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Characterizing chronological 
accumulation of comorbidities 
in healthy veterans: 
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Understanding patient accumulation of comorbidities can facilitate healthcare strategy and 
personalized preventative care. We applied a directed network graph to electronic health record 
(EHR) data and characterized comorbidities in a cohort of healthy veterans undergoing screening 
colonoscopy. The Veterans Affairs Cooperative Studies Program #380 was a prospective longitudinal 
study of screening and surveillance colonoscopy. We identified initial instances of three-digit ICD-9 
diagnoses for participants with at least 5 years of linked EHR history (October 1999 to December 
2015). For diagnoses affecting at least 10% of patients, we calculated pairwise chronological relative 
risk (RR). iGraph was used to produce directed graphs of comorbidities with RR > 1, as well as summary 
statistics, key diseases, and communities. A directed graph based on 2210 patients visualized 
longitudinal development of comorbidities. Top hub (preceding) diseases included ischemic heart 
disease, inflammatory and toxic neuropathy, and diabetes. Top authority (subsequent) diagnoses 
were acute kidney failure and hypertensive chronic kidney failure. Four communities of correlated 
comorbidities were identified. Close analysis of top hub and authority diagnoses demonstrated 
known relationships, correlated sequelae, and novel hypotheses. Directed network graphs portray 
chronologic comorbidity relationships. We identified relationships between comorbid diagnoses in this 
aging veteran cohort. This may direct healthcare prioritization and personalized care.

Multimorbidity and chronic comorbidity have negative consequences on health outcomes, quality of life, and 
 costs1,2. Therefore, understanding health trajectory and the accumulation of comorbidities is critical to better 
characterizing and potentially mitigating subsequent disease processes. Anticipating comorbidities at the individ-
ual-level may direct clinicians towards appropriate preventative  strategies3. On a population basis, understanding 
the trajectory of diseases can direct utilization of resources to prevent downstream comorbidities.

Many advances have been made in characterizing environmental, genomic, and proteomic etiologies of 
disease. Diseases represent a complex network of conditions, with a variety of causal and correlated temporal 
relationships. Computational methods have also begun to take advantage of the vast clinical histories available in 
claims data to characterize longitudinal associations between comorbidities and/or patient phenotypes both in 
the form of undirected social  networks4–12 and  clusters13–15. Widespread use of electronic health records (EHR) 
can further facilitate this detailed characterization of disease states and trajectories.
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Prior studies have previously demonstrated the feasibility of representing the progression of disease through 
directed  networks16–19. These networks provide the advantage of incorporating the chronicity of comorbidities, 
which is fundamental to understanding potential progression of disease and patient health trajectories. Find-
ings from temporal co-occurrence using EHR data have previously reported on complications from specific 
 diagnoses19–22, racial  variation23, and inpatient  trajectories24. In the veteran population, prior studies have focused 
network analyses on mental health or described limited clusters in veterans with specific service  histories10,14. 
Expanding these approaches to include a larger array of comorbidities and trajectories in an initially healthy 
population may facilitate screening, preventative care, or early intervention in the longitudinal clinical setting, 
and also generate new hypotheses for exploration.

It is particularly salient from a healthcare delivery standpoint to optimize care within the Veterans Health 
Administration (VHA), which is the largest integrated healthcare system in the United States. Understanding 
comorbidities is especially important among the veteran population, as comorbidities may be more prevalent 
and severe than in the general population and vary based on military service history. The Veterans Affairs (VA) 
Cooperative Studies Program (CSP) #380 study is a prospective longitudinal study of screening and surveillance 
colonoscopy in a healthy cohort of asymptomatic veterans enrolled from 1994–199725,26. Multiple data sources 
have been linked in this cohort, enriching the prospectively collected study data with additional resources such 
as the EHR. These robust longitudinal data over long-term follow-up offer a unique opportunity to generate a 
better understanding of patterns of disease in a well-defined and initially healthy cohort.

