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Translation machinery is responsible for the production of cellular proteins;
thus, cells devote the majority of their resources to ribosome biogenesis and
protein synthesis. Single-copy loss of function in the translation machinery
components results in rare ribosomopathy disorders, such as Diamond–
Blackfan anaemia in humans and similar developmental defects in various
model organisms. Somatic copy number alterations of translation machinery
components are also observed in specific tumours. The organism-wide
response to haploinsufficient loss-of-function mutations in ribosomal
proteins or translation machinery components is complex: variations in
translation machinery lead to reduced ribosome biogenesis, protein trans-
lation and altered protein homeostasis and cellular signalling pathways.
Cells are affected both autonomously and non-autonomously by changes
in translation machinery or ribosome biogenesis through cell–cell inter-
actions and secreted hormones. We first briefly introduce the model
organisms where mutants or knockdowns of protein synthesis and ribosome
biogenesis are characterized. Next, we specifically describe observations in
Caenorhabditis elegans and Drosophila melanogaster, where insufficient protein
synthesis in a subset of cells triggers cell non-autonomous growth or apop-
tosis responses that affect nearby cells and tissues. We then cover the
characterized signalling pathways that interact with ribosome biogenesis/
protein synthesis machinery with an emphasis on their respective functions
during organism development.
1. Variations in the protein synthesis machinery in
humans and model organisms

1.1. Human pathologies
Germline inheritance and somatic genetic alterations in protein synthesis result in
severe developmental congenital disorders and may predispose individuals to
cancer [1–7]. Human pathologies resulting from mostly single-copy loss-of-
function mutations in ribosome biogenesis (ribosomopathies) and protein
synthesis machinery have been reviewed in detail by Venturi & Montanaro [8]
and Sarita & Sanal [9]. As an example, Diamond–Blackfan anaemia (DBA)
encompasses a subclass of diseases called ribosomopathies,which feature a germ-
line-inherited insufficiency in the protein synthesis machinery (specifically in one
of the approx. 16 ribosomal proteins (RPs)). DBA results in various disorders that
have overlapping manifestations, including macrocytic anaemia, congenital
defects and a predisposition to malignancy [5,10,11]. DBA is characterized by
its unpredictable penetrance and inadequate treatment options [11,12].
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Tumour cells often display enlarged nucleoli and have con-
sistently active ribosome biogenesis [13,14]. Paradoxically,
several studies have reported high incidences of specific trans-
lationmachinerymutations in certain cancer types. Among 211
T cell–acute lymphoblastic leukaemia (T-ALL) patients, a
subset (11 and 4, respectively) have mutations in RPL11 and
RPL5. Paediatric T-ALL patients are particularly affected as
overall 10% carry somatic mutations in RPL10, RPL5 and
RPL22 [15]. Strikingly, one particular missense mutation,
RPL10 Arg98Ser, was recurrently observed in multiple T-
ALL patients [16]. Mutations in RPL22 have been reported in
four out of 47 patients with T-ALL, in 23 out of 30 patients
with colorectal cancer and in 17 out of 34 patients with endo-
metrial cancer [17,18]; 22–67% of 7225 cancer specimens from
The Cancer Genome Atlas contain deletions of various single
RP genes and 12–58% contain deletions in multiple RP genes
[19]. Overall, there is not a clear causal link between mutations
that affect ribosome biogenesis/function and carcinogenesis.
However, cancer cells might have mechanisms to overcome
ribosome biogenesis defects by acquiring other mutations.
One such example comes from ayeast study, where the authors
have modelled recurrently mutated RPL10 Arg98Ser in T-ALL
and observed a late 60S biogenesis defect which could be sup-
pressed by another missense mutation (Y37D) in the export
factor NMD3. The suppressor mutation in NMD3 rescued
the yeast growth defect and resulted in functional RPL10
Arg98Ser containing ribosomes with defects in translational
fidelity [20,21]. Decreased translation fidelity could potentially
yield more genomic mutations and alterations as a result of
proteins that are not correctly translated. Moreover, suppres-
sion of different or similar trans-factors could potentially
drive carcinogenesis in a similar fashion. As an alternative
model, suppressing the overly active translation machinery in
cancer cells by ribosome loss-of-function mutations could
increase their fitness and survival [15,22].

Patients carrying certain germline inherited mutations in
ribosome biogenesis have higher incidences of cancer later in
life. Patients with dyskeratosis congenita caused by mutations
in DKC1, which encodes ribosome biogenesis factor dyskerin,
have a higher incidence of cancer, with specifically head and
neck squamous carcinoma being the most prominent
(approx. 45% cumulative by the age of 50) [23]. In the North
American DBA registry of 608 patients for about 15 years of
follow-up, 15 patients have developed various solid tumours
(such as colon adenosarcoma and breast cancer), two patients
have developed acute myeloid lymphoma and two patients
have developed myelodysplastic syndromes [24].

Few examples in model organisms suggest that copy
number or expression variation in RPs correlate with malig-
nancy. RPL15 overexpression in circulating tumour cells
promotes the translation of other RPs and increases lung
metastasis in mice [25]. Soft tissue sarcoma was observed in
heterozygous Rpl5 and Rps24 knockout mice (2 out of 21
and 1 out of 21 animals, respectively) [26]. Heterozygous
and homozygous Rpl22 loss-of-function mutations acceler-
ated the onset and rate of thymic lymphoma progression
under the constant expression of the oncogenic gene
MyrAkt [17,27]. Finally, an unbiased forward genetic screen
for tumour suppression across essential genes in zebrafish
recovered 12 independent lines with a higher predisposition
to peripheral nervous sheet malignancy. Strikingly 11 out of
12 of the screen hits were haploinsufficient for different RP
genes [28]. Surprisingly, not much is understood about the
mechanism between ribosome biogenesis and cancer. For a
detailed reading on this topic, please refer to De Keers-
maecker et al. [22] and Sulima et al. [29].

Recent developments in genomics and pharmacology have
provided powerful and novel approaches to first understand-
ing and then intervening in disease-related pathways. While
such approaches will be challenging for essential genes with
haploinsufficiency conditions, such as DBA or cancer, an
interaction ‘roadmap’ can be drawn by investigatingwhich sig-
nalling pathways interact with ribosome biogenesis and
function in model organisms. Such understanding will ulti-
mately provide an opportunity to understand the underlying
disease pathology and rationally develop treatment options
for human ribosomopathies (e.g. drugs that interfere with
interacting pathways can mitigate DBA-like symptoms in
zebrafish and mice) [30,31].

