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Abstract. Identification of associations between circular RNAs (circRNA) and
diseases has become a hot topic, which is beneficial for researchers to under-
stand the disease mechanism. However, traditional biological experiments are
expensive and time-consuming. In this study, we proposed a novel method named
BWHCDA, which applied bi-random walk algorithm on the heterogeneous net-
work for predicting circRNA-disease associations. First, circRNA regulatory simi-
larity is measured based on circRNA-miRNA interactions, and circRNA similarity
is calculated by the average of circRNA regulatory similarity and Gaussian inter-
action profiles (GIP) kernel similarity for circRNAs. Similarly, disease similarity
is the mean of disease semantic similarity and GIP kernel similarity for diseases.
Then, the heterogeneous network is constructed by integrating circRNA network,
disease network via circRNA-disease associations. Subsequently, the bi-random
walk algorithm is implemented on the heterogeneous network to predict circRNA-
disease associations. Finally, we utilize leave-one-out cross validation and 10-fold
cross validation frameworks to evaluate the prediction performance of BWHCDA
method and obtain AUC of 0.9334 and 0.8764 ± 0.0038, respectively. Moreover,
the predicted hsa_circ_0000519-gastric cancer association is analyzed. Results
show that BWHCDA could be an effective resource for clinical experimental
guidance.

Keywords: CircRNA-disease associations · Bi-random walk · CircRNA
regulatory similarity

1 Introduction

Circular RNAs (CircRNAs) are a type of non-coding RNAs with closed loop structures
formed by back splicing [1]. Recently, large number of circRNAs are widely found in
various livings [2], and they could regulate gene expression at transcriptional or post-
transcriptional levels by titrating microRNAs (miRNAs) [3], regulating transcription
and splicing [4, 5], even several circRNAs could translate to produce polypeptides [6].
Increasing researches have demonstrated that the mis-regulation of circRNAsmay cause
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abnormal cellular functions and associated with various diseases [7]. Thus, disease-
associated circRNAs are becoming a class of promising biomarkers for disease diagnosis
and treatment.

However, it is costly and laborious to identify the disease-related circRNAs with
biomedical experiments. Recently, several computational approaches have been devel-
oped. Lei et al. [8] firstly designed a path weighted approach named PWCDA to pre-
dict circRNA-disease associations. Likewise, KATZHCDA [9] is developed based on
KATZ model to measure the probability for each pair of circRNA-disease associations,
in which the circRNA expression similarity and disease phenotype similarity matrices
are used as priori knowledge to establish the circRNA-disease heterogeneous network.
DWNN-RLS [10] is designed based on Kronecker regularized least squares to predict
the associations between circRNAs and diseases. iCircDA-MF [11] is developed based
on non-negative matrix factorization by integrating the circRNA-gene, gene-disease
and circRNA-disease relationships. Wang et al. [12] utilized a recommendation algo-
rithm PersonalRank to measure the relevance between circRNAs and diseases based on
circRNA expression profiles and functional similarity. Although several methods have
developed for the circRNA-disease association prediction, it is still a challenge to obtain
sufficiently accurate results.
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Fig. 1. The flowchart of BWHCDA method.
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In this study, we developed a novel framework for forecasting circRNA-disease asso-
ciations named BWHCDA, which integrated multiple similarity measures and imple-
mented bi-randomwalk algorithm (Fig. 1). First, circRNA regulatory similarity is effec-
tivemeasured based on circRNAsmay play essential roles in regulatingmiRNA function
in disease occurrence and progression. Moreover, combined with Gaussian interaction
profiles (GIP) kernel similarity for circRNAs, the integrated circRNA similarity is effec-
tivelymeasured. Similarly, disease similarity is denoted as the average of disease sematic
similarity and GIP kernel similarity for diseases. Subsequently, the heterogeneous net-
work is constructed by combing the circRNA network, disease network and circRNA-
disease associations. Then, circular bigraph (CBG) patterns are introduced in bi-random
walk algorithm to predict the missing associations based on the heterogeneous network.
The results show that BWHCDA could be considered as a powerful tool for predicting
circRNA-disease associations.

