
foods

Article

Development of Freeze-Thaw Stable Starch through
Enzymatic Modification

Seung-Hye Woo 1,†, Ji-Soo Kim 1,†, Hyun-Mo Jeong 1, Yu-Jeong Shin 1, Jung-Sun Hong 2, Hee-Don Choi 2

and Jae-Hoon Shim 1,*

����������
�������

Citation: Woo, S.-H.; Kim, J.-S.;

Jeong, H.-M.; Shin, Y.-J.; Hong, J.-S.;

Choi, H.-D.; Shim, J.-H. Development

of Freeze-Thaw Stable Starch through

Enzymatic Modification. Foods 2021,

10, 2269. https://doi.org/10.3390/

foods10102269

Academic Editor: Giorgos Markou

Received: 2 September 2021

Accepted: 22 September 2021

Published: 25 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University,
Hallymdaehak-gil 1, Chuncheon 24252, Korea; shye94@hallym.ac.kr (S.-H.W.);
Jisoo1226@hallym.ac.kr (J.-S.K.); 41351@hallym.ac.kr (H.-M.J.); yujeong0115@hallym.ac.kr (Y.-J.S.)

2 Division of Strategic Food Research, Korea Food Research Institute, Nongsaengmyeong-ro 245, Iseo-myeon,
Wanju-gun 55365, Korea; jungsunhong@kfri.re.kr (J.-S.H.); chdon@kfri.re.kr (H.-D.C.)

* Correspondence: jhshim@hallym.ac.kr; Tel.: +82-33-248-2137; Fax: +82-33-248-2146
† S.-H. Woo and J.-S. Kim contributed equally to this work.

Abstract: The use of unmodified starch in frozen foods can cause extremely undesirable textural
changes after the freeze-thaw process. In this study, using cyclodextrin glucanotransferase (CGTase)
and branching enzymes, an amylopectin cluster with high freeze-thaw stability was produced, and
was named CBAC. It was found to have a water solubility seven times higher, and a molecular
weight 77 times lower, than corn starch. According to the results of a differential scanning calorimetry
(DSC) analysis, dough containing 5% CBAC lost 19% less water than a control dough after three
freeze-thaw cycles. During storage for 7 days at 4 ◦C, bread produced using CBAC-treated dough
exhibited a 14% smaller retrogradation peak and 37% less hardness than a control dough, suggesting
that CBAC could be a potential candidate for clean label starch, providing high-level food stability
under repeated freeze-thaw conditions.

Keywords: freeze-thaw stability; amylopectin cluster; clean label starch; branching enzyme;
cyclodextrin glucanotransferase

1. Introduction

Bread is one of the most widely consumed foods in the world and baking is one
of the oldest known cooking technologies [1–3]. Novel ingredients and equipment have
been continuously introduced to develop higher-quality bread, and research on baking
has shown steady and impressive progress over many years [2]. In particular, the frozen
dough method has significantly reduced the labor requirements and cost of baking [4–6].
However, bread prepared from frozen dough tends to be of lower quality and becomes
stale more rapidly than bread prepared from fresh dough [5,7,8]. Therefore, the frozen
dough method is not generally used for making white bread, but is typically used for
making sweet bread prepared with additives such as oils, sugars, and sugar alcohols [8].
The baking industry has increasingly adopted freezing technology due to the economic
benefits of the centralized manufacturing and distribution process, as well as consumer
demand for standardized product quality [2,9,10]. Numerous studies have been conducted
to determine the optimal storage conditions for frozen dough to obtain high-quality baking
products [11–14].

Dough can be damaged during frozen storage due to ice crystal formation [8,15,16]. In
addition to this damage, ice crystal formation also has a negative effect on yeast stability [8].
Some of the freezable water that does not bind to gluten during dough formation is frozen
when the dough is stored during frozen storage [9,17,18]. The ice crystals formed during
frozen storage may cause physical damage to the gluten protein structure, resulting in
weak hydrophobic bonds, redistribution of water in the dough gluten network, and a
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loss of gas-holding capacity during baking. Repeated freeze-thaw cycles during frozen
storage exacerbate such phenomena [9,10]. Therefore, harsh processing conditions, such
as freeze-thaw cycles, can result in substantial deterioration of the dough structure [9].
In addition, the size of the ice crystals may increase in proportion to the extent of frozen
storage, which reduces yeast viability in the frozen dough [8,17].

