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Abstract: Rehabilitation training and movement evaluation after stroke have become a research
hotspot as stroke has become a very common and harmful disease. However, traditional rehabilitation
training and evaluation are mainly conducted under the guidance of rehabilitation doctors. The
evaluation process is time-consuming and the evaluation results are greatly influenced by doctors.
In this study, a desktop upper limb rehabilitation robot was designed and a quantitative evaluation
system of upper limb motor function for stroke patients was proposed. The kinematics and dynamics
data of stroke patients during active training were collected by sensors. Combined with the scores
of patients’ upper limb motor function by rehabilitation doctors using the Wolf Motor Function
Test (WMFT) scale, three different quantitative evaluation models of upper limb motor function
based on Back Propagation Neural Network (BPNN), K-Nearest Neighbors (KNN), and Support
Vector Regression (SVR) algorithms were established. To verify the effectiveness of the quantitative
evaluation system, 10 healthy subjects and 21 stroke patients were recruited for experiments. The
experimental results show that the BPNN model has the best evaluation performance among the
three quantitative evaluation models. The scoring accuracy of the BPNN model reached up to 87.1%.
Moreover, there was a significant correlation between the models′ scores and the doctors′ scores. The
proposed system can help doctors to quantitatively evaluate the upper limb motor function of stroke
patients and accurately master the rehabilitation progress of patients.

Keywords: stroke; rehabilitation training; movement evaluation; robot; machine learning

1. Introduction

Stroke is a disease caused by brain nerve injury. It is one of the common diseases
among the elderly and the second leading cause of death [1]. Stroke patients usually have
symptoms, such as hemiplegia, aphasia, and cognitive impairment, which may lead to
death in severe cases [2]. Hemiplegia is the most common post-stroke symptom [3]. In most
cases, the upper limbs of hemiplegic patients are more seriously affected than their lower
limbs. Stroke rehabilitation is a process that enables patients to improve their limb motor
function and return to normal life through rehabilitation training. Clinical experiments
show that patients can recover limb motor function through rehabilitation training [4]. The
recovery of motor function mainly occurs within the first three months after stroke [5].
Patients should participate in rehabilitation treatment as soon as possible and carry out
rehabilitation training under the guidance of doctors.

The traditional rehabilitation methods mainly rely on the auxiliary training of rehabili-
tation doctors. The main task of rehabilitation doctors is to formulate rehabilitation plans
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to help patients to recover limb motor function [6]. In terms of rehabilitation evaluation,
the traditional method is to use the evaluation scale, such as the Fugl-Meyer assessment
(FMA) [7], Action Research Arm test (ARAT) [8], and modified Ashworth scale (MAS) [9]
to evaluate the limb motor function of patients. The traditional rehabilitation evaluation
method needs to be carried out by experienced rehabilitation doctors, which is a great
waste of time and medical resources, and the evaluation results are greatly affected by the
subjective influence of rehabilitation doctors. Compared with doctor-assisted rehabilitation
training, the rehabilitation robot can provide a standardized training process and objec-
tively record the trajectory, speed, force, and other data in the training process [10]. These
data can be used to establish a quantitative evaluation model of patients’ motor function,
help doctors to obtain patients’ rehabilitation progress more accurately and put forward
targeted rehabilitation methods. Therefore, it is of great significance to establish a quantita-
tive evaluation system of upper limb motor function of stroke patients, and help doctors
adjust the rehabilitation training methods in time according to the evaluation results.

At present, many scholars have made attempts in rehabilitation evaluation. Lambercy
et al. [11] introduced the results of a preliminary study using a virtual nail insertion
test to evaluate the motor function of patients’ upper limbs. Lee et al. [12] proposed
a virtual reality upper limb movement training system for stroke rehabilitation, which
used a machine learning method to evaluate upper limb motor function. Miao et al. [13]
designed a smartphone-based smart system to help stroke survivors improve upper limb
rehabilitation. Patel et al. [14] received patients’ information through wearable sensors
and used the random forest to evaluate patients’ motor function. Kim et al. [15] proposed
a method to judge the severity of upper limb elbow spasm by using a machine learning
algorithm. The main work of these scholars is to analyze the motor function of patients
qualitatively and provide methods to classify the motor function of patients’ upper limbs
based on motion data. Olesh et al. [16] developed a low-cost motion capture system to
automatically evaluate upper limb injury in stroke patients. Liao et al. [17] proposed a
framework based on deep learning to evaluate the quality of physical rehabilitation training
automatically. Park et al. [18] proposed a modified Ashworth scale decision rule based
on artificial intelligence and analyzed the effects of different biomechanical parameters
on the MAS score. Cruz et al. [19] developed a portable motion capture system to obtain
the three-dimensional kinematics data of upper limbs and then calculated the functional
ability score through an automatic decision tree classifier. Otten et al. [20] used low-cost
sensors to collect motion data and then obtain the patient’s upper limb function score
through a machine learning algorithm. These scholars proposed a quantitative scoring
method for the completion quality of a single action during rehabilitation training. Wang
et al. [21] developed a multimodal fusion scheme to analyze the motor function of upper
limbs comprehensively by using optical motion tracking equipment and wearable EMG
equipment. The disadvantage of this method is that there are strict requirements for the
bonding position of the electrode used for EMG monitoring. Kim et al. [22] developed
an FMA evaluation tool using Kinect (Microsoft, Redmond, WA, USA) and verified it in
stroke patients. Visual sensors, such as Kinect, require large experimental space and can
only capture movements with large amplitude.