The objective of this study is to apply network analysis to the well-selected and prospectively identified CSP 
#380 screening colonoscopy cohort to characterize the longitudinal sequence of diagnoses using a directed graph. 
This approach can be used to summarize the development of diseases in this cohort and developed as a frame-
work to provide visual tools to guide clinicians in understanding potential downstream diseases for patients.

Results
Of the 3121 CSP #380 participants, 2787 patients had linked data in the CDW, with 2210 having at least 5 years 
between their earliest and latest encounters from October 1999 to December 2015 (Table 1 and Supplementary 
Table S1).

Patient and diagnosis characteristics. Patients had a median first diagnosis at age 67.2 and last diagno-
sis at 79.4 (Table 1). The median diagnosis history was 14.4 years (range 5.0–16.2 years). Patients had a median 
of 95 distinct ICD-9 diagnoses, representing 64 distinct three-digit diagnoses.

Among three-digit ICD-9 codes, the most common codes included a variety of non-diagnostic V codes (Sup-
plementary Classification of Factors Influencing Health Status and Contact with Health Services) (Table 2). The 
most common diagnostic codes included essential hypertension (401.*), disorders of lipid metabolism (272.*), 
general symptoms (780.*), symptoms involving the respiratory system (786.*), and cataracts (366.*). The most 
common non-diagnostic codes were other persons seeking consultation (V65.*), need for prophylactic vac-
cination and inoculation (V04.*), encounters for administrative purposes (V68.*), special investigations and 
examinations (72.*), and encounter for other and unspecified procedures and aftercare (V58.*).

Network characterization. To describe the progression of comorbidities in this cohort of veterans, we 
generated a disease network of diagnoses affecting at least 10% of patients, excluding non-diagnostic V codes and 
symptoms, signs, and ill-defined conditions (total of 145 distinct ICD three-digit codes; Fig. 1). Important char-
acteristics of the network included edge density with 11% of the possible chronological relationships represented 
in the network and reciprocity with 23% of the pairwise relationships bidirectional. These measures indicate a 
limited number of potential pairwise chronological relationships and bidirectional relationships. Key diseases in 
the graph were also identified, including hubs and authorities. Top hub (preceding) diseases included ischemic 
heart disease (411.*), inflammatory and toxic neuropathy (357.*), and diabetes mellitus (250.*) (Table 3). Top 
authority (subsequent) diagnoses were acute kidney failure (584.*), hypertensive chronic kidney disease (403.*), 
and pleurisy (511.*) (Table 4). The top 25 PageRank diagnoses largely mirrored authority diagnoses in aggregate 
though the three highest scoring conditions were acute kidney failure (584.*), vitamin D deficiency (268*), and 

Table 1.  Patient characteristics (n = 2210). EHR Electronic health record, ICD International Classification of 
Diseases (ninth edition). *Among 3,121 patients included in CSP #380, 2,787 had available data with 2,210 
having 5-year follow-up.

Variable Number (%)/Median (IQR)

Male 2132 (96.5%)

Age

At first diagnosis (years) 67.2 (60.4–72.2)

At last diagnosis (years) 79.4 (73.6–84.5)

Years of follow-up 14.4 (9.6–15.8)

EHR ICD diagnoses per patient 392.0 (214.0–696.5)

Number of distinct ICD diagnoses 95 (60–138)

Number of distinct ICD three-digit diagnoses 64 (43–86)
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Table 2.  Most common three-digit ICD diagnoses by EHR coding among CSP #380 participants (n = 857). 
Includes all diagnoses among patients in the VA Corporate Data Warehouse.

