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Abstract: Fault diagnosis of rope tension is significantly important for hoisting safety, especially in
mine hoists. Conventional diagnosis methods based on force sensors face some challenges regarding
sensor installation, data transmission, safety, and reliability in harsh mine environments. In this
paper, a novel fault diagnosis method for rope tension based on the vibration signals of head sheaves
is proposed. First, the vibration signal is decomposed into some intrinsic mode functions (IMFs)
by the ensemble empirical mode decomposition (EEMD) method. Second, a sensitivity index is
proposed to extract the main IMFs, then the de-noised signal is obtained by the sum of the main IMFs.
Third, the energy and the proposed improved permutation entropy (IPE) values of the main IMFs
and the de-noised signal are calculated to create the feature vectors. The IPE is proposed to improve
the PE by adding the amplitude information, and it proved to be more sensitive in simulations of
impulse detecting and signal segmentation. Fourth, vibration samples in different tension states are
used to train a particle swarm optimization–support vector machine (PSO-SVM) model. Lastly, the
trained model is implemented to detect tension faults in practice. Two experimental results validated
the effectiveness of the proposed method to detect tension faults, such as overload, underload, and
imbalance, in both single-rope and multi-rope hoists. This study provides a new perspective for
detecting tension faults in hoisting systems.
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1. Introduction

Hoisting systems are widely applied in various industries, especially the mining industry. A mine
hoist is a piece of key equipment for transporting ore, materials, and workers between the surface and
underground. Hoisting containers are connected to hoist drums by wire ropes that are thousands of
meters long, which means that rope tension plays a significant role in hoisting safety. Tension faults
such as overload, underload, and imbalance are serious threats to hoisting safety and production.
Therefore, it is of considerable significance to diagnose tension faults in hoisting systems [1].

Conventional tension condition monitoring is based on force sensors or oil pressure sensors, which
are installed at the connection between wire ropes and lifting containers [2]. The data are transmitted
through a long mine shaft to the ground by wireless communication, as shown in Figure 1. However,
this method faces several challenges. First, underground environments are very harsh because of
spray water, dust, and corrosive gas, resulting in low reliability of the measuring devices. Second,
power supply and data transmission in a moving cage are inconvenient. Moreover, the installation of
force sensors may negatively impact the original structure, which leads to hidden danger and safety
regulation violations [3].
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Figure 1. Schematic diagram of conventional tension fault detection in a hoisting system. 

Mechanical vibration signals often contain sufficient information on the running state of 
mechanical equipment, so they are widely applied in fault diagnosis of gears, motors, and bearings [4–
7]. Compared with the force-sensor based method, the vibration-based method has obvious 
advantages. First, vibration sensors are easy to install and do not damage the safety of the original 
structure. Second, vibration signals react immediately to changes. Third, processing techniques for 
vibration signals are abundant [7]. Therefore, the vibration-based method provides a potential 
approach to diagnose rope tension faults in hoisting systems [8].  

Vibration signal processing usually consists of three steps, namely signal decomposition, 
feature extraction, and pattern recognition. Common signal decomposition methods include Fourier 
transform (FT)-based methods, wavelet transform (WT)-based methods, and empirical mode 
decomposition (EMD)-based methods [7,9]. The FT-based method is a traditional method to convert 
the time domain to the frequency domain. However, it is not suitable for non-stationary signals, 
which are quite common in the mining industry [10]. Although short-time Fourier transform (STFT) 
improves the FT method, it also has obvious limitations because the shape and size of the window 
are fixed for all frequencies [11]. The WT-based method can decompose a non-stationary signal into 
a set of basis functions consisting of contractions, expansions, and translations of a mother function. 
However, the selection of the key wavelet base and decomposition level significantly relies on the 
user’s experience [12]. EMD is a new decomposition method [13], which can self-adaptively 
decompose any signal into a set of intrinsic module functions (IMFs) that include different frequency 
characteristics. It is a significant advance in the analysis of non-stationary signals. However, EMD 
has a drawback of mode mixing. To overcome this drawback, Wu and Huang proposed the ensemble 
empirical mode decomposition (EEMD) method, which is a noise-assisted data analysis method by 
adding finite white noise to the investigated signal [14]. Because of their ease of use and excellent 
performance for complex signals, EMD-based methods have been widely applied in fault diagnosis 
[15–22]. For example, Lei et al. applied the EEMD to the rub-impact fault diagnosis of a power 
generator and early rub-impact fault diagnosis of a heavy oil catalytic cracking machine [15]. 
Jaouher et al. applied the EMD to diagnose bearing faults [16]. Bustos et al. used the EMD for 
estimating the condition of the high-speed train running gear system [20]. Park et al. applied EEMD 
to the transmission error measured by the encoders of the input and output shafts to classify the 
spall and crack faults of gear teeth [21]. Buzzoni et al. applied EMD-based methods for the 
diagnosis of localized faults in multistage gearboxes, and they pointed out that EMD-based 
methods were particularly suitable for industrial applications since they were completely automatic 
[22]. Considering the nonlinearity of the signal in real hoists and the industrial ease of use, EEMD is 
selected in this paper. To improve the diagnosis accuracy, the selection of the main IMFs is necessary 

Figure 1. Schematic diagram of conventional tension fault detection in a hoisting system.