In this study, a desktop rehabilitation training robot with a simple structure and
low cost was designed to collect the motion data and mechanical parameters of stroke
patients in the process of rehabilitation training. Based on different machine learning
algorithms, BPNN, KNN, and SVR, three rehabilitation evaluation models corresponding
to the evaluation of the WMFT scale were established respectively. Finally, the performance
differences of the three evaluation models were compared through experiments. Compared
with the qualitative assessment methods proposed by Lambercy et al. and the single
action quantitative assessment methods proposed by Olesh et al., our method can complete
the quantitative assessment of the motor function of the entire upper extremity of stroke
patients. We also avoid the disadvantages of visual sensors not being able to capture subtle
movements and EMG devices requiring tight control over the placement of electrode pads.
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In addition, the rehabilitation robot proposed in this study is promising for application in
home and community.

2. Materials and Methods
2.1. System Framework

The proposed quantitative evaluation system of upper limb motor function of stroke
patients is shown in Figure 1. In the data acquisition stage, a data acquisition system based
on the rehabilitation robot is built to collect the kinematic and kinetic data of the subjects.
The rehabilitation doctors used the WMFT scale to score the upper limb motor function
of the subjects and the scores were used as labels to form a data set. The subjects′ data
were then preprocessed; a moving average filter was used to process the data and the min-
max method was used to normalize the data. Four features were extracted from the data,
and three machine learning algorithms were used to establish the quantitative evaluation
models of upper limb motor function. Finally, three indicators, including accuracy, root
mean square error and determination coefficient, were selected to analyze and compare the
scoring performance of these quantitative evaluation models.
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Figure 1. The quantitative evaluation system of upper limb motor function of stroke patients.

A desktop upper limb rehabilitation robot is developed to assist patients in active and
passive training. The rehabilitation robot has a total length of 0.84 m, a width of 0.64 m, and
a height of 0.35 m. The model of the upper limb rehabilitation robot is shown in Figure 2.
Its mechanical structure is composed of synchronous belt modules, coupling, transmission
shaft, limit switches, motors, sliders, base, a force sensor and handle. In passive training,
two motors and synchronous belt modules drive the handle to drag the patient’s upper
limbs to move on the plane. For safety reasons, photoelectric limit switches are installed
at both ends of the synchronous belt modules. When the handle exceeds the specified
position, the motor will power off automatically. In addition, an emergency stop switch is
installed on the rehabilitation robot. During active training, the patient holds the handle
and uses the upper limb to push the handle to move freely in the plane.
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Figure 2. Upper limb rehabilitation robot model (Shell not shown). 1—slideway, 2—limit switch,
3—synchronous belt, 4—motor, 5—slider, 6—coupling, 7—transmission shaft, 8—plastic block,
9—base, 10—force sensor, 11—handle.