In general, the observed phenotypes in metazoan model
organisms encompass developmental delay, the overgrowth
of particular tissues and altered apoptosis or cell competition
associated with an insufficiency of the protein synthesis
machinery, which were further used to screen for factors
that would mitigate and suppress such conditions, in order
to understand the interacting signalling pathways. A detailed
meta-analysis of phenotypic defects caused by multiple RP
haploinsufficient mutations in different model organisms is
reviewed for further reference [32]. Here, in the next section,
we aim to provide a brief overview with examples of these
defects in different model organisms.
1.2. Budding yeast
Eighty per cent of RP genes are duplicated with functional
paralogues owing to a recent genome duplication event in
yeast. An interesting study alluded to the paralogue-specific
role of RPs where the authors discovered that mutations in
genes encoding specific paralogue RP (RPL7, RPL12,
RPL13, RPL20, RPL27, RPL34, RPL41, RPP1, RPS4, RPS10,
RPS14 and RPS30) mutations had unique effects, ranging
from bud site selection to resistance to various drugs. The
overexpression of their near-identical paralogues (RPL7B,
RPL12A, RPL22B and RPS18A) could not fulfil the same
role where deletion of paralogous duplicates of several RPs
(RPL7A, RPL12B, RPL22A and RPS18B) affected the budding
selection site. These observations suggested a paralogue-
specific function of RPs [33]. As the mutants that were used
for this study came from the yeast mutant collection, one
could imagine that the possibility of fast accumulation of
mutations that suppress any growth defects could potentially
explain the various observed phenotypes.

To circumvent a potential suppressor mutation accumu-
lation, a more recent study used an inducible degradation
system to conditionally prevent ribosome biogenesis in
yeast. Multiple ribosomal RNA (rRNA) processing factors
(Las1, Rat1, Rrp44, Rrp17) were degraded in an inducible
fashion, and the resulting imbalance of newly synthesized
orphan RPs was studied. The authors observed that resulting
increased orphan RPs triggered a proteotoxic response and
resulted in the activation of the conserved heat-shock tran-
scription factor Hsf1 and reduced cellular fitness [34].
Similarly, defects in ribosome assembly induced by depletion
of topoisomerase Top1 upregulate Hsf1 targets [35].
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1.3. Drosophila
Single-copyRPmutations result in a classical phenotype called
Minute Drosophila. In addition to having a smaller body as a
result of their smaller cell size,Minute animals display delayed
larval development, short bristles and recessive lethality. Other
manifestations of Minute include large and rough eyes as well
as reduced viability and fertility [36–41]. Several Minute
mutant animals exhibit alterations in the wing structure,
weaker legs, paler body colour and chromosome elimination
in somatic cells [41,42]. For many decades, the subject of
Minute loci encoding was unknown until a Minute locus
(M(3)99D) was successfully linked to an RP-encoding gene,
RpL32 [43]. Over the years, relations between RPs and the
Minute phenotype have been well established and extensively
reviewed [40,44].

Different gene- or tissue-specific phenotypes have also
been observed owing to several RP haploinsufficient
mutations. For example, a mutation in the 50 regulatory
region of RpS6 can induce ectopic cell divisions in haemato-
poietic organs [45]. A specific Minute phenotype called
string of pearls (sop) that is attributed to RpS2 has been
found to manifest in altered ovaries and recessive sterility
[46]. Despite the general observation that cell sizes are smal-
ler inMinutemutants, larger wing cells and thus larger wings
were reported in RpS13, RpS38 and RpL5 mutants [42,44,47].
These overall results suggest that the loss of function of sev-
eral RPs might have additional phenotypes that are not easily
explainable by overall insufficient protein synthesis.

The general Minute phenotype including body size and
short bristles displays non-cumulative and dose-dependent
traits. The cumulative effects of different Minute alleles are
not more severe than the phenotype of a single Minute
allele, suggesting that the observed phenotype is the result
of an overall outcome of insufficiency in the ribosome
machinery [41]. When varying levels of RpS3 expression
were induced through P-element insertions at different
locations in the promoter region, a dose-dependent Minute
phenotype was observed; the lower the expression level of
RpS3, the more severe the phenotype [48].

Minute orMinute-like phenotypes have also been observed
stemming from alterations in other genes related to protein syn-
thesis. First, a well-established Minute locus is attributed to a
mutation in eIF2α, encoding a subunit of the key translation
initiation factor eIF2 [44,49]. Second, a phenotype called stubar-
ista, which is attributed to a mutation in a gene that encodes a
putative ribosome-associated protein, D-p40, was found to
result in shorter antennae, thickened and irregular aristae,
short bristles and reduced fertility [50]. Third, severalmutations
that affect the synthesis of rRNA cause a Minute-like pheno-
type. A phenotype called bobbed, which affects the locus that
encodes 45S ribosomal DNA (rDNA), manifests in smaller
bristles and developmental delay owing to the reduced tran-
scription of 45S rDNA [51–53]. Another similar phenotype
associated with a reduction in 5S rRNA is called mini (min),
and it results in a bobbed-like phenotype and lower viability
at non-permissive temperatures [54–56]. Finally, alterations of
numerous nucleolar proteins also induce Minute-like pheno-
types. Modulo, which encodes a DNA-binding nucleolar
phosphoprotein, causes a Minute-like phenotype featuring
smaller cell sizes and shorter bristles [57–59]. RNAi against
Nopp140, an evolutionarily conserved nucleolar phosphopro-
tein C/D box small nucleolar ribonucleoprotein, resulted in
delayed development, deformed wings and legs, a higher
incidence of short bristles and a degree of lethality [60].

1.4. Mouse
Several phenotypes that resemble Drosophila Minutes have
been observed in mice. A phenotype called belly spot and
tail (Bst), characterized as the ‘mouse Minute’, is due to a
mutation in Rpl24. Bst animals have kinked tails, white
hind feet, skeletal abnormalities and white ventral midline
spots. Similar to the Minutes, these animals have smaller
body sizes [61]. The mutation of a ribosome-related gene
Rplp1 also results in small body size, male infertility and var-
ious systemic tissue abnormalities [62]. While Rpl29 is not an
essential RP gene, its homozygous loss of function results in
smaller animals with skeletal defects and embryonic
developmental delay [63].