2 Methods

2.1 Human CircRNA-Disease Associations

The experimentally validated human circRNA-disease associations are extracted from
the CircR2Disease database [13]. Then, we choose the associations that circRNAs have
been recorded in circBase database [14] and disease name recorded in disease ontology
database [15]. Finally, we retained 371 circRNA-disease associations between 325 cir-
cRNAs and 53 diseases as the gold standard dataset. The circRNA-disease adjacency
matrix A(i,j) is established, if there is an association between circRNA and disease, A(i,j)
is set as 1, otherwise 0.

2.2 CircRNA Regulatory Similarity

The miRNA-circRNA interactions are downloaded from the CircBank database [16],
and the interactions overlapped with disease-related circRNAs are selected to measure
the regulatory similarity of circRNAs. It is measured as follows:

SC_RG(ci, cj) = card(Mi ∩ Mj)√
card(Mi) · √

card(Mj)
(1)

where the set of Mi have relationship with circRNA ci and the set of miRNA Mj have
relationship with circRNA cj.

2.3 Disease Semantic Similarity

The disease names are described as hierarchical directed acyclic graph (DAG) based on
the Medical Subject Headings (MeSH) descriptions for diseases. And disease semantic
similarity is calculated by the DOSE [17] tool with Wang et al. method.
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2.4 GIP Kernel Similarity

Based on the assumption that similar circRNAs (diseases) are tend to have similar inter-
action or non-interaction patternwith diseases (circRNAs) [18], theGIP kernel similarity
for circRNAs and diseases are respectively calculated as follows:

SC_cGIP(c(i), c(j)) = exp(−γc‖c(i) − c(j)‖2)
γc = 1

( 1
nc

nc∑

i=1
‖c(i)‖2)

(2)

SD_dGIP(d(i), d(j)) = exp(−γd‖d(i) − d(j)‖2)
γd = 1

( 1
nd

nd∑

i=1
‖d(i)‖2)

(3)

where c(i) (or d(i)) denotes the circRNA (disease) interaction profiles, which is the i-th
row (column) of the adjacency matrix A. The parameters γ c and γ d are used to control
the kernel bandwidth. nc (or nd) is the number of circRNAs (diseases).

2.5 Integrated Similarity for CircRNAs and Diseases

The new circRNA similarity scores (SC) are calculated with the average scores of the
circRNA regulatory similarity and GIP kernel similarity for circRNAs. Similarly, the
integrated disease similarity (SD) is denoted as the mean of the disease semantic sim-
ilarity and GIP kernel similarity for diseases. Then, the integrated circRNA similarity
and integrated disease similarity are adjusted with the logistic function [19].

S(x) = 1

1 + ecx+d
(4)

where x is the value of element of matrix SC or SD. Parameters c and d control the
adjustment effects, and we set c as −15 and set d as log(9999), respectively.

2.6 The Construction of Heterogeneous Network

According to the circRNA similarity and disease similarity measures, the circRNA
network and disease network can be constructed. Next, the weighted heterogeneous
circRNA-disease network is constructed based on the circRNA network, disease net-
work via gold standard circRNA-disease associations. The heterogeneous network could
be considered as a bipartite graph, the nodes represent circRNAs or diseases, the
edges represent three types of interactions of circRNA-circRNA, disease-disease and
circRNA-disease.

2.7 BWHCDA Method

Based on the topology and structure characteristics of circRNA network and disease
network, the concept of CBG was introduced. A CBG is described as a subgraph of
a circRNA path {c1, c2, …, cn} and a disease path {d1, d2, …, dm}, in which the
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two ends connected by circRNA-disease associations (c1, d1) and (cn, dm). The CBG
indicates a vicinity relation between the two association (c1, d1) and (cn, dm), which is
generalized by their distance to other associations in the circRNA network and disease
network. The length of CBG patterns (l, r) is determined by the longer length of circRNA
path and the disease path. In this study, we hypothesize that most potential associations
tend to be covered by many shorter CBGs in the unknown circRNA-disease network. If
there are more CBG patterns between circRNAs and diseases, the higher possibility of
circRNA-disease associations are.

By iteratively adding the circRNA path and disease path, we calculates the CBGs
weighted by decay factor α that ranges from 0 to 1. Because of different structures
and topologies in the circRNA network and disease network, disparate optimal number
of random walk steps are generated. Therefore, parameters l and r are introduced to
restrict the number of random steps in circRNA similarity network and disease similarity
network, respectively. The iterative process of bi-random walk is described as follows:

On the circRNA network:Cc = α · SCL · CDt−1 + (1 − α)A (5)

On the disease network:Dd = α · CDt−1 · SDL + (1 − α)A (6)

where α is the decay factor that controls the importance of CBG for different paths, SLL
and SDL represent the normalized matrix by using Laplace regularization.