The hardware system block diagram of the desktop upper limb rehabilitation robot
is shown in Figure 3. The power management module is composed of a switch mode
power supply (OMWO Co., Ningbo, China) with model S-145-24 and a voltage stabilizing
module (Risym Co., Shenzhen, China) with model LM2596S. The 57BL95S06-210TF9 (Times
brilliant Co., Beijing, China) brushless DC motors are adopted. The motor has a built-in
Hall sensor, which can collect motor rotation angle and speed data. A ZM-6610M (Times
brilliant Co., Beijing, China) motor driver is used to control the motors. EE-SX672-WR
limit switches (Omron Co., Kyoto, Japan) are used to ensure that the handle moves within
the safe range. An LZ-LW40 (Lizhi Co., Hefei, China) force sensor is used as the upper
limb thrust sensing tool. The force sensor can simultaneously measure the forces in two
mutually perpendicular directions, and the rated load of both directions is 100 N. The
output signal of the force sensor is a voltage signal in the range of 0–10 mV. There is a linear
relationship between input signal and output signal of the force sensor. To facilitate data
acquisition, the AD620 amplifier was used to amplify the force sensor output signal by a
factor of 300, so the voltage range after amplification is 0–3 V. USB3133A (ART Technology
Co., Beijing, China) data acquisition card is used to collect upper limb thrust data, and
the sampling frequency is set to 1000 Hz. The data acquisition card and motor driver use
USB and RS485 communication methods to transmit data to the computer, respectively.
MATLAB (MathWorks, Natick, MA, USA) is used for data processing, and LabVIEW
(National Instruments, Austin, TX, USA) is used to write the control program.
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2.2. Data Acquisition
2.2.1. Experiment Design

Subjects were recruited to use the upper limb rehabilitation robot for experiments.
The upper limb motor function evaluation scenes are shown in Figure 4. As shown in
Figure 4a, rehabilitation doctors were invited to evaluate the upper limb motor function
of the subjects using the WMFT scale and Brunnstrom scale. The WMFT scale contains
15 tasks, with a full score of 5 for each task. A score of 0 indicates that the upper limb
cannot complete the action, and a score of 5 indicates that the upper limb can complete the
action normally. Brunnstrom staging scale divides the upper limb motor function into six
stages [23]. Stage I indicates that the patient has no upper limb movement, and Stage VI
indicates that the patient’s upper limb motor function is close to normal. When a doctor
scores patients′ upper limb motor function alone, these scores will be affected by subjective
factors. To reduce the impact of doctors’ subjectivity on the scoring results, five different
doctors were invited to score the patients. The average scores of five doctors were taken as
the final score. Before the experiment, rehabilitation doctors trained the subjects so that
they could be familiar with the experimental process.

During the upper limb motor function evaluation experiment, the subject sat in front
of the rehabilitation robot, as shown in Figure 4b. The experiment process is divided into
three phases.

Phase1: Firstly, the subject holds the handle and moves it to one end of the X-axis. The
subject then freely pushes the handle along the X-axis and the thrust information of the
affected upper limb is collected through the force sensor. The data acquisition interface is
shown in Figure 5.
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Phase2: The subject pushes the handle freely along X-axis, and the speed data of the
subjects’ upper limbs are recorded. The acceleration data are derived from the velocity data.

Phase3: The subject pushes the handle along the standard trajectory, and the actual
motion trajectory of the handle is recorded.

2.2.2. Participants

The rehabilitation evaluation experiment was conducted in Suzhou Xiangcheng peo-
ple’s hospital. The experiment was approved by the ethics committee of Suzhou Xi-
angcheng people’s Hospital (Ethics committee approval No. 2018(006)) and the patients’
consent letters were obtained. The inclusion criteria of experimental subjects are as follows:
(1) 18–70 years old; (2) first episode of stroke within three months before the experiment;
(3) WMFT score 15–75, Brunstrom stage II or above; (4) good mental state and can com-
municate normally. The exclusion criteria are as follows: (1) more than one stroke (2) the
patient has other obvious injuries in the upper limb, such as shoulder subluxation or frac-
ture; (3) the patient has visual defects; (4) participating in other upper limb rehabilitation
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trials currently. A total of 10 healthy subjects (six males and four females) and 21 stroke
patients with upper limb dysfunction (thirteen males and eight females) were recruited to
participate in the experiment. The patients′ demographic information is shown in Table 1.

Table 1. Demographic information of patients with upper limb dyskinesia.

Subject Age Gender Affected Side Diagnosis (Day) Brunstrom WMFT

S1 63 Female Left 12 V 63
S2 51 Male Left 15 VI 70.2
S3 56 Female Right 36 II 22.2
S4 51 Male Left 8 VI 74.6
S5 63 Male Left 22 II 16.4
S6 66 Female Right 17 VI 71.4
S7 70 Female Right 14 II 21.6
S8 48 Male Right 10 VI 61.6
S9 57 Male Right 6 V 57.6