Aside from the developmental delay, various blood
disorders and malignancy are associated with RP haploinsuf-
ficiency in mice. A series of phenotypes called dark skin
(Dsk), some of which are attributed to mutations in Rps19
or Rps20, result in increased erythrocyte hypoplasia and pig-
mentation in the footpads, tails and ears [64]. Homozygous
deletion of the Rpl22 gene results in a P53-dependent defect
of αβ lineage T cells in the thymus [17]. In an interesting
study, the translation of Hox mRNAs was affected in the pres-
ence of an RPL38 haploinsufficient mutation, where this
mutation drives vertebrate defects. Since this phenotype is
largely dependent on mouse genetic background [65] and
relies on the haploinsufficient loss of an RP that is conserved
in all eukaryotes, the conclusions regarding a gene-specific
translation role of RPL38 are debatable [66]. A more recent
study found that conserved upstream open reading frames
(uORFs) in Hox mRNAs confer alterations in start codon
selection stringency and inhibit translation. Depletion of a
large RP or using a sublethal concentration of a translation
inhibitor can mediate gene-specific effects by altering start
codon selection stringency, which argues against sequence-
specific, RPL38-dependent translation of Hox mRNAs [67].

1.5. Zebrafish
Knockdowns of RPs by morpholinos result in pleiotropic
developmental defects [68–71]. Both knockdown and knock-
out of the rpl10a gene resulted in abnormal development,
which encompassed short bodies, curved tails and small
yolk sac extensions [72]. To model DBA, a knockdown of
rps19 in embryos manifested in defective erythropoiesis,
delayed development, shorter body size, a reduced forebrain,
defective eyes and death within 10 days post fertilization
[73–76]. Single-copy mutations of different RPs cause higher
incidences of nerve sheath tumours in zebrafish, which was
discovered through a forward genetic screen aimed at finding
heterozygous mutations in recessive lethal genes, which
suggests that RP genes are potential haploinsufficient
tumour suppressors [28].

Both shared and unique zebrafish developmental defects
have been observed in knockdowns and mutations in loci
that encode several ribosome biogenesis components. These
include the snoRNAs U26 (indistinct midbrain–hindbrain
boundary, delayed ocular pigmentation), U44 (brain hypo-
plasia, delayed ocular pigmentation) and U78 (decreased
body size, hindbrain defect) [77], urb2 (digestive organ)
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[78], nop10 (bone marrow defects) [79], nol9 (haematopoietic
and pancreatic defects) [80], wdr3 (craniofacial defects) [81],
esf1 (pharyngeal cartilage, heart, brain and eyes) [82], nom1
(craniofacial defects and endodermal defects) [83] and bms1l
(liver) [84].

1.6. Caenorhabditis elegans
RP genes are not as extensively studied in C. elegans as in
Drosophila. The mutations and introduction of RNAi against
RP genes and protein synthesis machinery components
(such as translation initiation) result in larval arrest or devel-
opmental delay, increased longevity and reduced fertility in
many cases [85]. Targeted double-copy loss of function
mutations in five different RPs (rpl-5, rps-23, rpl-33, rps-30
and rps-10) and deletion of repeated 45S rDNA loci in C. ele-
gans result in fully completed embryogenesis with no
observable defects in embryonically born cells including
specialized cell types such as neurons. Thus, the maternally
deposited ribosome pool is sufficient for embryonic develop-
ment. This observation argues that tissue-specific defects
mediated by RP haploinsufficient mutations are not likely
to be due to the potential sequence-specific translation of cer-
tain mRNAs [86]. Intriguingly, a hypomorph mutation in the
RNA polymerase I subunit rpoa-2 (op259) in C. elegans
resulted in increased resistance to ionizing radiation-induced
apoptosis in the germline which could be rescued by gain-of-
function mutations in Ras/mitogen-activated protein kinase
(MAPK) pathways. This observation suggests a genetic link
between RNA polymerase I and the MAPK pathways [87].
2. Why are certain tissues more affected by
the imbalances in subunits of a
ubiquitously expressed protein synthesis
machinery?

The ribosome is a ubiquitously expressed machinery; thus,
one would expect all systems of an organism to be affected
similarly. However, certain tissues are more affected by RP
haploinsufficiency than others—in both humans and model
organisms. For instance, DBA results in severe erythropoiesis
defects [5,70,76,88]. Similarly, in mouse haploinsufficient
models, blood tissue has been found to be significantly
affected [89,90]. Why are certain tissues more affected in
response to variations in a ubiquitously expressed protein
synthesis machinery? There are three possible explanations
for such tissue-specific effects, which we will briefly define
in this section (for a detailed discussion, please see the
review by Mills & Green [91]).

First, decreased translation affects certain transcripts more
significantly than others [91,92]. For example, the haematopoie-
tic transcription factor GATA1 was reduced at the protein level
with RPS19 shRNA knockdown, while its mRNA level was
relatively unchanged. The overexpression of GATA1 partially
rescued the growth of RPS19 knockdown, suggesting the ineffi-
cient translation of the GATA1 gene as the cause of this
phenomenon [93]. Transcript-specific defects can be predicted
by using a mathematical model that considers the number of
ribosomes and the individual mRNA expression levels to pre-
dict the translation rate of a particular mRNA [94]. A careful
study confirms this model in a classical DBA case with
erythropoiesis defects where a single-copy loss-of-function
mutation in the TSR2 gene, a ribosome biogenesis factor, was
detected. In this study, the authors observed that reduced
ribosome levels—with constant ribosome composition—selec-
tively impair the translation of a subset of mRNAs which
impair lineage commitment of haematopoietic stem and
progenitor cells [88].

Second, a ‘specialized ribosome’ model indicates that
diverse ribosomes could regulate the translation of specific
transcripts in a sequence-specific way through tissue-specific
RP or rRNA components [95]. Although this is an attractive
model, currently it is highly challenging to test it with
haploinsufficient mutations of essential RPs that are well con-
served throughout all eukaryotes. Furthermore, careful
analyses of the RP components via RNA expression have been
unable to identify meaningful or significant differences in the
ribosome stoichiometry among human tissues [96]. Such differ-
ences in RP composition at the protein level have also not been
observed in specialized tissues, such asmouse brain tissues [97].

