Google Scholar “neuroimaging” “breast cancer”
“cognitive impairment” 27 July 2023 First 100 results

Google Scholar (“matter volume” “breast cancer”
“chemotherapy”) 3 September 2023 First 100 results
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Table 1. Cont.

Repository Terms Date Performed Filters

Web of Science

(‘chemotherapy) AND (‘breast cancer’)
AND (‘neuroimaging’) AND

(‘cognitive decline’ OR ‘cognitive
decline’ OR ‘cognitive dysfunction’ OR
‘cognitive impairment’) AND (“gr$y
matter” OR ‘white matter OR ‘brain
volume’ or ‘volume’ or ‘volumetric’)

6 October 2023

Embase

‘vbm’ AND (‘breast cancer’/exp OR
‘breast cancer’) AND

(‘chemotherapy’/exp OR
‘chemotherapy’)

13 October 2023

Embase

(‘breast cancer’/exp OR ‘breast
cancer’) AND (‘chemotherapy’/exp

OR ‘chemotherapy’) AND
(‘neuroimaging’/exp OR

‘neuroimaging’) AND ‘cognitive defect’
AND [embase]/lim NOT

([embase]/lim AND [medline]/lim)

13 October 2023 Embase only

Embase
(‘breast cancer’/exp OR ‘breast

cancer’) AND (‘brain volume’/exp OR
‘brain volume’)

1 November 2023

The resulting manuscripts were then categorized and accepted or dismissed for the
meta-analysis based on the following inclusion/exclusion criteria:

Inclusion:

• Journal article of a comparative neuroimaging study.
• Focus on cognitive impairment associated with breast cancer chemotherapy.
• Population consists of human female breast cancer patients and/or survivors that

have started or completed one or more chemotherapy regimen(s).
• Comparison of population to themselves over time, other chemotherapy groups, or a

control group.
• Volume changes investigated with voxel-based morphometry.
• Data provided in MNI or Talairach coordinate systems.

Exclusion:

• Reviews, abstracts, case studies, theses, books.
• Animal studies, cell line studies, fetal studies, or male cancer patients/survivors.
• Comparisons of treatments or mitigations
• Machine learning classifiers.

The search queries provided a starting pool of 457 literature items after the removal
of duplicates (Figure 1). Papers were then filtered based on their alignment with the
criteria. Reviews, abstracts, and case reports were removed, followed by manuscripts
that did not focus on breast cancer, chemotherapy, or neuroimaging. Treatment-focused
manuscripts, AI classifier algorithm comparisons, and non-human studies were also re-
moved. Finally, manuscripts were further filtered on the inclusion of comparable volumetric
coordinate data.
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Figure 1. Literature search filtering for ALE meta-analysis.

Coordinate data were entered into a small custom database, stratified into experi-
ments. In this SQLite database, each experiment was stored with a name, the number of
subjects, the style of comparison, and the methodology. The database structure allowed for
experiments to be queried by their methodology and comparison type to create input files
specific to each comparison. The database structure can be viewed in the Supplementary
Materials. The largest group of data using the same methodology were the voxel-based
morphometry (VBM) studies. There were 10 total VBM studies; however, one of these
studies was removed because it included data pooled from other included studies. The
remaining 9 studies include 11 experiments, which could then be divided into 2 groups:
one comparing volumetric changes in the brains of breast cancer chemotherapy-positive
patients (BCC+) over time (8 experiments) and the other comparing the peak differences in
brain volume between BCC+ versus either healthy controls or breast cancer chemotherapy-
negative patients (BCC−) (3 experiments) [10,35–42] We performed our meta-analysis with
the GingerALE 3.0.2 software application by BrainMap (downloaded from brainmap.org
on 16 May 2019) [29–31,43]. This application creates the unioned modeled activation maps
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from the input coordinates based on the ALE algorithms developed by Turkletaub and
colleagues [28–30,32]. Multiple versions of the algorithms are available within the software;
we used the 2009 Eickhoff algorithm [29]. A small Python program was developed to
produce text files formatted for import into the ALE algorithm-performing software from
our coordinate database. Two import files were created from our dataset, after which
experiments using a single subject group were combined. One file consisted of the BCC+
over time and contained 26 coordinates, 232 subjects, and 8 experiments (Table 2).