Mechanical vibration signals often contain sufficient information on the running state of mechanical
equipment, so they are widely applied in fault diagnosis of gears, motors, and bearings [4–7]. Compared
with the force-sensor based method, the vibration-based method has obvious advantages. First,
vibration sensors are easy to install and do not damage the safety of the original structure. Second,
vibration signals react immediately to changes. Third, processing techniques for vibration signals are
abundant [7]. Therefore, the vibration-based method provides a potential approach to diagnose rope
tension faults in hoisting systems [8].

Vibration signal processing usually consists of three steps, namely signal decomposition, feature
extraction, and pattern recognition. Common signal decomposition methods include Fourier transform
(FT)-based methods, wavelet transform (WT)-based methods, and empirical mode decomposition
(EMD)-based methods [7,9]. The FT-based method is a traditional method to convert the time domain to
the frequency domain. However, it is not suitable for non-stationary signals, which are quite common
in the mining industry [10]. Although short-time Fourier transform (STFT) improves the FT method, it
also has obvious limitations because the shape and size of the window are fixed for all frequencies [11].
The WT-based method can decompose a non-stationary signal into a set of basis functions consisting
of contractions, expansions, and translations of a mother function. However, the selection of the
key wavelet base and decomposition level significantly relies on the user’s experience [12]. EMD
is a new decomposition method [13], which can self-adaptively decompose any signal into a set of
intrinsic module functions (IMFs) that include different frequency characteristics. It is a significant
advance in the analysis of non-stationary signals. However, EMD has a drawback of mode mixing.
To overcome this drawback, Wu and Huang proposed the ensemble empirical mode decomposition
(EEMD) method, which is a noise-assisted data analysis method by adding finite white noise to the
investigated signal [14]. Because of their ease of use and excellent performance for complex signals,
EMD-based methods have been widely applied in fault diagnosis [15–22]. For example, Lei et al.
applied the EEMD to the rub-impact fault diagnosis of a power generator and early rub-impact fault
diagnosis of a heavy oil catalytic cracking machine [15]. Jaouher et al. applied the EMD to diagnose
bearing faults [16]. Bustos et al. used the EMD for estimating the condition of the high-speed train
running gear system [20]. Park et al. applied EEMD to the transmission error measured by the encoders
of the input and output shafts to classify the spall and crack faults of gear teeth [21]. Buzzoni et
al. applied EMD-based methods for the diagnosis of localized faults in multistage gearboxes, and
they pointed out that EMD-based methods were particularly suitable for industrial applications since
they were completely automatic [22]. Considering the nonlinearity of the signal in real hoists and the
industrial ease of use, EEMD is selected in this paper. To improve the diagnosis accuracy, the selection



Entropy 2020, 22, 209 3 of 20

of the main IMFs is necessary since not all IMFs are sensitive to the faults [23]. Some selection criteria
have been proposed, such as the correlation coefficient criterion [22], the kurtosis criterion [24], and
the similarity between the probability density function of the raw signal and that of each IMF [23].
However, they were all designed for rigid systems, especially bearings.

The effectiveness of fault diagnosis largely depends upon the quality of extracted features [25].
The earliest features are mainly statistical parameters such as kurtosis, root mean square, mean etc.
However, they are often ineffective in a complex situation. Different running states result in different
dynamic characteristics, which can be described from energy and entropy. Entropy is an effective
measure to characterize the complexity of time series, and has attracted wide attention in recent years.
Many entropy approaches have been proposed, such as sample entropy, approximate entropy, and
permutation entropy (PE) [26]. PE is a measure of the complexity in time series data based on the
comparison of successive adjacent values which are mapped to ordinal patterns [27]. Compared with
others, PE has apparent advantages of simple calculation and robustness to noise, thus it has been
widely applied. Berger et al. applied PE in the analysis of complex electroencephalography signals [28].
Zanin et al. reviewed applications of PE in biomedical and econophysics fields [29]. PE is also used
in fault diagnosis. For example, Mitiche et al. applied PE in the classification of the electromagnetic
discharge states in high-voltage power generation [30]. However, the PE lost amplitude information of
the original signal [31]. In [26], logistic models combining PE and sample entropy/ approximate entropy
proved to be much more effective than PE in body temperature signal classification since PE contains
only subpattern ordinal differences, while the combined model adds subpattern amplitude differences.