Caenorhabditis elegans embryogenesis serves as a strong
genetic model for testing potential tissue-specific functions of
potentially diverse ribosomes. During C. elegans embryogen-
esis, there is no overall net growth, and, yet, an incredibly
diverse set of tissues emerge from a single embryonic cell. In
the homozygous loss-of-function mutations of different RPs
(rps-23, rpl5, rpl-33, rps-10, rps-30) or a full deletion to the 45S
rRNA locus, the embryogenesis was found to be completed
with no tissue-specific defects. The function and morphology
of specialized cell types, such as touch receptor neurons,
were not affected. These results suggest that a pool of maternal
ribosomes is sufficient for the differentiation of diverse cell
types, and, thus, the new synthesis of specialized ribosomes
is redundant during embryogenesis in C. elegans [86]. In two
other organisms where embryogenesis does not require extra
mass accumulation—Drosophila and Xenopus—homozygous
mutations of the gene encoding a subunit of RNA polymerase
I (RpI135) and a near-complete deletion of 45S rDNA repeats (a
few repeats left in Xenopus) have been found to similarly result
in complete embryogenesis [98–100].

Third, decreased protein synthesis or broken ribosome stoi-
chiometry trigger certain signalling pathways that could be
differentially active in various tissues. The most well-studied
example is the P53 signalling pathway via the stabilization of
P53 through free RPL5 and RPL10. These two RPs can interact
with MDM2/HDM2, the ubiquitin ligase that mediates P53
degradation [91]. Several other RPs can also directly interact
with an E3 ubiquitin ligase protein that mediates P53 degra-
dation [101]. Upon activation, P53 mediates programmed cell
death and the termination of the cell cycle [102].

In variousmodel organisms, P53 is required for RP-induced
developmental defects. Developmental malformations and
haematopoietic disorders in zebrafish attributed to several RP
(rps9, rps19, rpl11, rpl29) knockdowns and mutants are
mediated by P53 [75,103–106]. While the transcript of P53 in
zebrafish was not altered with five different individual RP
(rps3a, rpl23a, rpl36, rps7 and rpl11) mutations, under ionizing
radiation, P53 is destabilized at the protein level [107]. The RP
deficiency-induced Bst and Dsk phenotypes in mice are also
suppressed by introducing mutations in P53 [64,108]. Finally,
P53 mediates the suppression of cellular protein synthesis in
the presence of a single copy of RpS6 in the mesenchymal
tissue, by increasing the transcription of 4E-BP, a translation
initiation inhibitor protein [109].
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3. Cell non-autonomous impact of
translation machinery alterations in the
development of model organisms

In the C. elegans mosaic animals where either the posterior or
anterior cell of the two-cell stage embryo is an RP null adja-
cent to a wild-type cell [110] there is complete embryogenesis
but they are developmentally arrested at the first-stage larvae.
This suggests that the growth of the wild-type lineage is
prevented by an organism-wide checkpoint in a cell non-
autonomous fashion. Moreover, the observed developmental
arrest phenotypes are not rescued by the introduction of
hypomorphic mutations of insulin/insulin-like signalling
(IIS) components daf-16 and daf-18, suggesting the involve-
ment of a distinct pathway that is likely to be separate from
the starvation response or dauer formation in C. elegans
[86]. Similarly, a hypodermis-specific RNAi knockdown of
rps-11 results in a transient developmental arrest, suggesting
the role of cell non-autonomous factors in mediating the
growth coordination of C. elegans larval development [111].

In Drosophila, regional or tissue-specific RNAi against
several RPs result in cell non-autonomous growth inhibition.
Tissue-specific RNAi against RpS6 in the prothoracic gland
caused a non-autonomous developmental defect by inhibiting
the secretion of ecdysone, a dipteran-specific growth hormone
[112]. RpL7 RNAi in the pouch region of the Drosophila wing
inhibited not only the growth of the pouch cell autonomously
but also the notum and hinge portion of the wings. Surpris-
ingly, RpL7 knockdown in the wing pouch also affected the
growth of the eye discs, suggesting a coordinated growth
across different organs in a cell non-autonomous fashion
[113]. The non-autonomous growth coordination mediated
by Rpl7 RNAi in the wing pouch region was dependent on
the activation of Xrp1, an insect clade-specific stress-induced
transcription factor, and the consequent synthesis of the
insulin-like hormone, Dilp8. Dilp8 acted as an inhibitor of
ecdysone, which is responsible for coordinating growth
across different tissues (wewill discuss the detailedmechanism
of Xrp1 in the next section) [114]. Future detailed studies with
knockdown of different ribosome biogenesis factors or RPs
could address these different possibilities. It is furthermore
intriguing to contemplate that perhaps similar non-auton-
omous growth coordination exists in other clades; this
remains to be discovered.

InDrosophila,mosaic animals composedofMinutephenotype
cells (lacking a single copy of an RP gene) and wild-type cells
result in the gradual disappearance of the Minute cell lineages, a
phenomenon called ‘cell competition’, which is more thoroughly
discussed in the next section [115–117]. The disappearance of the
Minute lineage requires close proximity of the prospective loser
lineage with the faster growing cell lineage [118].
4. How are Minute cells eliminated in the
mosaic tissues?

As the protein translation capacity is generally tightly correlated
with growth, one explanation for the selective elimination of
cells with the Minute mutation is the differential growth rates.
However, cell competition in the mosaic background is not suf-
ficiently explained solely by the difference between the growth
rate of the competing lineages [115,119–121]. Moreover, a
plethora of cell-to-cell communication and interaction has been
reported to be instrumental in inducing cell competition
[116,122–127]. In most cases of Minute mutation-mediated cell
competition, the decline in the loser cells is mediated through
apoptosis and engulfment of loser cells [115,119,128].

Elegant genetic studies on Drosophila have discovered
some of the cellular marks and pathways that define the
Minute/loser lineages in a mosaic background. Overall,
Minute cells go through integrated stress response and a
complex network of pathways are affected which will be
summarized below.

First, the RpL19 Minute-induced loser lineage in Drosophila
expresses a specific form of flower ( fwe), which encodes a
conserved calcium channel protein conserved in humans
(CACFD1) [125]. The expression of the specific isoform fweLose

relative to another isoform, fweUbi, is a hallmark of the apopto-
sis and decline of the RpL19 Minute lineage [129]. Second, the
prospective loser lineage attributed toRpS3mutation produces
the secreted matricellular protein SPARC, which functions as a
protection against cell competition-induced decline [130].

As minute cells go through apoptosis in a mosaic back-
ground, mutations in pro-apoptotic genes can suppress the
Minute cell competition. The simultaneous deletion of
pro-apoptotic genes head involution defective (hid), grim and
reaper(rpr) enabled Rpl36 haploinsufficient cells to survive
the Minute cell competition, suggesting that apoptosis is an
important trigger for the elimination of the RP mutant line-
age. The ectopic expression of the non-native apoptotic
inhibitor P35 also prevented the competition-induced elimin-
ation of the Minute lineage. Finally, RNAi against both dronc
and dream caspases also reduced competition between the
Minute lineage and wild-type cells [131].