ICD-9 Diagnosis # encounters # patients % patients

V65.* Other persons seeking consultation 51,916 2122 96.0

401.* Essential hypertension 64,917 1999 90.5

V04.* Need for prophylactic vaccination and inoculation against certain diseases 14,014 1954 88.4

272.* Disorders of lipoid metabolism 33,663 1803 81.6

V68.* Encounters for administrative purposes 16,087 1737 78.6

780.* General symptoms 17,167 1678 75.9

V72.* Special investigations and examinations 10,712 1624 73.5

786.* Symptoms involving respiratory system and other chest symptoms 15,210 1615 73.1

366.* Cataract 14,733 1580 71.5

367.* Disorders of refraction and accommodation 13,642 1563 70.7

719.* Other and unspecified disorders of joint 12,373 1531 69.3

V58.* Encounter for other and unspecified procedures and aftercare 37,390 1520 68.8

V70.* General medical examination 5408 1392 63.0

715.* Osteoarthrosis and allied disorders 17,679 1376 62.3

V57.* Care involving use of rehabilitation procedures 25,701 1353 61.2

724.* Other and unspecified disorders of back 16,596 1292 58.4

782.* Symptoms involving skin and other integumentary tissue 5697 1275 57.7

V81.* Special screening for cardiovascular, respiratory, and genitourinary diseases 8361 1249 56.5

600.* Hyperplasia of prostate 10,435 1204 54.5

389.* Hearing loss 11,075 1191 53.9

530.* Diseases of esophagus 11,930 1175 53.2

427.* Cardiac dysrhythmias 31,419 1136 51.4

702.* Other dermatoses 9129 1126 51.0

211.* Benign neoplasm of other parts of digestive system 4203 1124 50.9

414.* Other forms of chronic ischemic heart disease 21,975 1105 50.0

Table 3.  Highest hub score diagnosis codes (n = 142). Bold denotes diagnoses that are among both top hubs 
and authorities.

ICD-9 Diagnosis Hub score

411.* Other acute and subacute forms of ischemic heart disease 1.00

357.* Inflammatory and toxic neuropathy 0.88

250.* Diabetes mellitus 0.86

703.* Diseases of nail 0.82

585.* Chronic kidney disease (CKD) 0.78

440.* Atherosclerosis 0.75

425.* Cardiomyopathy 0.75

429.* Ill-defined descriptions and complications of heart disease 0.74

428.* Heart failure 0.71

110.* Dermatophytosis 0.69

401.* Essential hypertension 0.68

700.* Corns and callosities 0.68

413.* Angina pectoris 0.65

410.* Acute myocardial infarction 0.65

593.* Other disorders of kidney and ureter 0.64

280.* Iron deficiency anemias 0.63

274.* Gout 0.63

276.* Disorders of fluid, electrolyte, and acid–base balance 0.63

414.* Other forms of chronic ischemic heart disease 0.63

443.* Other peripheral vascular disease 0.59

584.* Acute kidney failure 0.55

Hypotension 0.54

424.* Other diseases of endocardium 0.53

Chronic ulcer of skin 0.53
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bacterial infection in conditions classified elsewhere and of unspecified site (041.*) (Table 5). Several diagnoses 
had high hub, authority, and PageRank scores, including acute kidney failure (584.*), iron deficiency anemia 
(280.*), fluid, electrolyte, and acid–base balance disorders (276.*), and chronic kidney disease (585.*).  

We more closely investigated the diagnoses with the top hub and authority scores to better contextualize their 
comorbiditiy. ICD 411.* (other acute and subacute forms of ischemic heart disease) had the highest hub score, 
and commonly preceded a number of expected diagnoses, including cardiac (acute myocardial infarction, car-
diomyopathy) and renal (acute kidney failure, hypertensive chronic kidney disease) diagnoses (Supplementary 
Table S2; Fig. 2). Other subsequent diagnoses to ischemic heart disease included those with similar vascular 
etiologies (e.g., occlusion and stenosis of precerebral arteries and acute cerebrovascular disease). Other high 
relative risk diagnoses included organic sleep disorders, iron deficiency anemia, other diseases of the lung and 
pleurisy. These may share more distant causal etiologies such as smoking (lung disease) or be indirectly related 
due to intermediary comorbidities (e.g., renal disorders resulting in anemia). 