In pattern recognition, support vector machine (SVM), artificial neural network (ANN), and deep
learning (DL) are attractive [32,33]. Liu et al. reviewed the applications of ANN, SVM, and DL in
the fault diagnosis of rotating machinery and compared their advantages and disadvantages [32].
ANN has a good approximation of complex nonlinear function; however, many parameters need to be
adjusted, and a lot of training samples are required when using ANN. DL does not need the feature
extraction; however, large numbers of training samples are required. SVM has a high classification
accuracy. Further, it has the advantage of solving small-sample learning problems because it is based
on structural risk minimization instead of experiential risk minimization [34,35]. The performance
of ANN, SVM and k Nearest Neighbor (kNN) in misfire and valve clearance faults detection in the
combustion engines was compared in [36]. It showed that SVM outperformed kNN and ANN in terms
of average accuracy, sensitivity, and specificity. Similar conclusion was also drawn in detecting bearing
failures in wind-turbine gearboxes in [33]. Furthermore, the training and tuning time of SVM was
found smaller than that of ANN since ANN has more parameters to tune. Considering the small
simple problem and time consuming requirement in real hoisting systems, SVM is selected in this
work. In an SVM with a Gaussian kernel, the penalty parameter c and the kernel parameter g have a
great influence on the classification accuracy. However, the parameter selection lacks guidance [37].
So, some optimization algorithms, such as the genetic algorithm (GA) [38] and the particle swarm
optimization (PSO) algorithm [39] have been used to find the best parameters. GA was introduced in
the mid-1970s by John Holland. It is inspired by the principles of genetics and evolution and mimics
the reproduction behavior observed in biological populations. PSO was proposed by Kennedy and
Eberhart in the mid-1990s. It is inspired by the ability of flocks of birds to adapt to their environment
by implementing an “information sharing” approach. Venter compared the PSO and the GA and
pointed out that the PSO had similar effectiveness as the GA but with significantly better computational
efficiency by implementing statistical analysis and formal hypothesis testing [40]. The effectiveness
and high efficiency of the PSO make it applied in fault diagnosis [41,42]. For instance, in [41], PSO was
the key to finding the optimized weights of damage-sensitivitive feature vectors in fault detection of
bearing systems.

Inspired by previous studies, we propose a novel method to diagnose tension faults based on
the vibration signal of the head sheave. The EEMD is used for decomposition and denoising. The
improved permutation entropy (IPE) is proposed for feature extraction. The PSO-SVM is employed for
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classification. Experimental results demonstrated the effectiveness of the proposed method to classify
tension faults in both single-rope and multi-rope hoists. The remainder of this article is organized as
follows: Section 2 introduces the theoretical basis and the proposed method. Section 3 presents the
experimental results and discussions, and Section 4 provides the conclusion.

2. Theoretical Basis

2.1. EEMD and the Proposed Sensitivity Index to Extract the Main IMFs

The EMD method was proposed by Huang in the 1990s in order to decompose nonlinear and
non-uniform signals [13]. It can adaptively decompose a complex signal into several IMFs and a
residue, which represent the simple oscillatory modes and the central tendency embedded in the signal,
respectively. An IMF should have the following conditions: (1) the difference between the number of
extrema and the number of zero-crossings should be zero or one in the whole data set and (2) the mean
value of the upper and lower envelopes is zero. The EMD process of the signal x(t) is as follows:

1. Extract the local maxima and minima of x(t).
2. Interpolate the maxima and minima by cubic spline lines to determine the upper envelope u(t)

and lower envelope v(t), respectively.
3. Calculate the mean value m1(t) = (u(t) + v(t))/2.
4. Let h1(t) = x(t) −m1(t), if h1(t) is an IMF then let c1(t) = h1(t), else regard h1(t) as x(t) and go

back to step 1.
5. Define the residue r1(t) = x(t) − c1(t).
6. Regard r1(t) as x(t), and repeat the above steps n times, until the residue rn is a monotone function

or smaller than the threshold.

At the end of the procedure, a residue rn and n IMFs ck(k = 1, 2, ...n) are obtained. The original
signal can be described as in Equation (1):

x(t) =
n∑

k=1

ck(t) + rn(t) (1)

However, the EMD method has the disadvantage of mode mixing, which means that a single
IMF includes oscillations of dramatically disparate scales or a similar scale component resides in
different IMFs. The EEMD method is proposed to overcome this problem [14]. White noise is added to
the entire time-frequency space uniformly to project the different components onto the project scales
automatically. The EEMD method is executed as follows:

1. Add white noise to the original signal.
2. Decompose the noise-added signal IMFs by the EMD method.
3. Repeat steps 1 and 2 with different white noises each time.
4. Calculate the ensemble mean value of each IMF as the final IMF.