Cell–cell interactions are crucial in mediating Minute cell
competition. Decapentaplegic (Dpp), an orthologue of ver-
tebrate bone morphogenic proteins, modulates the growth
rate or the cell–cell interactions which are involved in mediat-
ing the elimination of Minute cells. A prospective loser
Minute lineage (M(2)60E/RpL19) has reduced vesicular
endocytosis of Dpp. Their reduced internalization of Dpp
activated the transcriptional repressor brinker (Brk). Acti-
vation of Brk prevents cell competition by inactivating the
activity of the Dpp pathway and promoting apoptosis
through c-Jun N-terminal kinase (JNK) [132,133].

The JNK pathway affects cellular growth by simultaneously
promoting apoptosis (through previously mentioned caspases
hid and rpr) and promoting growth [134]. The downstream tar-
gets of the JNK pathway rpr and Scarface are upregulated in
RpS3-inducedMinute.Moreover, the expression of the negative
regulator of the JNK pathway Puckered (Puc) rescued the
Minute lineage [135]. However, the JNK pathway involvement
has been controversial; a study found thatmutants of JNKpath-
way components (misshapen, basket, RhoABH and jun2) failed to
rescue the cell competition [136].

JNK promotes growth through the Janus kinases/signal
transducer and activator of transcription (JAK/STAT) signal-
ling, which plays a role in Minute lineage decline by non-
autonomously promoting the growth of the wild-type line-
age. The expression of a dominant-negative JAK/STAT
receptor Dome inhibited the growth in a Minute cell lineage
but not the wild-type lineage [135]. Furthermore, Minute
mosaic gut tissue secreted JAK/STAT cytokine, Unpaired-3
(Upd-3), from Drosophila gut tissue, which is likely to be
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involved in further growth of wild-type cells. The introduc-
tion of a dominant-negative Upd-3 receptor reduced wild-
type cell size in the mosaic tissue. These results overall
suggest that Minute gut cells secrete the cytokine Upd-3
that promotes the competitive growth of the wild-type line-
age [137]. Upd and Upd-2 cytokines are transcriptionally
upregulated in the Minute lineage as well [135].

An emerging proposed mechanism of RP-induced cell
competition revolves around Xrp1, which encodes a
dipteran-specific DNA-binding protein. It emerged as a sup-
pressor of cell competition from two independent genetic
screens [138,139]. Xrp1 was transcriptionally upregulated in
RP mutant cells, and its knockdown prevented the occurrence
of cell competition and enhanced the growth of Minute cells
autonomously [140]. Xrp1 mediates cell competition in
Minute cells as a heterodimer with Irbp18, a homologue of
the conserved C/EBP binding protein that is essential for
double-strand break DNA repair [140,141]. Xrp1 transcription-
ally upregulated the pro-apoptotic genes hid and rpr and the
NF-κB orthologue Dif (dorsal-related immunity factor), which
suggests the link between this pathway and apoptosis [139].
P53 is known to mediate cell competition in mammals, and
there may be a relation between P53 and Xrp1 in terms of the
cell competition in Drosophila [142].

Activated Xrp1 also activated the cellular stress response
through CncC (Nrf2 orthologue). Paradoxically, the mild acti-
vation of the Nrf2 oxidative stress pathway acts as a
protective mechanism of the Minute lineage but is sufficient
to induce Minute decline upon its over-activation. Both
RNAi against and overexpression of CncC increase Minute
cell death [135]. RNAi against Xrp1 in the RpS3 Minute phe-
notype downregulated the expression of the transcriptional
target of CncC GstD1-GFP, rescued the p62 accumulation
and reduced the phosphorylation of eIF2α, suggesting the
knockdown of Xrp1 alleviates the integrated stress response
induced by RpS3 Minute mutation. Similarly, overexpression
of Xrp1 in wild-type animals upregulates GstD1-GFP and the
phosphorylation of eIF2α. Finally, RNAi against Xrp1 rescues
the prospective loser status of a wild-type lineage triggered
by mosaic overexpression of an Nrf2 orthologue, suggesting
that Nrf2 and Xrp1 affect each other in a feedback loop
manner [143].

Interestingly, the growth coordination in the wing region
anddownstreameffects on the eye discs thatwe have discussed
in the previous section are likely to be dependent on RpS12,
since the combined knockdown of RpL7 and RpS12 RNAi in
the wing pouch abolishes the growth inhibition observed in
the hinge and notum area of wings as well as the eye discs
[113]. Surprisingly, RpS12 haploinsufficient animals do not dis-
play the Minute phenotype and the RpS12 haploinsufficient
mutant Minute lineage is not eliminated by cell competition
[114,138]. The ectopic overexpression of RpS12—but not
other RPs—resulted in lower survivability in competition,
whereas its knockdown and mutation prevented the competi-
tive elimination of RpL36 and RpS18 haploinsufficient cells in
themosaic background [114]. Increased levels of orphan RpS12
activated Xrp1, and the Xrp1 transcription is upregulated in
Minute lineages in mosaic tissue in an RpS12-dependent
fashion [144,145]. These overall results suggest that orphan
RpS12 may act as an indicator of RP haploinsufficiency, and
affect the cellular fitness through the involvement of Xrp1,
which further affects the growth development through Dilp8
and ecdysone.
Activation of the Toll pathway plays an instrumental role in
the competition-induced death of theMinute lineage in compe-
tition against the wild-type cells. When the Toll pathway is
activated, the activated ligand Spatzle (Spz) binds to several
Toll receptors, which in turn causes the phosphorylation and
eventual degradation of Cactus (Cact). Under basal conditions,
cytoplasmic Cact sequesters the transcription factors Dorsal
(dl) (for the developmental programme) and Dif (for the
immunity programme). Thus, Dif and dl are translocated to
the nucleus upon Cact degradation [146]. RNAi against dl
and Dif or overexpression of Cact rescued the decline of
RpL14-induced cell competition [147]. This pathway may be
responsible for Minute-induced apoptosis since activation of
dl and Dif resulted in the elevated expression of the pro-apop-
totic mediator rpr [148]. The pro-apoptotic Salvador–Warts–
Hippo pathway is activated by Spz-Toll and it promotes the
downstream activity of the Toll pathway [149]. Furthermore,
the Salvador–Warts–Hippo pathway has been linked to
Minute-induced cell competition since mutations of this
pathway’s components (salvador, hippo, warts) prevented
Minute-induced cell competition [136].