Table 2. BCC+ studies selected for inclusion.

Authors BCC+ Mean Age
Mean (SD)

Coordinate
Count

Chemotherapy
Agent

McDonald 2010 [35] 17 52.4 (8.5) 24
AC-paclitaxel 12
TAC 2
AC 3 *

McDonald 2013 [36] 27 49.9 (7.6) 2

AC-T 9
TC 9
Tb 5
TAC 1
Paclitaxel 1
Not available 1 **

Lepage 2014 [37] 19 50.2 (8.6) 14

FEC-T 13 *
TC 4
AC 1
AC-paclitaxel 1

Jenkins 2016 [38] 8 52.6 (3.9) 3
AC 1
FEC 2
FEC-T

Chen 2018 [39] 16 67(5.39) 9

TC 7
TbHP 1
paclitaxel/ trastuzumab 4
Carboplatin/paclitaxel 1
ddAC-paclitaxel 1
TAC 1

Li 2018 [40] 28 49.21 (8.15) 5 Doxorubicin and paclitaxel

Blommaert 2019 [10] 72 Younger group 43.7 (5.7)
Older group 63.8 (3.4) 21 FEC 16

FEC-T 39

Zhou 2022 [41] 45 50.45 (9.08) 13

AC-T 11
EC-T 1
TAC 15
AT 1
TC 1
TbHP 11
TbHB 5

BCC+: Breast cancer chemotherapy-positive patients; SD: standard deviation; AC: doxorubicin/cyclophosphamide; AC-
T: doxorubicin/cyclophosphamide followed by docetaxel; TAC: docetaxel/doxorubicin/cyclophosphamide;
TC: docetaxel/cyclophosphamide; FEC: fluorouracil/epirubicin/cyclophosphamide; FEC-T: fluo-
rouracil/epirubicin/cyclophosphamide followed by docetaxel; TC: Docetaxel/cyclophosphamide; Tb:
Docetaxel/carboplatin; TbPH: Docetaxel/carboplatin/trastuzumab/pertuzmab; ddAC: dose-dense dox-
orubicin and cyclophosphamide; EC-T: epirubicin/cyclophosphamide followed by docetaxel; TbHB: doc-
etaxel/carboplatin/trastuzumab/pyronib; * one patient also treated with trastuzumab; ** nine patients also treated with
trastuzumab; one patient treated with bevacizumab.
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The second file consisted of the BCC+ compared to controls, both breast cancer posi-
tive chemotherapy negative patients (BCC−) and non-cancer subjects (HC), and contains
20 coordinates and 251 subjects across 3 experiments (Table 3).

Table 3. BCC+ vs. control (BCC− and HC) studies selected for inclusion.

Authors Subjects Coordinate
Count

Chemotherapy
Agent

Inagaki 2007 [42] 169 9

AC 3
CMF: 40
EC 2
Paclitaxel 2
tegafur/uracil 5

McDonald 2013 [36] 51 1

AC-T 9
TC 9
Tb 5
TAC 1
Paclitaxel 1
Not available 1 *

Chen 2018 [39] 31 9

TC 7
TbHP 1
paclitaxel/ trastuzumab 4
Carboplatin/paclitaxel 1
ddAC-paclitaxel 1
TAC 1

BCC+: Breast cancer chemotherapy-positive patients; BCC−: breast cancer patients that have not
received chemotherapy; HC: Controls without breast cancer; AC: doxorubicin/cyclophosphamide;
CMF: cyclophosphamide/methotrexate/fluorouracil; EC: epirubicin/cyclophosphamide; AC-T: doxoru-
bicin/cyclophosphamide followed by docetaxel; TAC: docetaxel/doxorubicin/cyclophosphamide. TC: do-
cetaxel/ cyclophosphamide; TC: Docetaxel/cyclophosphamide; Tb: Docetaxel/carboplatin; TbPH: Doc-
etaxel/carboplatin/trastuzumab/pertuzmab; ddAC: dose-dense doxorubicin and cyclophosphamide; * nine
patients also treated with trastuzumab; 1 patient treated with bevacizumab.