Acute kidney failure (ICD 584.*) had the highest authority and PageRank scores, representing one of the 
most common subsequent diseases. Diagnoses which carried a high relative risk for subsequent diagnosis of 
acute included expected diagnoses such as essential hypertension, chronic renal dysfunction (chronic kidney 
disease, hypertensive chronic kidney disease, other disorders of kidney and ureter), cardiac disease (heart failure, 
ischemic heart disease), and diabetes (Supplementary Table S3; Fig. 3). Correlated sequelae of chronic renal 
dysfunction such as electrolyte disorders and anemia were also observed. Finally, a number of less clinically 
anticipated diagnoses carried a high relative risk of subsequent acute kidney failure, including gout, chronic 
ulcer of the skin, and inflammatory and toxic neuropathy.

The greatest RR relationships were used to generate sample diagnosis paths from the highest hub diagnosis, 
other acute and subacute forms of ischemic heart disease (ICD 411.*), demonstrating a rational pathway to 
chronic pulmonary heart disease (ICD 416.*) (Supplementary Figure S1). Similarly, the greatest RR relationships 
were investigated to create a path to acute kidney failure (ICD 584.*), which had the highest authority score. This 
demonstrated a progression from diabetes mellitus (ICD 250.*) with aggregation of other diabetic complications 
(neuropathy, hypertension) before reaching acute kidney failure.

Infomap identified four communities of diagnoses (Fig. 1; Supplementary Table S4). One was primarily 
neuropsychiatric, including disorders of the inner ear (380.*), persistent mental disorders due to conditions 
classified elsewhere (294.*), other nonorganic psychoses (298.*), and other cerebral degenerations (331.*). The 
second was cerebrovascular in nature, with acute, but ill-defined cerebrovascular disease (436.*), late effects of 
cerebrovascular disease (438.*), and transient cerebral edema (435.*). A third community included ear disorders, 
with hearing loss (389.*) and other disorders of the ear (388.*), and the fourth one included all other diagnoses.

Table 4.  Highest authority score diagnosis codes (n = 142). Bold denotes diagnoses that are among both top 
hubs and authority.

ICD-9 Diagnosis Authority score

584.* Acute kidney failure 1.00

403.* Hypertensive chronic kidney disease 0.90

511.* Pleurisy 0.84

327.* Organic sleep disorders 0.82

275.* Disorders of mineral metabolism 0.64

041.* Bacterial infection in conditions classified elsewhere and of unspecified site 0.64

458.* Hypotension 0.64

280.* Iron deficiency anemias 0.59

518.* Other diseases of lung 0.55

268.* Vitamin D deficiency 0.53

276.* Disorders of fluid, electrolyte, and acid–base balance 0.52

585.* Chronic kidney disease (CKD) 0.51

425.* Cardiomyopathy 0.48

285.* Other and unspecified anemias 0.47

486.* Pneumonia, organism unspecified 0.46

288.* Diseases of white blood cells 0.42

707.* Chronic ulcer of skin 0.41

331.* Other cerebral degenerations 0.40

287.* Purpura and other hemorrhagic conditions 0.40

426.* Conduction disorders 0.38

298.* Other nonorganic psychoses 0.37

357.* Inflammatory and toxic neuropathy 0.36

Contusion of lower limb and of other and unspecified sites 0.34

410.* Acute myocardial infarction 0.35
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Discussion
This study demonstrates the usability of directed graphs built on longitudinal EHR-based data to characterize 
disease trajectories and demonstrate expected and unexpected relationships between comorbidities in a pro-
spective veteran cohort. To date, there are limited reports on the application of directed graphs using routinely-
collected EHR  data16,19. We applied this methodology specifically to EHR data for a well-defined, prospectively 
followed homogeneous, initially healthy, aging veteran population, and identified key diagnoses in comorbidity 
trajectories and clusters of interrelated diagnoses. These can have applications in the individual and broader 
healthcare delivery levels.