Various additives have been suggested to improve the quality of frozen dough [4,13,15,19,20].
β-glucan is able to bind water molecules released from the gluten-starch network and inhibit
the growth of ice crystals [4]. Because soy protein binds tightly to water molecules, it can be
added to reduce the damage caused by the freezing of dough [5]. The addition of xanthan
gum or hydroxypropyl methylcellulose (HPMC) to frozen dough has also been reported to
improve product volume and quality during long-term frozen storage [15,19]. However, the use
of these additives in the actual food industry can be difficult due to consumer concerns about
food safety [10,21].

Starch is commonly used in various food products [22]. However, the use of native
starches in the food industry is limited by various inherent problems, such as an inability to
tolerate high shear stress, high retrogradation, poor water solubility, and low freeze-thaw
stability [23–25]. Therefore, to improve its functionality and stability, starch has been
chemically modified in industrial applications [22,25]. However, chemical modification is
viewed as undesirable by consumers because chemical residues may remain in the final
product [22,23,26]. Recently, consumer concerns regarding chemically modified starch
have led to a preference for ‘clean label’ modified starches [24,26]. These modified starches
are prepared using naturally occurring materials and hydrothermal and enzymatic pro-
cesses, without any need for synthetic chemicals [22,24,25]. For example, stearic acid and
hydrothermal treatments have replaced chemical processes in the production of chemi-
cally cross-linked starch [22]. A natural functional ingredient derived from flax seed is
now being used as a replacement for chemical dough conditioner [27]. In addition, to
adjust the digestibility of starch, various enzymatic clean label modified starches have
been developed [28,29]. Although various studies have been conducted to investigate
the development of modified starch, with specific functional properties caused by chemi-
cal, physical, or enzymatic modifications [30], there have been few studies on clean label
freeze-thaw-resistant starch.

In this study, we hypothesized that the form of modified starch with many short
branches could represent a material with the potential to reduce the release of water
molecules from dough, thus helping to maintain the quality of the dough during freeze-
thaw storage. Therefore, we prepared an enzymatically modified dough and investigated
its applicability to bread baking.

2. Materials and Methods
2.1. Enzymatic Modification of Starch

A corn starch suspension (1%, w/v) was prepared in 50 mM sodium acetate buffer
(pH 6.0, 50 mL). After preheating at 60 ◦C for 5 min, the starch solution was incubated
while stirring with cyclodextrin glucanotransferase (CGTase, 0.645 KNU-CP/mg substrate)
and the branching enzyme (0.000001872 BEU/mg substrate) at 60 ◦C for a specific time, to
produce CGTase and branching enzyme-treated corn starch (CBAC). Cyclodextrin glucan-
otransferase (CGTase; Toruzyme) and a branching enzyme (Branzyme) were purchased
from Novozymes (Bagsvaerd, Denmark) and Isoamylase derived from Pseudomonas sp.
was purchased from Megazyme (The Bray Co., Wicklow, Ireland). One KNU-CP of CGTase
was defined as the amount of enzyme that breaks down 5.26 g starch per hour according to
Novozyme’s standard method for determining alpha-amylase. One BEU was defined as
the quantity of enzyme that causes a decrease in absorbance at 660 nm of an amylose-iodine
complex of 1% per minute under standard conditions (pH 7.2, 60 ◦C). After the enzyme
reaction, enzyme mixtures were boiled for 20 min to halt enzyme activity.

The liquid form of CBAC starch prepared using the above method was lyophilized
to attain a powder form. First, the oligosaccharides produced from the starch during the
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enzymatic treatment were removed using ethanol. The CBAC was precipitated using two
volumes of ethanol at −25 ◦C and collected by centrifugation (5500× g at 4 ◦C for 40 min).
The precipitates were suspended in distilled water with the same relative ratio as the CBAC
starch solution, and then boiled for 5 min to ensure complete dissolution. The samples
were frozen at −40 ◦C before freeze-drying using an Operon instrument (Gimpo, Korea).