S10 48 Male Left 42 II 18.4
S11 61 Female Right 14 II 25.4
S12 41 Male Left 16 V 62.8
S13 50 Male Left 9 IV 44.8
S14 56 Male Right 13 VI 71.8
S15 63 Male Left 68 III 33.8
S16 70 Male Left 18 V 62.4
S17 56 Male Right 20 VI 74.4
S18 69 Male Left 14 VI 64.8
S19 62 Female Left 75 II 22
S20 52 Female Right 26 II 25.6
S21 18 Female Right 7 VI 74.2

2.3. Data Preprocess
2.3.1. Filter

Due to the noise in the output signal of the force sensor, a moving average filter [24]
is used to reduce the impact of noise on the experimental results. The expression of the
moving average filter is shown in Equation (1).

y(k) =
1
N ∑N−1

0 x(k−N) (1)

where x(k) is the original signal, y(k) is the filter output signal, and the filter window length
N is 200. The comparison of data before and after filtering is shown in Figure 6. The blue
curve represents the voltage signal collected by the data acquisition card, which varies
from 0 to 3 V. The orange curve represents the subject’s upper limb thrust, which varies
from 0 to 100 N.
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2.3.2. Normalization

To facilitate the subsequent establishment of a quantitative evaluation model based
on machine learning algorithms and ensure that all values fall in the domain [0, 1], the
Min-Max method [25] is used for normalization.

xnew =
x− xmin

xmax − xmin
(2)

where x is the original data and xnew is the normalized data. xmin is the minimum value of
original data, and xmax is the maximum value of original data.

2.4. Feature Extraction

Lee et al. [12] have proved that there is a high correlation between the trajectory offset
and average speed of upper limb movement in stroke patients and the results of WMFT
score. Zhang et al. [26] mentioned that when doing the same upper limb movement, the
speed and acceleration of stroke patients were significantly different from those of healthy
subjects. Ekstrand et al. [27,28] pointed out that muscle weakness is the most common
injury of upper limbs after stroke, which will reduce the ability of patients to use upper
limbs in daily activities. Therefore, based on the above research results and the opinions of
rehabilitation doctors, we selected the following four features:

(1) Trajectory offset T: the straight line between the start point and the end point is used
as the standard trajectory to calculate the deviation between the actual trajectory of
the patient’s hand movement and the standard trajectory. The schematic diagram
of trajectory offset is showed in Figure 7, and the calculation formula of trajectory
offset is

T =

√
∑m

i=1 ∆di
2

m
(3)

where ∆di is the movement deviation, and m is the number of trajectory sampling points.
The trajectory offset can be used to judge the jitter and muscle coordination ability of the
patient’s upper limb.
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Figure 7. Schematic diagram of trajectory offset.

(2) Average speed V: the average value of all instantaneous speeds. The calculation
formula is shown in Equation (4).

V =
1

Nv
(∑Nv

i=1 Vt) (4)

where Vt is the instantaneous velocity, and Nv is the total number of seconds taken. The
average speed reflects the continuity of strength in the process of rehabilitation training.

(3) Maximum instantaneous acceleration a: the maximum instantaneous acceleration of
the patient’s upper limb. The calculation formula is shown in Equation (5).
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a = max
(

at =
∆Vt

∆ti

)
(5)

where at is the instantaneous acceleration, ∆Vt is the instantaneous velocity variation, and
∆ti is the instantaneous time difference. The maximum acceleration can reflect the reaction
speed of the patient’s upper limb during movement.

(4) Maximum thrust of upper limb F:

F = max(Ft), t = 1···M (6)

where Ft is the sampling value and M is the total number of force sampling points. F reflects
the muscle strength of the patients’ upper limbs.

2.5. Model Establishment

Using the scores of rehabilitation doctors as labels, the data of 31 subjects were com-
posed into a data set. The 155 samples in the data set were randomly divided into a training
set containing 124 samples and a test set containing 31 samples. Because BPNN, KNN, and
SVR algorithms have a good nonlinear mapping ability and generalization ability [29], and
the sample size of the dataset in this study is small, the above three algorithms are selected
to establish the quantitative evaluation models of upper limb motor function.