The amplitude of the added noise can be set as 0.2 times the standard deviation of the signal and
the number of the ensembles can be set as 50–100, as suggested in [14].

The selection of main IMFs is necessary to improve the diagnosis accuracy because not all the
composed IMFs contain useful information. Some selection criteria have been proposed, such as the
correlation coefficient criterion, the kurtosis criterion; however, the valuable IMFs may be lost only
based on a single dimension. Further, they are designed for the fault diagnosis of rigid bearings instead
of flexible rope systems. For example, the kurtosis is sensitive to the impulses produced by rigid body
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collisions, which happen easily in bearings but not in flexible systems. In this paper, a sensitivity index
to select the main IMFs, which considers the energy and similarity to the original signal, is proposed as

sk = a
|Ck|∑
n|Ck|

+ (1− a)
Ek∑
n Ek

(2)

where n is the decomposed number of IMFs; Ek is the energy of the k-th IMF, Ck is the Pearson
correlation coefficient between the k-th IMF and the original signal, and a is an adjusting coefficient to
make sk more flexible, which is in the range of [0, 1]. The Pearson correlation coefficient C between
M-point sequences X and Y is defined in Equation (3):

C =

∑
XY −

∑
X
∑

Y
M√

(
∑

X2 −
(
∑

X)2

M )(
∑

Y2 −
(
∑

Y)2

M )

(3)

2.2. Permutation Entropy

PE was proposed by Bandt and Pompe [43] to analyze the complexity of a time series and detect
its dynamic characteristics. It has the advantages of low calculation cost and strong resistance to
noise [34]. For a time series

{
x(i), i = 1, 2, ...N

}
, the PE is calculated in the following steps.

1. Sequence reconstruction. The time series
{
x(i), i = 1, 2, ...N

}
is converted into a multi-

dimensional vector:

X(1) =
{
x(1), x(1 + τ), ..., x(1 + (m− 1)τ)

}
...
X(i) =

{
x(i), x(i + τ), ..., x(i + (m− 1)τ)

}
...
X(N − (m− 1)τ) =

{
x(N − (m− 1)τ), x(N − (m− 2)τ), ..., x(N)

}


(4)

where m is the embedding dimension and τ is the delay factor.
2. Sorting. Each sequence in the embedding vector X(i) is rearranged in ascending order as:

x(i + k1)τ) ≤ x(i + k2τ) ≤ ... ≤ x(i + kmτ), where ki , k j. If two or more elements are equal, they
are ordered by their corresponding index value ki. The rank is the permutation of X(i), marked
as an ordinal pattern π(l) = {k1, k2, k3, ..., km}, l = 1, 2, 3, ..., m!. There are in total m! possible
ordinal patterns.

3. Probability and entropy calculation. The relative frequency of π(l) is calculated as:

P(πl) =
number of

{
X(i) has type π(l) | 1 ≤ i ≤ N− (m− 1)τ

}
N − (m− 1)τ

(5)

The PE is defined as:
HPE(m) = −

∑m!

l=1
P(πl) ln P(πl) (6)

The time lag τ and the embedding dimension m are recommended to be 1 and 3–7, respectively [29].

2.3. Improved Permutation Entropy

It can be seen from the definition of P(πl) that the amplitude information is not taken into
consideration. Vectors with a large difference, for example, {0, 1, 2}, {20, 21, 22} and {1, 12, 32} have
the same motif (0, 1, 2), when m = 3. When calculating P(πl), three vectors have the same weight
of 1; therefore, their amplitude information is lost. In this study, we calculated Xr(i), which is the
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root-mean-square (RMS) value of X(i), and let it be the weight of X(i) to calculate the improved
probability PI(πl):

Xr(i) =

√∑m
k=1 x2(i + (k− 1)τ)

m
(7)

PI(πl) =

∑ N−(m−1)τ
i=1

{
Xr(i) |X(i) has type π(l)

}
∑ N−(m−1)τ

k=1
{
Xr(k)

} (8)

Then, the IPE was then calculated by

HIPE(m) = −
∑

m!
l=1PI(πl) ln PI(πl) (9)

The definition of the IPE retains most of the PE’s properties and adds the amplitude information, so
it is more accurate than the PE. A simulation contained impulse detection and signal segmentation was
carried out to validate its advantage. The simulation signal was the combination of three component
signals y1, y2, and y3:

y1(t) = cos(4πt)
y2(t) = 6 cos(4πt)
y3(t) = 6 cos(8πt)