On the individual level, characterizing health and disease trajectories is crucial to understand the aging 
process and the aggregation of comorbidities over time. Studies of resilience and frailty in the field of aging rely 
on the ability to develop individual-level multi-component  trajectories27,28. We were able to leverage network 
analysis to understand patterns of diagnoses, which may allow the anticipation of future multi-morbidity. In 
practice, a patient’s constellation of ICD diagnoses could be populated in an automated fashion from the EHR 
to achieve two potentially clinically relevant objectives. First, hub diagnoses (those which carry high subsequent 
multi-morbidity) may be systematically flagged for aggressive management. Many of these are already important 
to clinicians: heart disease, diabetes, renal disorders, but quantification of their importance in accumulating 
comorbidities can both more objectively guide clinicians and enhance counseling for patients. Second, this 
approach can use existing conditions to identify potential subsequent diseases to guide screening, prevention, 
and management strategies. For instance, a patient with diagnoses of hypertension and heart failure would be 
anticipated to have high risk for chronic kidney disease. Network analyses may automatically recognize these 
preceding EHR diagnoses to provide reminders for preventative strategies such as use of ACE inhibitors when 
appropriate. Additionally, our network approach offers the benefit of both synthesizing multiple potential precur-
sors to potential diagnoses, as well as identifying less clinically obvious diagnoses which may signal future risk, 
such as gout or skin ulcers. Our network enables identification of diagnoses multiple steps downstream, such 
as ischemic heart disease leading to renal failure leading to anemia. Preventative strategies, at earlier points in 
these disease paths should be considered to prevent future comorbidity.

These data can also be generalized to a cohort or practice setting and inform healthcare priorities. The CSP 
#380 veteran participants evaluated in this study are representative of aging patients who were generally healthy 
at the start of their enrollment in the study, allowing characterization of this VHA population over time. The 
status of their health at the initiation of the study was prospectively verified, and due to their enrollment on 
study, have a higher rate of follow-up than would be anticipated from the general population, making this cohort 
well-suited for this analysis. Our network analysis in the VHA is unique, in that it followed patient trajectories 

Table 5.  Highest PageRank diagnosis codes (n = 142). Bold denotes diagnoses that are among both top 
authorities and PageRank.

ICD-9 Diagnosis PageRank

584.* Acute kidney failure 0.062

268.* Vitamin D deficiency 0.048

041.* Bacterial infection in conditions classified elsewhere and of unspecified site 0.047