2.2. Molecular Weight Distribution of Enzyme-Treated Starches

Starch suspension (2.5%, w/v) was prepared using distilled water. The starch was
left in distilled water for 30 min to hydrate sufficiently. Dimethyl sulfoxide (DMSO) was
then added to the starch suspension to achieve a 1% (w/v) concentration. After boiling
for 1 h at 100 ◦C, the mixture was stirred overnight at room temperature. The sample
and ethanol were mixed at a ratio of 1:6 and the mixture was centrifuged to remove the
supernatant. The precipitate was dispersed in boiling water and boiled for 30 min with
continuous stirring. Finally, the starch solution (2 mg/mL) was filtered for analysis using
a 5-µm syringe filter (Acrodisc 25 mm; Pall Co., Port Washington, NY, USA). The weight-
average molecular weight (Mw) and Mw distribution curves were determined using a size
exclusion chromatography–multiangle laser light scattering-refractive index detector (SEC-
MALLS-RI). The SEC separation was performed with a high-performance size exclusion
chromatograph (Agilent 1100; Agilent Technologies, Inc., Santa Clara, CA, USA) including
a degasser, autosampler, pump (Waters 510; Waters Co., Milford, MA, USA), guard column
(TSK PWH; Tosoh Co., Tokyo, Japan), and SEC column (Shodex SB-804 HQ, SB-806 HQ
OHpak; Showa Denko, Tokyo, Japan), which were connected to a MALLS detector (Dawn
DSP; Wyatt Technology, Goleta, CA, USA) and a refractive index detector (Waters 410;
Waters Co.). The column was kept at 55 ◦C. The flow rate of the mobile phase (water)
was 0.6 mL/min. The calculation of Mw was performed using Astra 472 software (Wyatt
Technology) with the Berry extrapolation method and a dn/dc value of 0.185 mL/g.

2.3. Side Chain Length Distribution Analysis

The side chain length distribution of starch samples was determined using a method
that we described previously [31]. Before the analysis, the sample was pretreated to
facilitate the structural analysis of the starch. Corn starch and enzymatically modified
starch was dissolved in 50 mM sodium acetate (pH 4.5) and was reacted with isoamylase at
40 ◦C for 96 h. The reaction solution was boiled for 5 min to stop the enzyme reaction. Then,
pretreated starch was analyzed using high-performance anion exchange chromatography
(HPAEC). The HPAEC system consisted of a CarboPac PA1 guard column (4 × 50 mm;
Dionex, Sunnyvale, CA, USA), a CarboPac PA1 column (4 × 250 mm; Dionex), and a
pulsed amperometric detector (ED40; Dionex). The samples (20 µL) were injected into the
column and eluted with multiple gradients of 600 mM sodium acetate in 150 mM NaOH at
a flow rate of 1 mL/min. The linear gradients of sodium acetate were as follows: 10−30%
for 0−10 min, 30−40% for 10−16 min, 40−50% for 16−27 min, 50−60% for 27−44 min,
60−65% for 44−63 min, 65−66% for 63−70 min, and 66−100% for 70−71 min.

2.4. Determination of Starch Water Solubility

The CBAC powder was mixed with distilled water and supersaturated. The suspen-
sions were boiled for 5 min at 100 ◦C. The samples were then cooled to 20 ◦C and the
supernatant was collected via centrifugation at 11,200× g for 20 min. The modified starch
water solubility was obtained by mixing the modified starch solutions and iodine solution
at a ratio of 1:1, and reacting the mixture at 20 ◦C for 5 min. The measurements were
determined using a spectrophotometer (Multiskan FC; Thermo Scientific, Waltham, MA,
USA) operated at a wavelength of 550 nm. The standard curve covered a concentration
range of 0.1%–0.5% (w/v). The results are expressed as the mean and standard deviation
(SD) of three measurements per sample.
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2.5. Preparation of Frozen Dough and Bread