(10)

The length of each component signal was 1 s with 5000 samples, so there were 15,000 samples in
total. y1 and y2 had the same frequency but different amplitudes. y2 and y3 had the same amplitude
but different frequencies. An impulse was added to y1 at 0.4 s. Additive white Gaussian noise (AWGN)
with the signal-to-noise ratio (SNR) of 15 dB is also added to the whole signal. The wave of the
simulation signal is shown in Figure 2a.
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Figure 2. Application of the PE (permutation entropy) and IPE (improved permutation entropy) in
impulse detection and signal segmentation. (a) The simulation signal. (b) The PE and IPE of the
simulation signal with m = 4, τ = 1.

The PE and IPE of the simulation signal were calculated in sliding windows with a length of
500 samples. The window slid 100 samples per time. The curves of the PE and IPE are presented in
Figure 2b. When the impulse occurred in windows 17–21, the IPE presented an obvious change, while
the PE did not. That was because the PE does not consider amplitude information, so the impulse was



Entropy 2020, 22, 209 7 of 20

treated the same as normal data. In signal segmentation, the boundary between y2 and y3 was detected
by both the PE and IPE because the frequency change led to a noticeable change of the dynamic
characteristic. However, the boundary between y1 and y2 was detected only by the IPE because the PE
lost the amplitude information.

Therefore, the IPE proved to be more sensitive in detecting the dynamic characteristics of the
signal than the PE.

2.4. PSO-SVM

The SVM method is based on the Vapnik-Chervonenkis (VC) dimension theory and the structural
risk minimization principle. [44] It classifies two types by transforming the data to a higher dimensional
feature space to find the optimal hyperplane in the space which maximizes the margin between the
two types. Multi-classification can be solved by the combination of multiple binary SVMs, such as the
“one-against-one” (OAO) and “one-against-all” (OAA) methods. A comparison showed that the OAO
method is more suitable for practical use [45], so the OAO method was used here.

The parameters in the SVM have a significant influence on the classification result. However, the
parameter selection lacks theoretical guidance. The PSO is a computational intelligence method that is
motivated by organisms’ behaviors, such as the flocking of birds. It has a well-balanced mechanism to
enhance global and local exploration abilities. So the PSO was used to select the penalty parameter c
and the kernel parameter g in the SVM with a Gaussian kernel. In the PSO, (c, g) become the particles.
The PSO-SVM is briefly introduced as follows:

1. Initialize the particles (c, g) and the iterative time N.
2. Calculate the objective function value of the particle using the SVM training algorithm.
3. Calculate the optimal historical values of the individual and the population.
4. Update the particle velocity and position according to the speed and position update equations.
5. If the iterative time is satisfied, output the optimal parameters; otherwise, go back to step 3.
6. If the SVM accuracy does not meet the requirement, go back to step 1.
7. The flowchart of the PSO-SVM is shown in Figure 3.
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2.5. Relationship Between Rope Vibration and Tension

Tension changes result in vibration changes of a wire rope. Vibration signals can be obtained
from the drum and the head sheave. The drum connects to the gearbox and the motor, leading to
serious noise and interferences. So the vibration signal is obtained from the head sheave. The wire
rope between the head sheave and the drum can be seen as a taut string. In taut string theory, the
relationship between the tension and the transverse frequency is described as [46]

T = 4ρl2(
fn
n
)

2

−
EI
l2
(nπ)2 (11)

where T is the tension; ρ, l are the linear density and length of the rope between the head sheave and
the drum, respectively; fn is the n-th order frequency of the rope, and EI is the bending stiffness of
the rope.

In mine hoisting, the bending stiffness of a rope is small and can be ignored [47]. So, the
relationship can be simplified as

T = 4ρl2(
fn
n
)

2

(12)

Although it seems simple, the transverse vibration frequency cannot be easily obtained by FT
analysis because the frequency difference between the normal and fault states is very small. For
instance, in a mine where ρ= 4 kg/m, l = 51 m and the base frequencies in the normal state T1 = 45,000 N
and the overload state T2 = 50,000 N are 1.08 and 1.20 Hz, respectively, with a difference of 0.12 Hz.
This means at least 8.3 s long data are needed to obtain high resolution in the FT method, which is
unacceptable in terms of real-time performance. Further, some interference, such as wind, renders the
signal nonlinear and nonstationary.

Therefore, the transverse vibration signal has a close relationship with rope tension and a novel
processing method needs to be studied to extract useful features.

2.6. Proposed Method

As is illustrated in Figure 4, the steps of the proposed method to diagnose the hoisting rope
tension faults in a hoisting system are as follows.