SCL = Dc−1/2(Sc)Dc
−1/2 (7)

SDL = Dd−1/2(Sd )Dd
−1/2 (8)

where Dc(i,i) (or Dd(i,i)) is the diagonal matrix of circRNA similarity matrix Sc (Sd).
By combining the propagation scores of matrices Cc andDd, the relevance scores of

unknown circRNA-disease associations could be obtained. The BWHCDA algorithm is
outlined as Table 1.

3 Results

3.1 Prediction Performance

To assess the performance of BWHCDA method, leave-one-out cross validation
(LOOCV) and 5-fold cross validation (10-foldCV) framework are performed on the gold
standard datasets. For LOOCV, each known circRNA-disease association is removed in
turn as testing sample, and the other associations are regarded as training samples. Then,
the unknown circRNA-disease associations are considered as candidate associations,
and the prediction performance is assessed by the predicted rank of test sample. In the
framework of 10-fold CV, circRNA-disease associations are randomly divided into ten
subsets, and each subset is utilized in turn as test set and the remaining as the train set
on each time. To decrease the sample division bias, we perform 100 times repetitions
of 10-fold CV. The receiver operating characteristic (ROC) curves are plotted to show
the prediction performance by calculating the true positive rate (TPR) and false positive
rate (FPR). Furthermore, the area under the curves (AUCs) are calculated to evaluate the
overall performance.
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Table 1. The pseudocode of BWHCDA algorithm

Algorithm: BWHCDA
Input: circRNA-disease association interaction adjacency matrix A, circRNA-circRNA regu-
lated similarity matrix SC_RG, disease semantic similarity matrix DS_Dss, parameter α，
iteration step Il and Ir
Output: predicted interaction matrix CD
BWHCDA (A, SC_RG, DS_Dss, α, Il, Ir)
1. Calculate GIP similarity matrix SC_cGIP and SD_dGIP with A;
2. The integrated circRNA similarity matrix SC is obtained based on SC_RG and SC_cGIP,

while the disease similarity SD is calculated based on DS_Dss and SD_dGIP;
3. Obtain the matrix by logistic function Sc and Sd;
4. Obtain the normalized matrix SCL and SDL by Laplacian normalization operation.
5. CD0=A/sun(A);        // CD0 is the initial probability
6. //Iteration process;
7. Max_Iter = max([Il, Ir])
8. for t = 1 to Max_Iter
9. m = n = 0;
10. //Random walk in circRNA similarity network
11. if (t<= Il)
12. m = 1;
13. Cc = α*SCL*CDt-1+(1-α)*A;
14. end if
15. // Random walk in disease similarity network
16. if (t<= Ir)
17. n = 1;
18. Dd = α*CDt-1*SDL+(1-α)*A;
19. end if
20. //combination of results
21. CDt = (m* Cc+ n*Dd)/(m+n)
22.end for
23.return CD;

3.2 Effects of Parameters

There are three parameters in the BWHCDA method, including α, Il, Ir . To test the
effects of the three parameters, we set α value as {0.2, 0.4, 0.6, 0.8}, and Il, Ir are set
from 1 to 5, respectively. Then, we could calculate AUC values based on LOOCV and
the effects of these parameters are shown in Tables 2, 3, 4 and 5. The results indicate
that α has little effects on prediction performance. When α = 0.4, Il = 4 and Ir = 5, the
AUC value of LOOCV is the highest with step length less than five. When α = 0.4, Il
= 3, Ir = 4, AUC value of LOOCV is the highest within step length less than four. The
AUC value of LOOCV is the highest within step length than three steps when α = 0.4,
Il = 2, Ir = 3. And when α = 0.6, Il = 1, Ir = 2, the AUC value of LOOCV is the highest
within two steps. Finally, we set three parameters as α = 0.4, Il = 2, Ir = 3, respectively.

3.3 Comparison with Other Methods

To further evaluate the prediction performance of BWHCDA, we compare it with other
five methods including KATZHCDA [9], PageRank [20], NCP [21], BDSILP [22] and
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Table 2. When α is set as 0.2, the effect of parameters Il and Ir for LOOCV AUC.