511.* Pleurisy 0.047

275.* Disorders of mineral metabolism 0.045

294.* Persistent mental disorders due to conditions classified elsewhere 0.039

331.* Other cerebral degenerations 0.038

403.* Hypertensive chronic kidney disease 0.036

285.* Other and unspecified anemias 0.031

276.* Disorders of fluid, electrolyte, and acid–base balance 0.031

458.* Hypotension 0.030

280.* Iron deficiency anemias 0.029

486.* Pneumonia, organism unspecified 0.028

327.* Organic sleep disorders 0.027

518.* Other diseases of lung 0.027

288.* Diseases of white blood cells 0.024

287.* Purpura and other hemorrhagic conditions 0.022

995.* Certain adverse effects not elsewhere classified 0.022

707.* Chronic ulcer of skin 0.017

585.* Chronic kidney disease (CKD) 0.016

298.* Other nonorganic psychoses 0.016

425.* Cardiomyopathy 0.012

924.* Contusion of lower limb and of other and unspecified sites 0.010

410.* Acute myocardial infarction 0.009

491.* Chronic bronchitis 0.007
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in the largest integrated healthcare system in the United States and could provide insight to develop streamlined 
care pathways or prioritize high impact diagnoses. In our cohort, both acute and chronic renal diagnoses were 
among those with highest authority and PageRank scores, two confirmatory approaches to identify common 
subsequent diagnoses. Their identification by these metrics suggest that their downstream complications or sub-
sequent associated comorbidities may have wide-reaching impacts in this specific cohort. Aggressive  screening29, 
 prediction30, and appropriate clinical management of renal  disorders31,32 have been areas of active investigation in 
the VHA and represent areas for prioritization. Future work could leverage network analyses to improve efficacy 
and efficiency in a health care setting of potentially constrained resources.

Community detection enables the partitioning of diagnoses that are more densely connected to each other 
than with the rest of the network. This can enable an understanding of potential disease pathways of interrelated 
diagnoses, much like protein interaction networks can reveal shared  functionalities27. In our initially healthy 
VHA cohort, we identified communities that appeared to be clinically rational, representing neuropsychiatric, 
cerebrovascular, and hearing disorders. Each community represents diseases that tend to coexist in patients in 
greater isolation from other diagnoses. It is possible that for certain cohorts, these might direct the design of 
teams to comanage a patient who has comorbidities within a single network community.

Our study is unique among prior studies investigating applications of undirected networks to temporal 
 diagnoses16–19 due to its comprehensive nature as a primary EHR analysis in initially healthy patients who were 
seen longitudinally in a single health system (median of 14.4 years). While prior studies of this type have not 
reported the duration of follow-up, an extensive study of the Danish National Patient Registry (NPR) analyzed 
patients over a 14.9-year period with likely complete data given mandatory  reporting18. Diverse approaches have 
been used across the prior studies, particularly around the methodology for assessing relationships between 
diagnosis pairs. These have included the use of relative  risk17,18 and binomial test p-values16,19. We opted for the 
use of relative risk in this study given its intuitive nature for clinicians. Other nuances to minimize false positives 
have been discordant across studies, including the use of  prevalence16 and relative  risk17 criteria. As both attempt 
to limit relationships that may be included due to rare diagnoses, we chose to limit our network to diagnoses 
that were present in at least 10% of the population to not exclude truly high RR relationships. Finally, given its 

Figure 1.  Diagnosis directed network. Darker connections indicate greater relative risk relationships. 
Diagnoses clustered into four communities: neuropsychiatric disorders, cerebrovascular disorders, ear disorders, 
and all others. Sample diagnoses visible in inset. Zoomable image is available online.
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strength in community detection across different network  sizes33 and its prior use in a study utilizing claims 
 data17, we opted to use the Infomap algorithm for community detection.

Using the top hub and authority diagnoses as case studies, we were able to confirm well-known relationships 
(like cardiac and renal comorbidity), but also characterize correlated diagnoses of clearly shared etiology (acute 
kidney failure with anemia or electrolyte disorders) and likely shared etiology (smoking with subsequent ischemic 
heart disease and lung disease). We similarly corroborated previously demonstrated clusters and high rates of 
comorbidity oriented around mental health in  veterans14,34–36. We also identified unanticipated relationships, 
such as the presence of gout and skin ulcers resulting in a high relative risk for subsequent acute kidney failure. 
High dimensional analyses such as this one may generate hypotheses for future investigation of mechanistic 
explanations for the above unanticipated relationships.

The causal interpretations of this study are limited based on the data source, as EHR data are imperfect and 
certain diagnoses may be systematically misreported in routine clinical care. Additionally, the specific findings 
of our study are intended to provide knowledge within this fairly specific and homogeneous patient population 
and may not extrapolate to other populations. Moreover, veterans experience differing morbidities based on their 