The dough was prepared for a white bread mix (CheilJedang, Seoul, Korea) and a
bread maker (Cuchen, Seoul, Korea) was used. The control dough was prepared using
only 376 g of wheat flour, 4 g of yeast, and 220 mL of water. The CLS (Commercial clean
label starch, Novation Proma 300; Ingredion, Westchester, Ireland) group and CBAC group
doughs were treated with modified starches to achieve a CLS concentration of 10% (w/w)
and a CBAC concentration of 5% (w/w), respectively. After that, the ingredients for the
dough were kneaded for 30 min and the first fermentation proceeded for 120 min at 30 ◦C.
After the first fermentation, the dough was sealed inside a polyethylene bag, frozen-stored
for 22 h at −25 ◦C, and thawed for 2 h at 30 ◦C. This cycle was repeated three times. After
the three freeze-thaw cycles, the dough was fermented again for 100 min at 30 ◦C and the
bread was baked for 40 min at 190 ◦C. The bread was left to cool for 3 h and then sealed
with a polyethylene bag and stored in a refrigerator at 4 ◦C.

2.6. Bread Loaf Volume

The bread loaf volumes were obtained after they had cooled for 3 h. The volume
of each loaf was determined via the rice grain method [32]. The bread was placed in a
4 L container and the empty space was filled with rice grains. The bread volume was
determined by measuring the volume of rice grains displaced from the 4 L container.

2.7. Texture Profile Analysis (TPA)

The TPA was performed with a texture analyzer (TMS-Pro; Food Technology Co.,
Sterling, VA, USA). The changes in the textural properties of each bread loaf were analyzed
after 7 days of storage at 4 ◦C. The breads were measured by cutting four 20-mm-thick
slices. Twice-repeated compression tests were conducted on the bread slices using a texture
profile analyzer equipped with a 25 N load cell. The bread slices were compressed to
a thickness of 12 mm (60%) with a 50-mm probe at a speed of 60 mm/min. The crumb
firmness and elastic recovery were calculated based on the force-distance curves generated
by two cycles of compression. The results are expressed as the mean and SD values of three
measurements per bread slice.

2.8. Differential Scanning Calorimetry (DSC) Analysis

Bread staling was determined using a DSC 214 Polyma system (Netzsch, Selb, Ger-
many) after 7 days of storage at 4 ◦C. The DSC was evaluated by making measurements
directly on breadcrumbs without further pretreatment. Breadcrumbs were obtained from
the center of the loaves after the aging process. The bread samples (10 mg) were weighed
and sealed in aluminum pans. An empty pan was used as a reference. The pans were
heated from 20 to 90 ◦C at a heating rate of 5 ◦C/min. Retrogradation was determined as
the enthalpy, calculated based on the area under the endothermic peak located between 40
and 70 ◦C.

The freezable water in the dough was monitored with the Polyma DSC system using
a previously reported method [4,9]. Five milligrams of the thawed dough was extracted
from the center of each sample and placed directly into an aluminum pan, which was
then sealed. The sample pan was analyzed alongside an empty crucible for reference. The
analysis process involved two temperature control loops. In the first step, the samples
were cooled from their initial temperature to −50 ◦C and held isothermally for 5 min.
The sample temperature was then elevated from −50 to 20 ◦C at a rate of 5 ◦C/min. The
enthalpy of the freezable water was determined as the energy absorbed during the melting
of ice in the frozen dough.

2.9. Statistical Analysis

All measurements were repeated at least three times for each sample. The Kruskal–
Wallis H test was used to test for significant differences among samples. All analyses were
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performed using SPSS software (version 25.0; SPSS Inc., Chicago, IL, USA) with p < 0.05
taken to indicate statistical significance.

3. Results
3.1. Structural Analysis of Enzyme-Modified Starch

The structural characteristics of freeze-thaw stable starch were analyzed via HPAEC.
Compared to the corn starch, in CBAC the relative amounts of side chains below DP 10
and in the range of DP 28 to DP 47 increased. Consequently, the relative amounts of the
other chain lengths in CBAC (DP 10–27, >DP 48) decreased (Figure 1). Both CBAC and
CLS typically contained larger amounts of B2 and B3 chains than corn starch. In particular,
CBAC possessed relatively more long side chains (DP 31–47) than CLS (Figure 1).
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Figure 1. Properties of the modified starch structures.