As Minutemutations generally affect a single RP gene, the
incorporation of other expressed RPs into ribosomes will be
reduced owing to the Minute mutation. Thus, Minute
mutations would result in higher levels of orphan RPs
[150]. Unsurprisingly, proteotoxicity conferred by orphan
RPs plays a role in the Minute lineage decline. A proteasome
inhibitor bortezomib bolstered the decline of the Minute line-
age without affecting the wild-type lineage, while the Minute
lineage decline was rescued by alleviating proteotoxicity
through rapamycin-induced dTORC1 (Drosophila target of
rapamycin (TOR) complex 1) inhibition and overexpression
of the conserved transcription factor FOXO1 [121]. Similarly,
another study found that two RP-induced cell competitions
(RpS23R67 K/+ and RpS26KO/+) induced proteotoxic markers
(phosphorylated eIF2α) and apoptosis, triggered by Xrp1
and inactivated dTORC1 pathway [120].

In conclusion, Minute-induced cell competition is
mediated through various intertwining pathways that result
in an integrated stress response that eventually leads to
either decreased growth or increased apoptosis of the
Minute lineage. We summarize the mechanisms that we
have discussed in this section in figure 1.
5. Signalling pathways that regulate
ribosome biogenesis and protein
synthesis

In this section, we summarize through which mechanisms
MYC transcription factor, TOR and RAS/ERK/MAPK signal-
ling pathways regulate both ribosome biogenesis and protein
synthesis. In addition, we briefly cover the phenotypes
associated with alterations of these pathways in different
organisms. For further reading and learning of other signal-
ling pathways that interact with ribosome biogenesis and
protein synthesis, please refer to Simpson et al. [151] and
Song et al. [152].

Ribosome biogenesis is an energetically costly process
that requires careful coordination between all RNA poly-
merases and a plethora of assembly factors. Ribosome
biogenesis involves all the RNA polymerases: RNA Pol I
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for the synthesis of 47S pre-rRNA, RNA Pol II for the syn-
thesis of the RPs as well as the assembly factors and small
nucleolar(sno-) RNAs and RNA Pol III for the synthesis of
pre-5S rRNA and tRNA [153].

Protein synthesis involves distinct initiation, elongation
and termination steps. Translation initiation begins with the
formation of the 43S preinitiation complex containing the
40S ribosome unit, followed by mRNA activation, 43S bind-
ing to mRNA, mRNA ribosome scanning, the initiation of
codon recognition and recruitment of the 60S ribosome sub-
unit. These processes were mediated by multiple eukaryotic
initiation factors [154]. Translation elongation involves the
binding of aminoacyl-tRNA at the A site of the translating
ribosome, the formation of a peptide bond and translocation.
These steps feature the roles of several eukaryotic elongation
factors [155]. Termination occurs when the translating ribo-
somes recognize termination codons at the A site, which
promotes the hydrolysis of peptidyl-tRNA on the P site,
and finally the release of the nascent peptide [156]. Among
these three steps of protein synthesis, the rate-limiting step
comprises the translation initiation [157].

The 45S rRNA initiation factors and protein translation
factors are regulated by the RAS/ERK, mTORC1 and MYC
signalling pathways in an intertwined manner. MYC can be
stabilized through phosphorylation by RAS/ERK signalling,
and the expression of MYC is promoted by mTORC1 through
the involvement of both S6 K (RPS6 kinase) and 4E-BP1 via
their associations with eIF4B and eIF4E, respectively [158–
162]. mTOR and the RAS/ERK signalling pathways upregu-
late 45S rRNA transcription via the binding of the
transcription factors to either the rRNA core promoter
region or upstream control elements, which include TIF-
IA/Rrn3, selective factor 1 (SL1)/TIF-IB and the upstream
binding factor (UBF) [160,163–166]. We summarize how
these three pathways affect ribosome biogenesis in figure 2,
and their effect on protein translation in figure 3. For a
detailed review on this topic, please refer to Kusnadi et al.
[160] and Goodfellow & Zomerdijk [163].
6. The MYC transcription factor
MYC, a conserved sequence-specific transcription factor, is
instrumental in cellular growth. MYC promotes the activity
of RNA Pol I and RNA Pol III, modulates chromatin and
upregulates the RNA Pol II-mediated transcription of protein
synthesis and ribosome biogenesis factors. First, MYC has an
affinity for the promoters of genes encoding SL1 subunits
Rrn3 and UBF [158,167]. The MYC–MAX (MYC-associated
factor X) complex regulates Pol I through a preferential bind-
ing to the rDNA locus and its association with the SL1 (an
orthologue to TIF-IB) complex [158]. Second, MYC binds to
the promoter and the terminator of rDNA regions, recruiting
GCN5 acetyltransferases and/or Tip60 histone acetyltransfer-
ase complexes to promote histone H4 acetylation at the rDNA
loci; the resulting chromatin changes increase the transcrip-
tion activity in the rDNA loci [168,169]. Third, MYC
interacts with BRF1, a subunit of TFIIIB [158], which increases
the RNA Pol III activity [170]. Fourth, MYC upregulates the
transcription of RP genes via an affinity with their promoter
in both mice and humans; however, such a phenomenon has
not been observed in invertebrates [171]. In Drosophila, dMyc
does not regulate RP gene transcription [172], and C. elegans
does not possess a homologue ofMYC [173]. Finally, MYC pro-
motes the expression of over 60 nucleolar proteins in murine
cell lines, many of which play multiple roles in rRNA proces-
sing and ribosome maturation [174].
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The role of MYC in protein synthesis is also widely
documented. The inactivation of MYC in lymphoma cells sup-
presses protein synthesis [175]. MYC overexpression results in
increased levels of initiation factors eIF2α, eIF4E, eIF4AI and
eIF4GI [171,176–179]. The pathways that interact with MYC
also feed into protein synthesis and ribosome biogenesis.
MYC is regulated by multiple growth signalling pathways,
such as WNT, TGF-β and RAS/ERK [180]. ERK can increase
the stability of MYC by phosphorylating Ser62 and prevent
the degradation of MYC by dephosphorylating Thr58 [181].
Since MYC is so tightly correlated with ribosome bio-
genesis and protein synthesis, loss-of-function mutations
in c-MYC result in small body phenotypes and develop-
mental defects, such as smaller wings and slender
bristles in Drosophila, as well as heart defects in c-MYC
knockout mice [173,182]. Expectedly, the overexpression
of dMyc elevates the cell size and cellular growth rate in
Drosophila [183]. However, the hypomorphic loss-of-
function mutation in mouse MYC (c-MYC) does not lead
to an observable change in cell size, suggesting the
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7. TOR pathways
The TOR pathway takes the input of the cellular nutrition
status to affect all steps of ribosome biogenesis and protein syn-
thesis, and this pathway is highly conserved from yeast to
human models [186–189]. TORs (mTOR in mammals, dTOR
in Drosophila) are conserved serine–threonine kinases that
only function as complexes. TOR complex (TORC) was orig-
inally discovered as the mediator of the immunosuppressive
effect of rapamycin [190]. There are two different types of
TORCs: which are TORC1 and TORC2. TORC1 is susceptible
to rapamycin, while TORC2 is not [180]. The catalytic activity
site of both TORCs is on the TOR protein, but the TORC target
specificity is largely determined by its partner proteins—
RAPTOR or RICTOR for TORC1 and TORC2, respectively
[191].