Figure 2.  Directed network graph ICD 411.* (Other acute and subacute forms of ischemic heart disease) and 
highest relative risk subsequent diagnoses. ICD 411.* was identified as a major hub diagnosis, with important 
subsequent diagnoses shown below. A broad range of diagnoses form the network, including clinically 
anticipated diagnoses (cardiac and renal diseases) and those that share etiologies (vascular). Others may share 
less apparent common etiologies (smoking and lung disease) or may be the result of intermediary comorbidities 
(anemia due to renal disorders).
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service assignments which may impact the generalizability of findings even within the veteran population. These 
results are generated based on a single healthcare system; it is possible that veterans may have sought care outside 
the VA, despite its integrated nature. Computationally, certain decisions may impact the results. For instance, 
limiting the cohort to patients with 5-year EHR history to ensure a consistent level of follow-up for individual 
patients may have resulted in missed rapidly fatal events. Similarly, limiting diagnoses to those experienced by 
least 10% of patients may bias this analysis against rare diseases which may impact the network and its metrics. 
Larger longitudinal datasets will allow study of shorter follow-up times or rarer diagnoses. Despite these limita-
tions, our study highlights fairly common and high impact diagnoses in an integrated practice setting.

This study focused on a highly selected cohort of overall healthy screening population patients. Future studies 
will focus on applying these algorithms to more heterogeneous and inclusive populations. Prospectively collected 
(though less granular) health status data are also available as a component of the study and we anticipate their 
use as a method for auditing the quality of EHR-based data.

Figure 3.  Directed network graph of diagnoses with greatest relative risk of subsequent acute kidney failure 
(ICD 584.*). Acute kidney failure was identified as a major authority diagnosis, with important preceding 
diagnoses shown below. A broad range of diagnoses form the network, including clinically anticipated precursor 
diagnoses (hypertension, cardiac disease, renal disease, and diabetes), correlated renal sequelae (anemia, 
electrolyte disorders), and less clinically anticipated preceding diagnoses (gout, skin ulcers).
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Methods
Patient population and data sources. The CSP #380 cohort and the results of their baseline and sur-
veillance colonoscopic exams have previously been  described25,37. Briefly, 3,121 healthy veterans aged 50–75 
underwent screening colonoscopy. Enrollment criteria included those with no lower gastrointestinal tract symp-
toms, prior history of colon disease, or a structural examination of the colon within 10 years. Exclusion criteria 
included medical conditions that would increase the risk of or preclude benefit of screening colonoscopy, includ-
ing prosthetic heart valve, anticoagulant therapy, nonmedical social problems, need for special precautions (such 
as antibiotic prophylaxis), or being a woman of childbearing potential. In addition to specific data collected 
prospectively over the course of the 10-year study follow-up, all VA healthcare encounters from October 1999 to 
December 2015 were obtained from the VA Corporate Data Warehouse (CDW). The CDW includes EHR data 
such as inpatient and outpatient diagnoses (available as International Classification of Diseases, Ninth Edition 
[ICD-9] diagnosis codes), pharmacy data, and manually curated data for specific conditions. Of the 3,121 CSP 
#380 participants, we included only those with at least 5 years of follow-up in the VA CDW in this analysis.

All methods were carried out in accordance with relevant guidelines and regulations. The Durham Veterans 
Affairs (VA) Medical Center Institutional Review Board approved this secondary analysis under CSP #380 LA: 
Longitudinal Analysis of VA CSP #380 Screening Colonoscopy (MIRB # 1872). A waiver of informed consent 
has been granted by the Durham VA Medical Center Institutional Review Board for work performed under this 
protocol, including this secondary analysis.