3.2. Solubility of Modified Starch

In Table 1, the changes in water solubility of enzyme-modified starches are shown
by enzyme reaction time. The water solubility of corn starch was 12.4 mg/mL, whereas
that of CBAC-3 h was 97.6 mg/mL, i.e., approximately seven times higher than that of the
normal corn starch. However, an enzyme treatment of longer than 3 h gradually decreased
the CBAC solubility.

Table 1. Solubility of the modified starches.

Starch Sample Water Solubility (mg/mL) Relative Solubility

Corn starch 12.4 ± 0.00 a,b 1
CBAC-0.5 h c 57.6 ± 0.24 4.65

CBAC-1 h 65.5 ± 0.35 5.28
CBAC-3 h 97.6 ± 0.43 7.87
CBAC-5 h 89.4 ± 0.16 7.21
CBAC-7 h 83.4 ± 0.28 6.73

a Water solubility of corn starch, as reported previously [9]. b Values are presented as mean ± standard deviation
(n = 3). c The CBAC sample was named in accordance with the enzyme reaction time.

3.3. Molecular Weight Distribution of Enzyme-Treated Starch

The Mw of starch was determined according to the enzyme reaction time using the SEC-
MALLS-RI system. The Mw of corn starch before the enzyme reaction was 1.62 × 108 Da. After
the CGTase and branching enzyme treatment, the Mw of starch decreased to 2.09 × 106 Da.
After a 1-h reaction, the Mw remained constant (Figure 2). Interestingly, despite the rapid
decrease in Mw, there was virtually no production of small-molecule sugars, suggesting that
the hydrolysis reaction of the enzymes acted on the amylopectin cluster units.
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Figure 2. Time course analysis of the molecular weight (Mw; g/mol) of starch during enzymatic
modification. The Mw of corn starch samples treated with (CGTase) and a branching enzyme with
various incubation times was measured using size exclusion chromatography-multiangle laser light
scattering (SEC-MALLS).

3.4. Effects of CBAC on Bread Baking

To investigate the effect of modified starch on freeze-thaw stability, CLS and CBAC
were added to bread dough, respectively. The fermented doughs were subjected to the
freeze-thaw process three times, as described in the Material and Methods, and the bread
was then baked. As shown in Figure 3, the bread samples were compared in terms of
volume; the volumes of the control, CLS-, and CBAC-added breads were 1833.33, 1706.67,
and 1993.33 cm3, respectively. Relatively, the bread made with the CBAC had the largest
volume (9% larger than the control bread volume). However, there was no significant
difference in volume between the bread made with CLS and the control bread.
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In the same bread loaves, textural changes were measured using TPA after storage
for 7 days at 4 ◦C. The differences in the bread samples due to the type of starch used are
shown in Table 2. The control bread was 37% harder than the bread baked with CBAC. In
addition, compared to CLS, the CBAC was more effective in maintaining the bread crumb
softness. There was no significant difference in springiness all among the three kinds of
bread. Therefore, CBAC was considered to be effective for increasing bread crumb softness.
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Table 2. Textural properties of bread after storage.

Textural Properties

Bread a Hardness (N) Springiness Gumminess (N) Chewiness (J)

Control 2.52 ± 0.03 1.01 ± 0.00 1.22 ± 0.08 1.23 ± 0.07
CLS 2.30 ± 0.07 1.01 ± 0.00 0.83 ± 0.09 0.83 ± 0.07

CBAC 1.59 ± 0.07 1.00 ± 0.00 0.77 ± 0.03 0.77 ± 0.02
Bread loaves were prepared using frozen dough that had been frozen and thawed three times. Values are
presented as mean ± standard deviation (n = 3). a Breads baked with the different starches were stored for 7 days
at 4 ◦C.