Each text file we created of coordinate data and associated subject count was loaded
into the GingerALE application. ALE techniques take coordinate data and use them as
probability distributions to create a map of the union of each voxel’s probability of activa-
tion, which is then checked for significance by comparison to a null distribution [29,30,43].
The null distribution that is compared against is configured by the GingerALE program
using user-specified parameters. Our parameters were cluster-level FWE 0.0, threshold
permutations: 1000, and p value: 0.001 as our configuration for both analyses. One co-
ordinate in the BCC+ over time was out of the mask area and was therefore ignored
by the algorithm. Configuration settings and coordinate text files can be found in the
Supplementary Materials.

3. Results
Our meta-analysis results showed that the right insula near the operculum (Figure 2A)

and the left inferior frontal gyrus (Figure 2B) were most consistently found to have reduced
volume over time among the breast cancer chemotherapy-positive patient groups in the
selected voxel-based morphometry (VBM) studies. Other regions showing consistency
across the breast cancer chemotherapy groups over time include the left medial frontal
gyrus, superior frontal gyrus, anterior cingulate, right parahippocampal gyrus, right
thalamus, left inferior parietal lobule, right superior parietal lobule, both superior temporal
gyri, and the cerebellum (Figure 3). For each graphic, we have set the displayed cluster
threshold to the value that most clearly shows the center points of the distributions.
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Figure 2. The two peak areas found most consistently correlated with changes in brain volume over
time for breast cancer chemotherapy-positive subjects among eight included studies. Two regions
show consistent peaks of volume change and are illustrated as a heat map from blue to red over a
color legend indicating anatomical regions (automated anatomical labelling atlas [44]) on the Colin27
brain. Cluster threshold set to 0.0052749001 with red as the center peak for readability. Planes of
section: i: Axial, ii: Sagittal, iii: Coronal, iv: 3D brain with peak section at the axis meeting point. A
3D model with the axial plane shown above. Image created with MRIcroGL [45]. Anatomical legend
divided by hemisphere. R: right, L: left, A: anterior, P: posterior, (A) right insula, (B) left inferior
frontal gyrus.

We also ran an ALE meta-analysis on the BCC+ compared to the control data. Con-
sistency was found in regions across the brain, including the left superior frontal gyrus,
the right anterior cingulate, the right medial frontal gyrus, the right fusiform gyrus, and
the right parahippocampus. However, the number of studies for this comparison was too
small to show significance (Figure 4).
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Figure 3. Areas consistently correlated with changes in brain volume over time for breast cancer
chemotherapy-positive subjects between eight VBM studies. Regions of consistent findings illustrated
as a heat map from blue to red over a color legend indicating anatomical regions (automated anatom-
ical labeling atlas [44]) on the Colin27 brain. Cluster threshold set to 0.0012749001 for readability.
Planes of section: i: axial, ii: sagittal, iii: coronal, iv: 3D brain showing meeting of plane sections.
Image created with MRIcroGL [45]. Anatomical legend divided by hemisphere. R: right, L: left,
A: anterior, P: posterior. (A) i: axial plane—right inferior temporal gyrus, right parietal inferior
gyrus, right postcentral gyrus, right hippocampus, right parahippocampus, right medial temporal
gyrus; ii: sagittal (right hemisphere)—right precuneus, right paracentral lobule, right medial frontal
gyrus, right anterior cingulate, right caudate; iii: coronal plane—right middle frontal gyrus, right
anterior cingulate, right caudate, right hippocampus, right thalamus, left medial frontal gyrus, left
middle frontal gyrus, left inferior frontal gyrus, left superior temporal gyrus, left medial temporal
gyrus, left insula, left caudate, left thalamus, left hippocampus, left parahippocampus, left lingual
gyrus; iv: 3D brain showing meeting of plane sections. (B) i: axial plane—right middle temporal
gyrus, right middle frontal gyrus, right inferior parietal gyrus, right precuneus, left inferior parietal
gyrus, cerebellum; ii: sagittal plane (left hemisphere)—left inferior parietal gyrus, left insula, left
inferior frontal gyrus, left middle frontal gyrus; iii: coronal plane—right inferior parietal gyrus, right
precentral gyrus, superior medial frontal medial gyrus, right precuneus, left superior frontal gyrus,
left inferior parietal gyrus; iv: 3D brain showing meeting of plane sections.
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Figure 4. Areas in which breast cancer chemotherapy-positive subjects exhibit reduced volume com-
pared to controls across three studies. Regions of consistent findings illustrated as a heat map from blue
to red over a color legend indicating anatomical regions (automated anatomical labelling atlas [44]) on
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the Colin27 brain. Cluster threshold set to 0.0053741001 with red as the center peak for readability.
Planes of section: i: sagittal, ii: axial, iii: coronal, iv: 3D brain showing meeting of plane sections.
Image created with MRIcroGL [45]. Anatomical legend divided by hemisphere. R: right, L: left,
A: anterior, P: posterior. (A) i: sagittal plane (left hemisphere)—left medial frontal gyrus; ii. axial
plane—left medial frontal gyrus, right anterior cingulate; iii. coronal plane—left medial frontal
gyrus, left superior frontal gyrus. (B) i: sagittal plane (right hemisphere)—right anterior cingu-
late, right superior frontal gyrus, right medial frontal gyrus; ii. axial plane—left medial frontal
gyrus, right anterior cingulate; iii. coronal plane—right medial frontal. (C) i: sagittal plane (right
hemisphere)—right parahippocampus, right fusiform gyrus; ii. axial plane—right parahippocampus;
iii. coronal plane—bilateral parahippocampus, right fusiform gyrus.