mTORC1 takes amino acid and energy levels as an input
and its activity is related to the increased translation and
protein and lipid metabolism as well as the prevention of the
breakdown processes encompassing apoptosis, proteasome
activity and lysosomes [189]. In yeast, TORC1 mainly senses
nutritional input by using a complex consisting of Rag-
GTPases/GTR proteins and LAMTOR/EGO proteins. In
mammalian cells, the Rag proteins form a complex with the
Ragulator complex, and the complex they form serves as an
amino acid sensor [190,192]. There are other TOR components:
Sestrin2, CASTOR1 and SAMTOR that serve as specific amino
acid sensors for leucine, arginine and methionine, respectively
[193–196]. AMP-activated kinases (AMPK) are the ‘ATP status
sensors’ of the cells, and they regulate TOR signalling as well
[197]. The GTPase, Rheb and the kinases AMPK and PKB/
Akt all regulate TORC1 activity, connecting the TORC1
pathway with cellular amino acid and energy levels [192].

TORC1 extensively regulates ribosome biogenesis and
protein synthesis in multiple ways. First, TORC1 activation
results in rDNA amplification [198]. Second, TORC1 directly
interacts with the promoters of the rDNA (both pre-47S and
5S) and genes transcribed by RNA Pol I and Pol III. These
interactions are inhibited by rapamycin without altering the
overall protein levels [199]. A rapamycin-mediated TORC1
inhibition also inhibits pre-rRNA processing and maturation
[200]. Third, mTORC1 suppresses the activity of the repressor
of RNA Pol III Maf1 via phosphorylation [201]. Fourth, TORC
also interacts with TFIIIC, suggesting that TORC1 could also
regulate 5S rRNA transcription by affecting RNA Pol III
recruitment [202].

The two main direct phosphorylation targets of TORC1 in
regulating protein synthesis are RPS6 kinase (S6 K) and
eukaryotic initiation factor 4E binding protein (4E-BP). The
TORC1 phosphorylation of 4E-BP results in the latter’s
release from eIF4E, enabling eIF4E to form an initiation com-
plex for translation [203–205]. The other main target of
TORC1 is p70 RPS6 kinase (S6 K). TORC1 phosphorylates
S6 K, which affects the three main steps of protein synthesis.
First, S6 K phosphorylates eIF4B to promote translation
initiation [206]. Second, S6 K inhibits the activity of a negative
regulator of protein synthesis, eEF2 K [207]. Third, S6 K1 pro-
motes the helicase function of eIF4A by phosphorylating
eIF4B on Ser422, since phosphorylated eIF4B can enhance
the affinity of eIF4A for ATP [208]. Phosphorylation of
RPS6 by S6 K promotes the translation of a set of genes that
encode nucleolar proteins involved in ribosome biogenesis
[209]. However, the biological role of RPS6 phosphorylation
in protein synthesis has been controversial [210,211].

While the ability of TORC1 to influence rDNA transcrip-
tion initiation is well established, there are conflicting
explanations regarding its mechanism in this context.
Rapamycin treatment, which inhibits TORC1, alters the phos-
phorylation pattern of TIF-IA in human cell lines, albeit
neither TORC1 nor S6 K directly interacts with TIF-IA [212].
This result was confirmed by a study in yeast, in which rapa-
mycin treatment reduced the association between RNA Pol I
and Rrn3 (the yeast homologue of TIF-IA) through the latter’s
dephosphorylation [213]. However, another yeast study
suggested that rapamycin treatment did not inhibit Rrn3, but
resulted in dephosphorylation of UBF instead [214]. Thus,
TORC1 activates rDNA transcription through activation of
Pol I, through phosphorylation of either TIF-1A or UBF.

TORC2 is a rapamycin-insensitive TOR–RICTOR complex
that regulates a plethora of pathways. Specifically, TORC2
regulates the AGC kinase family, which includes protein
kinase C (PKC-a), serum and glucocorticoid-regulated kinase
1 (SGK-1) and AKT [186,215,216]. SGK-1 regulates ion trans-
port and cell survival; the PI3 K/AKT pathway is essential
for growth and metabolism [216,217] and AKT can regulate
TORC1, making TORC2 an upstream regulator of mTORC1
[218]. TORC2 directly interacts with ribosomes and mediates
the control of plasma membrane homeostasis and fat metab-
olism, thus it could potentially mediate the coordination of
growth throughmembrane tension signals. However, a genetic
interaction between TORC2 and protein translation is not well
established. Plasma membrane tension, induced by mechani-
cally stretching the membrane, induces TORC2 activation by
re-localizing Slm proteins on the plasma membrane [219], by
phosphorylating the two downstream kinases YPK1 and
YPK2 [220–222]. TORC2, in turn, regulates plasma membrane
composition, polarity and endocytosis by (i) regulating sphin-
golipid synthesis [219], (ii) negatively regulating Fpk1, which
stimulates flippases that translocate amino glycerophos-
pholipids [221,223], and (iii) mediating communication
between plasma membrane adapter proteins Sla2, Ent2 and
the actin cytoskeleton as well as recruitment of Rvs167, a
protein important for vesicle fission during endocytosis [224].

TORC2 is co-sedimented with ribosomes in a sucrose gra-
dient, and RPL26 is co-immunoprecipitated with the TORC2
complex components rictor, mTOR and mSIN1 [225]. Thus,
TORC2 could potentially coordinate cellular growth in
response to extracellular cues by mediating communication
between growth-mediated membrane tension and protein
translation.