2.5.1. BPNN Model

BPNN is a multilayer feed-forward neural network with error backpropagation [30].
To obtain high accuracy and good generalization performance, BPNN is used to build
the evaluation model. Figure 8 shows the established quantitative evaluation model of
upper limb motor function based on BPNN. The neural network model has one input layer,
three hidden layers, and one output layer. The input layer I has four neurons, the hidden
layers H, J, and L have 32, 16, and 4 neurons respectively, and the output layer O has one
neuron. The proposed four features are used as the input of the evaluation model, so the
input can be written as xi = (Fi, Vi, ai, Ti), where i = 1, 2, · · · n. y is the output score of the
neural network evaluation model. In the process of model training, the stochastic gradient
descent is used as the optimization method, and the ReLU function is used as the activation
function. The mean square error is used as the loss function, and the number of training
steps is set to 1000.
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2.5.2. KNN Model

KNN regression algorithm aims to find the k nearest neighbors closest to the test points
in the training set [31]. The training set can be written as Xi = (Fi, Vi, ai, Ti, yi), where yi
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is the doctors’ scores. Note that a sample in the test set is X = (F,V,a,T,y), where y is the
score of the KNN evaluation model. Traverse each point in the training set and calculate
the Euclidean distance Le between it and sample X in the test set.

Le =

√
(Fi − F)2 + (Vi −V)2 + (ai − a)2 + (Ti − T)2 (7)

Sorting the obtained distance Le according to the size, and selecting k nearest neighbors
Xj (1 ≤ j ≤ k) in the training set. The average of the scores corresponding to these k nearest
neighbors is used as the score of the KNN evaluation model. In this study, the number of
nearest neighbors k is set to five, so

y =
1
5

5

∑
j=1

yj (8)

2.5.3. SVR Model

Forming the data of subjects into labeled training sets S = {(x1, y1), (x2, y2), · · · , (xn, yn)},
where xi = (Fi, Vi, ai, Ti), xi ∈ Rn, yi ∈ R, i = 1, 2, · · · n. The goal of SVR algorithm is to find
a function f(x) and make it as close to yi as possible. Define

f (x) = ωTx + b (9)

where ω ∈ Rn is a high-dimensional weight vector, and the offset b ∈ R is a scalar. Note
that a sample in the test set is X = (x, y), where x = (F, V, a, T). By applying Karush-Kuhn-
Tucker theorem, Lagrange function is defined to solve SVR problem [32]. The score of the
SVR model y can then be computed by using Equation (10).

y = f (x) = ∑m
i=1(α̂i − αi)K(x, xi) + b (10)

where αi, α̂i are Lagrange multiplier, 0 ≤ αi, α̂i ≤ C, K
(
xi, xj

)
= φxi

Tφxj is a kernel function,
and φ is a nonlinear operator, which maps the input data to a high-dimensional feature
space. The kernel function used in the SVR evaluation model is RBF kernel, so

K(x, xi) = exp

(
− ||xi − x ||2

2σ2

)
(11)

where σ is a free parameter of RBF kernel.

2.6. Model Evaluation Index

In this study, absolute error was used to reflect the error between the model’s score
and the rehabilitation doctor’ score. The absolute error is defined as

Absolute error =
∣∣model′s score− rehabilitation doctor′s score

∣∣ (12)

To compare the quantitative evaluation results of the above three regression algorithms
(BPNN, KNN, and SVR) on the motor function of patients’ upper limbs, the accuracy, root
mean square error (RMSE), and determination coefficient (R2) were used to evaluate the
fitting performance of these models [33]. The definitions of accuracy, RMSE, and R2 are
shown in Equations (13)–(15). In the experiment, the rehabilitation doctors thought that
the error between the model′s score and the doctor′s score should be within 5. So, if the
absolute error is less than 5, the score of the model is considered to be correct.

Accuracy =
Ns

Nt
× 100% (13)
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RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (14)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (15)

where Ns refers to the number of samples whose absolute error is less than 5, and the total
number of samples Nt in the test set is 31. yi is the doctor’s score, yi is the average value of
yi, and ŷi is the model′s score.

3. Results

Taking the four features of the trajectory offset, average speed, maximum instanta-
neous acceleration and maximum thrust of upper limb as the models’ inputs, the scores of
each model can be calculated respectively. The scores calculated by the three quantitative
evaluation models and the scores given by the rehabilitation doctors are shown in Figure 9.
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Figure 9. Comparison of scores of three evaluation models and rehabilitation doctors′ scores.
(a) BPNN model. (b) KNN model. (c) SVR model.