4. Discussion
Our meta-analysis, despite the small sample size, indicates that there is a high prob-

ability of volumetric changes in the bilateral insula and the left inferior frontal gyrus.
While of lower probability, several other areas had convergence, such as the left medial
frontal gyrus, right superior frontal gyrus, superior temporal gyri, anterior cingulate, right
parahippocampal gyrus, cerebellum, left inferior parietal lobule, right superior parietal
lobule, and the right thalamus post chemotherapy.

The brain is believed to operate as a set of functional networks that broadly encompass
multiple brain regions. In evaluating the impact of reduced gray matter volume in specific
brain regions, it is important to recognize that their relevance to changes in cognitive
function is mediated by effects on the efficiency and function of brain networks. Relevant
to changes in cognitive function, the frontoparietal, cingulo-opercular, salience, and default
mode networks have garnered the most attention, as they are involved in higher-order
cognitive function.

Our findings show that the insula was consistently reported to have reductions in
volume in breast cancer patients who underwent chemotherapy. The insula is a core
region of the cingulo-opercular network (CON), an executive network involved in task
control that has been reported to show bilateral decreases in activation during verbal recall
tasks [46], while another study reported decreased activation in the inferior frontal gyrus
during encoding of a visual working memory task with increased activation in bilateral
insula upon word recognition in BCC+ patients compared to controls [47]. Within-network
connectivity between the bilateral insula and anterior cingulate was also reduced in BCC+
patients compared to healthy controls [47]. Other breast cancer cognitive impairment
studies have found the insula to be correlated with inflammation and fatigue and lower
memory scores on neurophysiological testing [38,48–50]. Recent studies have pointed to
the complexity of the CON network [51,52] and to challenges in differentiating it from
networks with similar anatomical signatures, such as the salience network.

The left inferior frontal gyrus, our other peak consistently reduced area, has been
reported to show decreased connectivity to the hippocampus and reduced within-network
connectivity in the frontoparietal network (FPN) within a week of chemotherapy [1]. The
FPN is associated with executive functioning involving working memory, decision-making,
and goal-oriented behavior. In another study, Piccirillo and colleagues found weakened
inter-network connectivity between frontoparietal regions and cingulo-opercular networks
in those reporting worsened cognitive function [53], indicating a loss of integration between
executive control networks in breast cancer survivors exposed to chemotherapy.

We found consistent changes in the dorsolateral prefrontal cortex, precuneus, parahip-
pocampus, anterior cingulate, and inferior parietal lobe. These areas are involved in the
functional brain network known as the default mode network (DMN), which is involved
in self-referential processing, future planning, and episodic memory. Multiple studies of
connectivity have found alterations to this network in breast cancer chemotherapy sur-
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vivors and patients. Dumas found that DMN within-network connectivity was reduced
from baseline at the one-month post-chemotherapy mark and continued to be reduced at
the one-year mark [24]. A later study by Feng found reduced connectivity between the
anterior DMN and the CON [1]. In a study of older BCC+ women, Chen and colleagues
found a decrease in resting-state blood oxygen dependent signal (SD-BOLD) variability in
the posterior brain regions of chemotherapy survivors compared to age-matched controls,
which correlated with worse composite scores on the National Institute of Health Toolbox
Cognition Battery [54], particularly on the picture vocabulary tests, which supports their
previous study finding alterations in the connectivity of the precuneus and DMN [55,56].