1. Decompose the transverse vibration signal of the head sheave into IMFs by the EEMD method.
2. Calculate the proposed sensitivity index of the IMFs and sort the values in descending order;

then, extract the top j IMFs as the main IMFs and reconstruct the de-noised signal by the sum of
the main IMFs.

3. Calculate the energy and the IPE of the main IMFs and the de-noised signal to create the
feature vector.

4. Train the PSO-SVM model based on the vibration samples in different tension states.
5. Use the trained SVM model to diagnose the rope tension faults in the hoisting systems in practice.
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3. Experiment Results and Discussion

3.1. Experimental Setting and Data Collection

Rope tension faults include impact, overload, underload, and imbalance. Impact can be easily
detected by a violent change of the amplitude. However, the other three states are difficult to
classify because there are no essential differences among them, on which we focusedin this study.
Fault experiments are very difficult to carry out in real mine hoists, so they were performed on an
experimental platform. The experimental platform was a two-rope winding hoist with a lifting height
of 36 m, the schematic diagram of which is shown in Figure 5. Two containers moved in opposite
directions to balance the torque of the shaft apparatus. Each lifting container was connected to a
winding drum by two parallel ropes. Each head sheave was fixed on a hydraulic cylinder, which
could be adjusted by a control system. We used the hydraulic cylinders to create imbalance faults here.
Photos of the platform are shown in Figure 6a.
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Figure 5. Schematic diagram of the two-rope winding hoist and the data acquisition system.

The experiment was performed on the two ropes of the right container. The schematic diagram of
the sensors and the data acquisition system is also shown in Figure 5. Two ICP vibration sensors were
independently attached to the end faces of the two head sheaves, as shown in Figure 6c. A National
Instruments (NI) CompactDAQ data acquisition device and a laptop with LabVIEW software were
used to acquire the vibration signal. Two tension sensors were installed between the right container
and the two hoisting ropes. The tension data were obtained by another NI -CompactDAQ device
that was placed in the container and were then transmitted to the laptop by wireless communication.
The photos are shown in Figure 6b. Therefore, the transverse vibration data of the head sheaves and
the ropes’ tension data were recorded at the same time by the LabVIEW software. The main parameters
of the data acquisition system are shown in Table 1. The sampling frequency was set as 1024 Hz.
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Figure 6. Photos of the experimental setup: (a) experimental platform, (b) tension sensors as calibration,
and (c) vibration sensors and data acquisition system.

Table 1. Main parameters of the data acquisition system.

Module/Model Main Parameters

Data acquisition 1 NI CompactDAQ with NI 9234 module Sampling rate: 51.2 k/s; Resolution: 24 bit.
Data acquisition 2 NI CompactDAQ with NI-9220 module Sampling rate: 100 k/s; Resolution: 16 bit.

Accelerometer PCB 352C65 Measurement range: ±50 g; Frequency range:
0.5 Hz–10 kHz; Sensitivity: 100 mV/g.

Tension sensor NOS-L101 Range: 10,000 N; Error: <1%.

In a single-rope hoist, there are three typical tension states called the overload, normal, and
underload states. In a multi-rope hoist, the imbalance states are added. The five experimental tension
states labeled S1-S5 are shown in Table 2, in which the two ropes are separately labeled as A and B.

Table 2. Setting of the experimental rope tension.

Label State The Tension of Rope A (N) The Tension of Rope B (N)

S1 Overload 5600 5600
S2 Normal 4900 4900
S3 Underload 4200 4200
S4 Imbalance 1 5600 4200
S5 Imbalance 2 4200 5600

The overload and underload states were simulated by adjusting the weight of iron blocks in the
lifting container. The imbalance state was simulated by adjusting the displacement of two hydraulic
cylinders under the head sheaves.

The lifting speed was set to be 1.5 m/s, and vibration and tension data were obtained in
constant-speed lifting stages. 96 samples were obtained in each of the five states, so there were
480 samples in total. The sampling length was 1 s. 36 samples in each state were selected as the test
samples and the others were selected as the training samples.