The errors between the scores calculated by the three evaluation models and the
scores given by rehabilitation doctors in the test set are shown in Figure 10. The boxplot
of absolute errors of the three evaluation models is shown in Figure 11. As can be seen
from Figure 11, the BPNN model and the KNN model have two outliers, while the SVR
model has five outliers. It is calculated that the mean value of the absolute errors of the
BPNN model is 2.09, which is smaller than that of the KNN model (2.24) and that of SVR
model (6.14).
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To verify the effectiveness of the evaluation models, the Pearson correlation test was
used to analyze the correlation between the models′ scores and the rehabilitation doctors′

scores in the test set. SPSS (IBM Co., Armonk, NY, USA) was used for statistical analysis.
The results show that the correlation coefficient (Rc) between BPNN model′s scores and
rehabilitation doctors′ scores is 0.986, which is bigger than that of the KNN model (0.983)
and that of the SVR model (0.945). The p-values of the three evaluation models were all less
than 0.05. Therefore, the scores calculated by the three models are significantly correlated
with those given by rehabilitation doctors.

The accuracy, root mean square error (RMSE), determination coefficient (R2), corre-
lation coefficient (Rc) and absolute error (mean value ± standard deviation) of the three
quantitative evaluation models are shown in Table 2. It can be concluded from Table 2
that the BPNN model has the best evaluation performance among the three quantitative
evaluation models.

Table 2. Performance comparison of the three quantitative evaluation models.

Index BPNN KNN SVR

Accuracy 87.1% 83.87% 74.19%
RMSE 2.824 3.222 10.838

R2 0.973 0.966 0.612
Rc 0.986 0.983 0.945

Absolute error 2.09 ± 2.08 2.24 ± 2.34 6.14 ± 8.88

4. Discussion

In this study, a desktop upper limb rehabilitation robot was designed and a quanti-
tative evaluation system of upper limb motor function for stroke patients was proposed.
The kinematics and dynamics data of stroke patients during active training were collected
by the desktop upper limb rehabilitation robot. Three different quantitative evaluation
models based on BPNN, KNN, and SVR algorithms were established to evaluate the upper
limb motor function of stroke patients, and experiments were carried out to compare the
evaluation performance of these models.

The experimental results showed that the accuracy of the BPNN model, KNN model,
and SVR model in scoring upper limb motor function were 87.1%, 83.87%, and 74.19%,
respectively. The RMSE of the BPNN model, the KNN model, and the SVR model were
2.824, 3.222, and 10.838, respectively. The R2 of the BPNN model, the KNN model, and
the SVR model were 0.973, 0.966, and 0.612, respectively. Compared with the KNN model
and the SVR model, the BPNN model has higher accuracy, smaller RMSE, and smaller R2,
indicating that the evaluation model based on BPNN has better evaluation performance.

Correlation analysis shows that the correlation coefficient between the BPNN model′s
scores and doctors′ scores is 0.986, which is bigger than that of the KNN model (0.983) and
that of the SVR model (0.945). Therefore, the experimental results show that the scores of
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the three evaluation models are all significantly correlated with the scores of doctors. The
reason for the high correlation coefficient may be that the scores of rehabilitation doctors
are used as the labels to train these models.

Limitations of our current study should also be noted. The total sample size of the data
set used to establish the evaluation model is 155, and the relatively small number of samples
in this study could limit the evaluation performance of the models. Therefore, more clinical
trials are needed to collect more data to improve the accuracy of the evaluation model.
There was an imbalance in the severity of the disease, as Brunnstrom stages of patients are
mainly concentrated in stage II, V, and VI, but the number of patients in stage III and IV is
small. Therefore, it is necessary to recruit more patients in stage III and IV in the future. In
addition, this study only considers four features of upper limbs. More features will help to
improve the performance of the evaluation model, and thus we need to explore the impact
of other features on the performance of the evaluation model in future work.

5. Conclusions

In this study, a quantitative evaluation system was proposed to evaluate the upper
limb motor function of stroke patients. Three different quantitative evaluation models
based on BPNN, KNN, and SVR regression algorithms were established to evaluate upper
limb motor function. Rehabilitation doctors were invited to conduct experiments on
10 healthy subjects and 21 stroke patients in combination with the WMFT scale. Compared
with the scores of rehabilitation doctors, it was found that the accuracy of the established
quantitative evaluation model reached up to 87.1%. The experimental results show that the
BPNN model has the best evaluation performance among the three quantitative evaluation
models. Moreover, there was a significant correlation between the models′ scores and the
doctors′ scores. The proposed system will help doctors to evaluate the upper limb motor
function of stroke survivors, and carry out individualized rehabilitation intervention for
different patients. In the future, we will use more evaluation indicators and carry out
large-scale clinical trials to improve the quantitative evaluation model. In addition, this
study mainly studies the quantitative evaluation of upper limb motor function of stroke
patients. In the future, experiments will be carried out to study the rehabilitation effect of
the rehabilitation robot on patients.
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