Consistent reductions in VBM studies were reported for areas in the medial temporal
and superior parietal lobes, regions associated with the dorsal attention network (DAN).
Multiple studies reported decreased connectivity in the DAN of BCC+ patients [25,57,58].
In a comparison of BCC+ patients based on self-reported cognitive issues, Kardan and
collaborators found the between-network connectivity of the parietal and frontal re-
gions was reduced following chemotherapy but exhibited recovery seven months post-
chemotherapy [13]. Using diffusion tensor imaging (DTI) to study the integrity of white
matter tracts, Deprez and colleagues found reduced fractional anisotropy (FA) across the
brain, with parietal regions showing correlations with longer times on a test of processing
and psychomotor speed [59]. Another study found that several regions involved in the
attention networks had increased cerebral blood flow associated with lower scores dur-
ing testing, which the authors suspect could be an unsuccessful and potentially harmful
compensatory mechanism [60].

The brain networks impacted by the volumetric changes reported in this meta-analysis
functionally track with the most common cognitive changes reported in breast cancer sur-
vivors who underwent chemotherapy, which largely center on higher-order processes such
as memory and attention. Thus, as reported in both structural and functional studies, brain
changes reported following chemotherapy in some breast cancer survivors are consistent
with changes in cognitive function that can last well beyond anticipated recovery periods.
To better understand those individuals at greater risk for chemotherapy-related cognitive
decline, more consistency in study design is needed.

Recruiting enough patients into the multi-year longitudinal studies as required to
gain the statistical power needed will continue to be difficult for single studies to achieve.
Replication studies are generally less favored than studies using novel methodologies;
however, in this field it will be necessary to verify findings from underpowered studies.
To help mitigate these issues, data pooling has been suggested [61]; however, as with
meta-analyses, this strategy is reliant on a large number of similar studies to aggregate.
Consistency and replication must be improved to enable discovery of specific contributors
to cognitive impairment in cancer survivors that can lead to actionable changes in patient
treatment or post-chemotherapy interventions. The meta-analysis approach also runs the
risk of publication bias [62]. An alternative solution would be to create multi-institutional
consortia in which study protocols could be fully harmonized across study populations.
It is critical that researchers within the field produce more consistent studies to improve
analysis and synthesis. Replicating existing studies with new cohorts would also be a useful
option to improve the ability for meta-analyses to be performed. In addition, many of the
studies found in our review were coming from the same small number of labs, pointing
to a need for better engagement of patients and patient-advocate groups to increase the
number and diversity of interested patients across different regions and encourage growth
in the number of researchers in this field [56]. In addition, future studies examining
changes in brain regional volumes in BCC+ individuals should focus on more precise
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subnetwork identification to enable a clearer interpretation of the functional relevance of
volume changes.

5. Conclusions
Chemotherapy is associated with both temporary and long-term cognitive impair-

ments. To better understand these treatment side effects, we have examined physical brain
changes that are visible with neuroimaging techniques. Because neuroimaging studies can
be small, we chose to use a meta-analysis technique to bring data together from multiple
studies, but even in so doing found that there was a limited amount of data. Nonetheless,
the data currently available are sufficient to see large-scale brain effects in response to
breast cancer chemotherapy, with primary changes reported in frontal gyri and the bilateral
insula, which may underlie reductions in memory indexed by verbal recall tasks and lower
memory scores on neurophysiological testing [38,48–50].

Improving consistency between studies to allow for more powerful meta-analysis,
pooling data, replicating existing studies, and improving patient engagement will al-
low better exploration of variables among patients and survivors, such as chemotherapy
agents, age, and genetic differences. Further research following these recommendations
will produce better data, better results, and ultimately better outcomes for those facing
cognitive issues from chemotherapy treatment in breast and other non-central nervous
system cancers.
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