Data extraction and analysis. All VA inpatient and outpatient clinical encounters for CSP #380 partici-
pants were identified and extracted, including date of encounter and ICD-9 diagnosis codes. Analyses were per-
formed in SAS version 9.4 (SAS Institute, Cary, NC) and R version 3.4.0 (R Foundation, Vienna, Austria). ICD-9 
codes were collapsed into 3-digit codes and free text explanations were  generated38. Three-digit codes were 
preferred over other alternatives due to their granularity (compared to major diagnostic categories) as well as 
their greater capture of comorbidities managed in the outpatient setting (compared to approaches such as diag-
nosis related groups). For the network analysis, diagnoses affecting fewer than 10% of patients were excluded, 
as were non-diagnostic V codes (Supplementary Classification of Factors Influencing Health Status and Contact 
with Health Services), complications of pregnancy, childbirth, and the puerperium (as women of childbearing 
potential were excluded from the study), symptoms, signs, ill-defined conditions (780.*-799.*), and unclassified 
complications of surgical and medical care (996.*-999.*). The first chronological instance of each diagnosis for 
each patient was identified.

The temporal relationship between each pair of three-digit ICD-9 diagnoses in a given patient was character-
ized. All pairs of diagnoses in the population were then aggregated in the form of an adjacency matrix of relative 
risks (RR). Each RR represents the ratio of the probability of developing a diagnosis j given a prior diagnosis i 
versus the probability of developing diagnosis j without a prior diagnosis i (Eq. 1). If diagnoses were coincident 
on the same day, these were excluded in the calculation (i.e. not in the numerator or denominator). The RR matrix 
was represented with each ith row and jth column. Thus, a RR > 1 represents a relationship between diagnoses 
where diagnosis j is more common in patients with a prior diagnosis i than in those without diagnosis i.

Equation 1. Relative risk calculation. Network features. iGraph was used to produce a directed graph 
of comorbidities with chronological RRs >  139. The resulting directed graph was then analyzed for additional 
aggregate summary statistics. These included edge density, which is defined as the proportion of the number of 
directional relationships in the graph out of the total number of possible directional relationships  (2n, where n 
represents the total number of diagnoses in the graph). Reciprocity was also assessed, representing the propor-
tion of both diseases with RR > 1 out of all pairwise relationships. The diameter of the graph was also calculated 
using a breadth-first search like method, identifying the two diagnoses with the longest connection of diagnoses, 
demonstrating the longest path from a preceding to subsequent  diagnosis39.

Key diagnoses were identified in the graph, including the diagnoses with the top scaled Kleinberg hub and 
authority centrality  scores40. Hub diagnoses are preceding diagnoses with subsequent diagnoses of high “impor-
tance.” Conversely, authority diagnoses are subsequent diagnoses that are estimated to have high “importance” 
based on preceding diagnoses (Supplementary Figure S2). The PageRank of diagnoses within the network was 
also  calculated41. The PageRank was the first algorithm used by Google and roughly estimates “importance” 
based on the number and importance of incoming links and is comparable to the authority centrality score.

The Infomap algorithm was used to identify communities of diagnoses in the network  graph42,43. Com-
munities represent groups of diseases that tend to be more densely connected with other diagnoses within the 
community compared to those outside the community. One hundred runs of the Infomap algorithm were used 
to partition the  network44. Infomap utilizes the map equation, which is a flow-based and information-theoretic 
function. Minimizing the map equation across possible network partitions identifies regions in a network where a 
random walker tends to stay for a long time. While diagnoses within a single community may be connected with 
diagnoses in other communities, the identified communities overall have a greater flow together. For example, 
diagnoses outside a designated community may be connected to multiple diagnoses in the community but are 
excluded since they also have many connections to external diagnoses.

RR
(

i, j
)

=

N(i→j)
N(i→j)+N(i→∼ j)

/

N(∼ i→j)+N(j→i)
N(∼ i→j)+N(j→i)+N(∼ i&∼ j)
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Data availability
The aggregate data generated and/or analyzed during the current study are available from the corresponding 
author on reasonable request. Investigators (non-VA and VA) are invited to submit data and specimen requests 
for the Cooperative Studies Program #380 Cohort. The CSP 380 data dictionary is publicly available: https:// 
www. resea rch. va. gov/ progr ams/ csp/ cspec/ datad ictio nary_ csp380. html.
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