The retrogradation rate of the bread was also analyzed using DSC (Figure 4). The
degree of retrogradation is usually expressed in terms of the enthalpy from 45 to 70 ◦C.
Figure 4 shows the retrogradation of the breads treated with different starches after storage.
The retrogradation peak of the breadcrumbs was 9.01 mJ for the control bread, 7.74 mJ for
the bread treated with CBAC, and 8.68 mJ for the bread treated with CLS. Thus, among the
bread samples, the bread made with the CBAC had the smallest retrogradation peak (14%
smaller than that of the control bread). The use of CLS resulted in a retrogradation peak
that was only 3% smaller than that of the control bread.
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3.5. Freezable Water in Frozen Doughs

DSC can be used to study the influence of freeze-thaw treatments on the thermody-
namic properties of dough and bread [5,7,9,15]. Figure 5 shows the freezable water in the
frozen dough with the addition of different modified starches during storage. Before the
freeze-thaw process, there was no significant difference in freezable water enthalpy among
doughs prepared with different modified starches. However, after the third cycle of the
freeze-thaw process, the dough made with CBAC was significantly different to the control
dough in terms the peak enthalpy of freezable water. The freezable water enthalpy values
of the control dough and dough made with the addition of CBAC were 122.47 and 98.64 mJ,
respectively. This indicated that CBAC was able to effectively retain water molecules in
dough during a freeze-thaw cycle.
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4. Discussion

To investigate the starch structure of enzyme-modified starch, we analyzed the side
chain length distribution and Mw distributions of modified starches (Figures 1 and 2).
As shown in Figure 2, the average Mw of the reaction products decreased sharply from
1.62 × 108 to 2.09 × 106 Da, indicating that amylopectin in starch was degraded into cluster
units via cleavage of the inter-chain part between clusters. In the comparison of the side
chain length distributions, CBAC starch had larger amounts of short chains below DP
10 and side chains ranging from DP 28–47 than the other starches (Figure 1). As shown
in Table 1, CBAC had a higher water solubility than the original corn starch, which is
consistent with several previous studies [33,34]. Usually, amylopectin clusters with a
low Mw have higher water solubility than branched amylose [35]. The highly branched
amylopectin clusters produced by the enzyme modification in this study had a higher
water solubility than reported previously for amylopectin clusters [35]. Thus, the high
water solubility of CBAC in our study could be due to the increase in the amount of short
branches (<DP 10) and decrease in the Mw (Table 1 and Figure 1). The increase in the
amount of chains in the range of DP 28–47 was likely caused by hydrolysis of the inter-chain
region between amylopectin clusters. In addition, due to the branching enzymatic reaction,
many short branches (<DP 10) were formed in amylopectin clusters. It has been reported
that the more short branches a starch has, the more effectively it prevents syneresis [36]. In
general, starches with a higher amylopectin content are known to exhibit higher freeze-
thaw stability, because the numerous amylopectin branches prevent the separation of water
molecules in the gel network [36–38].

Generally, bread baked with frozen dough is undesirable in terms of its textural and
staling properties [39]. In this study, doughs mixed with enzymatically modified starches
were exposed to a freeze-thaw process to evaluate their freeze-thaw stability, with the
changes in their textural and staling properties then analyzed (Table 2, Figure 4). Despite
repeated the freeze-thawing of the frozen dough, the addition of CBAC maintained the
bread volume, and resulted in lower levels of hardness and bread staling relative to a
control bread, indicating that CBAC improved the water holding capacity of starch under
freeze-thaw conditions. The higher the water holding capacity, the lower the hardness of
the bread [15]. This result was consistent with the results of other studies [40,41] indicating
that the retrogradation of bread is positively correlated with the hardening of breadcrumbs.
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5. Conclusions

In this study, we developed a simple method for preparing enzymatically modified
starch (CBAC) with cyclodextrin glucanotransferase (CGTase) and branching enzymes.
It showed a water solubility that was seven times higher and a Mw that was 77 times
lower than corn starch. The addition of CBAC maintained the characteristics of dough
during a freeze-thaw process, whereas the addition of CBAC to the frozen dough resulted
in an antistaling effect during storage of the resulting bread. Therefore, CBAC could be
considered a beneficial agent for frozen ready meals, and should have a role in the Asian
frozen food market, which is growing dramatically [42].
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