α = 0.2 Ir = 1 Ir = 2 Ir = 3 Ir = 4 Ir = 5

Il = 1 0.9084 0.9278 0.9126 0.9046 0.9009

Il = 2 0.6851 0.9097 0.9295 0.9137 0.9050

Il = 3 0.3462 0.7035 0.9099 0.9298 0.9138

Il = 4 0.1645 0.3678 0.7057 0.9099 0.9298

Il = 5 0.1429 0.1666 0.3706 0.7059 0.9099

Table 3. When α is set as 0.4, the effect of parameters Il and Ir for LOOCV AUC.

α = 0.4 Ir = 1 Ir = 2 Ir = 3 Ir = 4 Ir = 5

Il = 1 0.9084 0.9314 0.9209 0.9116 0.9058

Il = 2 0.7788 0.9109 0.9334 0.9243 0.9138

Il = 3 0.5692 0.8018 0.9116 0.9341 0.9253

Il = 4 0.3632 0.6156 0.8056 0.9116 0.9343

Il = 5 0.2076 0.4049 0.6259 0.8062 0.9115

Table 4. When α is set as 0.6, the effect of parameters Il and Ir for LOOCV AUC.

α = 0.6 Ir = 1 Ir = 2 Ir = 3 Ir = 4 Ir = 5

Il = 1 0.9084 0.9322 0.9254 0.9165 0.9095

Il = 2 0.8194 0.9119 0.9331 0.9285 0.9209

Il = 3 0.6887 0.8428 0.9118 0.9328 0.9296

Il = 4 0.5445 0.7381 0.8476 0.9108 0.9324

Il = 5 0.4094 0.6150 0.7506 0.8480 0.9100

Table 5. When α is set as 0.8, the effect of parameters Il and Ir for LOOCV AUC.

α = 0.8 Ir = 1 Ir = 2 Ir = 3 Ir = 4 Ir = 5

Il = 1 0.9084 0.9318 0.9261 0.9180 0.9098

Il = 2 0.8422 0.9123 0.9299 0.9273 0.9203

Il = 3 0.7543 0.8653 0.9109 0.9261 0.9255

Il = 4 0.6670 0.8022 0.8694 0.9078 0.9229

Il = 5 0.5789 0.7359 0.8158 0.8688 0.9046
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HeteSim [23]. Consequently, BWHCDA method achieve the best performance among
these six approaches based on AUC values of LOOCV and 10-fold CV with the same
datasets (Figs. 2 and 3). Therefore, BWHCDAmethod is better than other five methods.

Fig. 2. Comparison of BWHCDA and other methods in terms of ROC curves in LOOCV.

Fig. 3. Comparison of BWHCDA and other methods in terms of ROC curves in 10-fold CV.

3.4 Case Studies

To further assess the prediction performance of BWHCDA method, we analyze
the predicted hsa_circ_0000519-gastric cancer association. As shown in Fig. 4,
hsa_circ_0000519 may interact with miRNAs including hsa-miR-1233, hsa-miR-1258,
hsa-miR-1296, hsa-miR-146b-3p, hsa-miR-521 to play their biological roles. The
miRNA targets gene of these miRNAs have been validated related with gastric can-
cer, including hsa-miR-1258 target HPSE, hsa-miR-146b-3p target PER1 and IRAK1,
hsa-miR-521 target ERCC8, hsa-miR-1296-5p target ERBB2. In addition, hsa-miR-
1296 has been validated associated with gastric cancer. Therefore, hsa_circ_0000519
may be a potential biomarker for gastric diagnosis and prognosis.
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Fig. 4. The hsa_circ_0000519-miRNA-mRNA-gastric cancer interaction network.

4 Conclusion

Prioritizing the potential associations between circRNAs and diseases is benefit to the
development of the understanding of the disease mechanism, diagnose and treatment for
diseases. The reasons that why BWHCDA method has better performance is shown as
following aspects. First, bi-random explored the CBG patterns with iteratively imple-
ment random walk on the circRNA similarity network and disease similarity network.
In addition, BWHCDA is a multi-task learning method that could forecast potential
circRNA-disease associations simultaneously rather than mine candidate circRNAs for
specific diseases. Therefore, BWHCDA could be an effective method for biomedical
research.
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