Two experiments were performed. Experiment 1 was the classification of the three states (S1–S3)
of a single rope A, the aim of which was to present the advantages of each processing step of the
proposed method by comparing it with other methods. Experiment 2 was the classification of the
five states (S1–S5) of the two ropes, the aim of which was to show the generalization capability of the
proposed method.
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3.2. Experiment 1: Classification of the Three States of a Single Rope

3.2.1. Signal Decomposition

The vibration signal samples of rope A in the three states are shown in Figure 7, in which S1-A,
S2-A, and S3-A are the overload, normal, and underload samples, respectively. The waves of the signal
samples seem complicated. The energy distribution versus both the time and frequency of the signals is
usually an effective feature to classify different running states, so the Hilbert spectra of the three states
were calculated and are shown in Figure 8. As it can be seen, first, the energy was mainly distributed in
the low frequency caused by the rope vibration, which means the noise caused by the motor was very
small. Second, the distribution of the energy and frequency was not stable with time, which means the
signals were time varying. This is because a hoist is an open system, in which there are many kinds of
interference, such as wind. Third, it was difficult to find a clear difference among the spectra of the
three states because they were quite complex. Further, we tried to use common time-domain statistical
features, such as the mean, peak, RMS, and kurtosis values, to find the differences between the three
states but also failed.

The signals were decomposed using the EEMD method, in which the amplitude of the added
white noise was set to 0.2 times the standard deviation of the investigated signal, and the number of
the ensembles was set to 50 [48]. The S2-A sample was used as an example, which was decomposed
into several IMFs and a residue, as shown in Figure 9a. The EMD result of the same sample is shown in
Figure 9b for comparison. The FFT spectra of the EEMD and EMD are shown in Figure 10. As shown
in the time domain, the EMD and EEMD both decomposed the complicated raw signal into some
simple components from high to low frequencies, which indicates the effectiveness of the EMD-based
method. As shown in the frequency domain, in the EEMD results, each IMF’s frequency was more
concentrated, and the frequencies between adjacent IMFs were more separate, especially in IMF2 and
IMF3. That means that the mode mixing was improved by the EEMD approach.
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The EEMD effectively decomposed the vibration signal into IMFs; however, not all IMFs were
useful. The main IMFs were extracted to reduce noise based on the proposed sensitivity index in
Equation (2), in which we regard the energy and the correlation to be equally important and set a = 0.5.
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The sensitivity index values of the IMFs are shown in Figure 11, in which C and E represent the relative
correlation and relative energy, respectively. The top four IMFs were selected as the main IMFs. Then
the de-noised signal was obtained by the sum of the main IMFs.
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Feature extraction plays a crucial role in classification results. The energy and the IPE values of
the IMFs and the de-noised signal were calculated, with the time lagτ and the embedding dimension
m in the PE set to be one and four, respectively [20]. Six feature combinations were compared based on
PE, IPE, and energy (EN), as shown in Table 3. The PSO-SVM was used as the classifier. The results are
shown in Table 3 and Figure 12, in which the test samples 1–36, 37–72, 73–108 represent the S1-A, S2-A,
and S3-A states, respectively.

Table 3. Classification results using different features.

Feature IMFs S1-A Accuracy
(%)

S2-A Accuracy
(%)

S3-A Accuracy
(%)

Total Accuracy
(%)

EN
De-noised
signal and
main IMFs

61.1 86.1 72.2 73.1
PE 94.4 75.0 80.6 83.3
IPE 100.0 88.9 80.6 89.8

{PE, EN} 100.0 94.4 88.9 94.4
{IPE, EN} 100.0 97.2 94.4 97.2

{IPE, EN} All IMFs 88.9 88.9 86.1 88.0
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Figure 12. The PSO-SVM classification results with different features. (a) EN, (b) PE, (c) IPE, and
(d) EN + IPE.

We can observe the following information from the results: First, the accuracy of the IPE was
much higher than that of the PE feature. That was because the IPE is more accurate, as it considers the
amplitude of the signal. Second, combination features performed better than a single one because each
feature has its advantage and multi-dimensional information is more comprehensive. For example, the
EN was more sensitive to S3-A than to S1-A, while the IPE behaved in a contrary manner, and the
combination of EN and IPE led to a much higher accuracy than the EN or IPE. Third, when all IMFs
were used, the accuracy was much lower than when using the main IMFs and de-noised signal only.
The reason for this is that some IMFs were interferences and noise, which indicates the necessity and
effectiveness of the selection of the main IMFs. Last, the proposed feature extraction method had the
highest accuracy of 97.2%.

3.2.3. Optimized SVM

The OAO SVM was adopted to classify the overload, normal and underload states of a single rope.
The PSO method was used to optimize the (c, g) parameters in the SVM with a Gaussian kernel. The
five-fold cross-validation technique was used to improve the classification accuracy in the small sample
problem. The feature vector was the IPE+EN of the main IMFs and the de-noised signal. The grid and
GA methods were also applied for comparison. The results are shown in Table 4.

Table 4. Classification results using different SVM (support vector machine) models.