TORCplays a necessary role in organismal development in
various organisms. In C. elegans, mutations in TOR-encoding
let-363, which plays an instrumental role in both TORC1 and
TORC2, result in varying degrees of lethality, depending on
the severity of the mutation [226]. A unique developmental
arrest in C. elegans is attributed to a mutation in elo-5, which
encodes a protein that synthesizes a specific mono-methylated
branched fatty acid. Its derivative, glycosylceramide, feeds
into and activates the intestinal ceTORC1 [227–229]. The
mice limb patterning defect due to single-copy Rps6 loss can
be suppressed by increasing overall protein synthesis by con-
ditional deletion of tuberous sclerosis complex gene (TSC2),



royalsocietypublishing.org/journal/rsob
Open

Biol.12:210308

10
which inhibits the TORC1 pathway [109]. Interestingly, a null
mutant of RICTOR orthologue (rict-1( ft7)) and its target sgk-1
(Ypk1/Ypk2 orthologues) and akt-1 results in viable animals,
with sgk-1 mutant animals having increased fat storage and
decreased body size in C. elegans, suggesting a fine-tuning
role of TORC2 in growth and metabolism [230]. Mutation in
the Rag GTPase homologue raga-1 reduces body size in the
early adult stage [231].

InDrosophila, a genetic screen that yields a phenotype with
smaller eyes and a reduced head–body size ratio ismapped to a
gene that encodes dTOR [232]. Similarly, a homozygous
mutation in S6 K, a target of TORC1, results in a high degree
of lethality, while the surviving animals are short-lived and
have reduced body size [233]. Moreover, a mutation in dTOR
results in delayed development and smaller cellular size
while also affecting the cell cycle in the G1/S phase through
the suppressed expression of cyclin E [234].

In mice, TOR signalling is far more complex [235]. Homo-
zygous mutation in the kinase region of mTOR results in
lethality in mice soon after the embryonic implantation,
with the trophoblasts and pluripotent inner cellular mass fail-
ing to proliferate in vitro [236–238]. Moreover, certain
components of the TORC2 complex, such as Rictor, are also
embryonic lethal in mice, unlike the viable phenotype
observed in C. elegans, suggesting the role of TORC2 in
mammalian embryonic development [239].
8. RAS/ERK/MAPK signalling pathway
RAS/ERK/MAPK is a conserved signalling cascade that
transmits signals from cell surface receptors. MAPKs involve
three-layer signalling from MAPK kinase kinase (RAF)
followed by MAPK kinase (MEK), to MAPK (ERK) through
a series of phosphorylations in a hierarchical fashion
[240,241]. The downstream kinase of this pathway is ERK,
which then phosphorylates p90/RSK ribosomal S6 kinases
(RSK) and MAPK-interacting kinases (MNKs) [240,241].

RAS/ERK signalling regulates rRNA transcription by
direct phosphorylation of TIF-IA, at Ser633 and Ser649, by
ERK [242]. Second, ERK also enhances rRNA transcription
by phosphorylating the UBF of the RNA Pol I initiation
complex at Thr201 and Thr117, resulting in remodelling of
the rRNA locus-associated chromatin and continuous
transcription elongation in the rDNA locus [243,244].

The downstream proteins of RAS/ERK signalling, MNKs
and p90 RPS 6 kinases (RSKs), play regulatory roles in
protein synthesis. First, ERK promotes the synthesis of
tRNA by activating TFIIIB Brf1 and inhibiting the activity
of the RNA Pol III inhibitor Maf1 [245,246]. Second, MNK
activates the translation initiation factor eIF4E [247].

The mTOR and RAS pathways are heavily intertwined
[248]. RSK negatively regulates mTORC1 through the inhi-
bition of DEPTOR and TSC2 [247]. RAS/ERK and mTOR
both phosphorylate multiple similar proteins involved in
translation. First, they phosphorylate RPS6 through different
kinases: p90 RSK for RAS and p70 S6 K for mTOR, respect-
ively. Second, they both inactivate glycogen synthase
kinase-3 (GSK-3), which phosphorylates and deactivates
eIF2B [249,250]. Finally, they both phosphorylate eIF4B to
promote translation initiation [251] and phosphorylate
eEF2 K, which is a kinase that negatively regulates the
elongation factor eEF2 [252].
RAS/ERK signalling plays complex and extensive roles in
organismal development. The pathway was first discovered
in C. elegans, specifically playing a role in vulval develop-
ment. Overall, the developmental defects in C. elegans
mutants that affect the RAS pathway cause dysregulation of
growth coordination, including zygotic lethality, multi-
vulva phenotype, gonadal alterations and sterility [253]. In
Drosophila, the role of RAS/ERK signalling includes the
development of bract cells in the legs and correct tissue pat-
terning [254,255]. In Drosophila, RAS is necessary for
photoreceptor development in the eye, and the lineage that
lacks RAS is outcompeted in the eye tissue [256,257].

In summary, the alterations in the RAS, MYC and TOR
pathways often lead towidespread changes in organism devel-
opment. It is currently not straightforward to disentangle the
phenotypic role of these pathways solely on protein translation
with genetics as mutations of ribosome biogenesis and protein
translation components themselves cause cellular unviability
with pleiotropic consequences for organism development.
9. Concluding remarks and future
directions

In this review, we have discussed the relationship between
ribosome biogenesis and development in various organisms,
especially regarding the non-autonomous nature of the
consequences of alterations in translation machinery on devel-
opment. The perturbations of ribosome biogenesis can be
attributed to the various phenotypes across species, as the
recurring outcomes of these mutations are reduced body size
and developmental delay. Certain mechanisms that mediate
these outcomes have been proposed; however, the direct link
between ribosome biogenesis and development has not been
completely solved.

It is intriguing to contemplate what future studies will
reveal regarding the more detailed mechanistic relationship
between ribosome biogenesis and development. At this
point, the exact mechanistic relationship between haploinsuf-
ficient RP mutations and their phenotype is debatable.
Although we have a solid understanding of the regulators
of ribosome biogenesis and translation, further studies may
emerge that draw direct connections to the absence of riboso-
mal components.

One key question that remains to be explored is how
ribosome biogenesis defects restrict development non-auton-
omously throughout evolution. For example, in C. elegans we
currently do not know which tissue and which signalling
pathway are responsible for growth arrest in wild-type and
RP mosaic animals.

The mechanisms that are being studied inmodel organisms
could potentially be transferable to the human context and shed
light on the pathophysiology of the genetic diseases attributed
to ribosomopathies or the somatic genome copy alterations of
translation machinery frequently observed in cancer.
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