Model Total Accuracy (%) Computing Time(s)

SVM 88.0 0.1
Grid-SVM 92.6 7.4
GA-SVM 94.4 5.3
PSO-SVM 97.2 4.5

The result illustrates that the SVM model has the lowest classification accuracy. As shown in
Figure 13, the c, g parameters have a significant influence on the classification accuracy. The accuracy
may be as low as 40% based on a random selection, indicating the necessity of optimization.
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The grid, GA, and PSO algorithms increased the classification accuracy to 92.6%, 94.4%, and 97.2%,
respectively. The computation time of the three methods was 7.4, 5.3, and 4.5 s, respectively. The grid
algorithm is based on a traversal search that is highly time consuming when using a fine grid, while
the GA and PSO are both population-based search methods that are usually time saving. Furthermore,
the PSO takes less time than the GA because it is simpler and has no crossover and mutation processes.
Therefore, the PSO works well to optimize the SVM in terms of both accuracy and computing time.

3.3. Experiment 2: Classification of the Five States of Multiple Ropes

The proposed signal decomposition, feature extraction, and classification methods were validated
for the classification of the three tension states of a single rope. In a two-rope winding system, the
feature vector’s dimension increases from five to ten. Moreover, the number of classifiers increases from
three to ten because there are k(k− 1)/2 classifiers in a k-class OAO SVM. So, the classification of the
five states of two ropes is much more challenging. This experiment aimed to prove the generalization
capability of the proposed method.

There were 300 training samples and 180 test samples. The features were extracted from the
de-noised signal and the main IMFs of the two ropes. The fivefold cross-validation technique was
also used to improve reliability. The results are shown in Table 5. It can be seen that the EEMD
method performed better than the EMD at decomposition. The IPE performed better than the PE
at feature extraction. The PSO-SVM performed better than the SVM and the neural network at
classification. The comparison results are consistent with those from the classification of the single-rope
hoist. The proposed method had the highest accuracy of 94.4%. Therefore, the results demonstrate
the generalization capability of the proposed method and show its effectiveness for the tension fault
classification in not only single-rope but also multi-rope hoists.

Table 5. Classification results of rope tension states of the two ropes.

Decomposition Feature Extraction Classification Model Total Accuracy (%)

EMD IPE + EN PSO-SVM 83.3
EEMD IPE + EN PSO-SVM 94.4
EEMD IPE + EN BP neural network 82.2
EEMD IPE + EN SVM 78.9
EEMD PE + EN PSO-SVM 92.2

4. Conclusions

Rope tension faults may cause severe accidents in hoisting systems. In this paper, a novel tension
fault diagnosis method based on the vibration signal of the head sheave was proposed. First, the signal
was decomposed into several IMFs by the EEMD. Second, a sensitivity index was proposed to extract
the main IMFs; then the de-noised signal was obtained by the sum of the main IMFs. Third, the IPE and
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the energy of the main IMFs and the denoised signal were calculated to create the feature vector. The
IPE was proposed to improve the PE by adding the amplitude information of the signal, and it proved
to be more sensitive than the PE in the simulations of impulse detecting and signal segmentation.
Fourth, a PSO-SVM model was trained based on the vibration samples in different tension states. Lastly,
the trained model was used to detect the tension faults in practice. Two experiments aiming at the
classifications of the three states of a single rope and the five states of multiple ropes were performed. In
the first experiment, the performances of different decomposition, feature extraction, and classification
methods were independently compared to show the advantages of the proposed method. In the second
experiment, the expansibility of the proposed method is verified. Results showed that the classification
accuracies of the proposed method in the two experiments were 97.2% and 94.4%, respectively, which
indicates that it can effectively detect rope tension faults such as overload, underload, and imbalance
in hoisting systems.

This study provides a new perspective for detecting rope tension faults in winding systems.
Compared with the conventional method based on force sensors, the proposed method has obvious
advantages: First, vibration sensors are much easier to install and do not affect the safety of the original
structure. Second, data transmission and power supply are also much more convenient. Therefore, the
proposed method has great potential for engineering applications.

The essence of tension fault diagnosis is the classification of the tension level of each rope. In this
study, the classification of three tension levels of a single rope was realized. However, rope tension
should be described more accurately in engineering by a classification of more levels or a regression
analysis, which will be the topic of our future study.
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ANN artificial neural network
AWGN additive white Gaussian noise
DL deep learning
EEMD ensemble empirical mode decomposition
EMD empirical mode decomposition
EN energy
FT Fourier transform
GA genetic algorithm
IMF intrinsic module function
IPE improved permutation entropy
kNN k Nearest Neighbor
NI National Instruments
OAA one-against-all
OAO one-against-one
PE permutation entropy
PSO particle swarm optimization
RMS root-mean-square
SNR signal-to-noise ratio
STFT short-time Fourier transform
SVM support vector machine
VC Vapnik-Chervonenkis
WT wavelet transform
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