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Abstract: The application of intraoperative neural monitoring (IONM) has been widely accepted
to improve surgical outcomes after thyroid surgery. The malfunction of an IONM system might
interfere with surgical procedures. Thus, the development of anesthesia modalities aimed at ensuring
functional neuromonitoring is essential. Two key issues should be taken into consideration for
anesthetic management. Firstly, most patients undergo recurrent laryngeal nerve monitoring via
surface electrodes embedded in an endotracheal tube. Thus, advanced video-assisted devices might
optimize surface electrode positioning for improved neuromonitoring signaling accuracy. Secondly,
neuromuscular blocking agents are routinely used during thyroid surgery. The ideal neuromuscular
block should be deep enough for surgical relaxation at excision and recovered enough for an adequate
signal f nerve stimulation. Proper neuromuscular block management could be achieved by titration
doses of muscle relaxants and reversal agents.

Keywords: thyroid surgery; recurrent laryngeal nerve; intraoperative neural monitoring; surface
electrodes; neuromuscular block

1. Introduction

Thyroid surgery is globally a high-volume surgery with approximately 150,000 thy-
roidectomies performed per year in the U.S. [1]. In our healthcare system, the number
of thyroid surgeries has nearly doubled compared with the past decade. Nowadays, thy-
roid surgery is safe with a low complication rate. A recurrent laryngeal nerve (RLN)
or external branches of superior laryngeal nerve (EBSLN) injury remains an unwanted
complication of thyroid surgery. Intraoperative neural monitoring (IONM) of the RLN
has obtained a growing acceptance as a standard adjuvant for thyroid surgery [2–12]. In
a meta-analysis of 1513 thyroidectomy patients, the temporary RLN palsy rate was 4.2%
with neural monitoring and 7.7% without it. The permanent RLN palsy rate with and
without neural monitoring was 1.0% and 1.6%, respectively [13]. The ultimate goal of
IONM during thyroid surgery is to minimize the risk of recurrent or superior laryngeal
nerve injury. Moreover, the reported benefits of an IONM system during thyroid surgery
include: (1) the identification of the RLN or vagus nerve; (2) the real-time monitoring of
target nerve integrity; and (3) the evaluation of the nerve injury mechanism [14–16].
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A functional IONM system is based on the precise position of the electromyography
(EMG) endotracheal tube and adequate recovery from a neuromuscular block. Most recur-
rent laryngeal nerve monitoring during thyroid surgery is achieved via surface electrodes
incorporated into an EMG tube. The initial step of successful IONM is to avoid/correct
the malposition of an EMG tube. The pros and cons of intubation devices have been
summarized from conventional direct laryngoscopies [8,17] to video-assisted intubation
devices [18,19]. Secondly, neuromuscular blocking agents are considered to be a mandatory
part of general anesthesia to facilitate tracheal intubation and surgical relaxation. The
extent of the neuromuscular block degree (NMB) is also critical to evoke EMG signals of the
target nerves. Proper NMB management through the timing and dosage of reversal agents
such as sugammadex and neostigmine are undergoing increasing amounts of investiga-
tions [20]. This comprehensive review aims to optimize intraoperative neural monitoring
of the recurrent laryngeal nerve in thyroid surgery by accumulating the clinical research.

2. Placement of Endotracheal Tube with Surface Electrodes

A typical EMG endotracheal tube provides both a patient airway for ventilation and
electrodes that directly contact the vocal cords. The surface electrodes may be embedded
exposed wire electrodes (Xomed NIM), conductive silver ink electrodes (NIM Trivantage),
or adhesive stick-on electrodes (Neurovision Dragonfly, NIM FLEX) [21,22]. According to
the learning curve for IONM in thyroid surgery, most technical problems resulted from an
improper depth or alignment of the electrodes [23].

Successful tracheal intubation to ensure an airway and ventilation is a precondition
for every general anesthetic. A precise surface electrode position on the vocal cords is a
precondition for functional neuromonitoring. Patient positioning is an important element
of intubation preparation. When a conventional laryngoscope is used, maintaining the
head and neck at a neutral or sniff position is suggested [8]. When a video laryngoscope is
chosen, successful intubation could be fulfilled for thyroid surgery with a neck extension
with a shoulder roll or donut head pad [24]. Moreover, a neck extension during intubation
meets the patient position need and may prevent the alteration of the tube position [8].
An ideal intubation device should meet both demands. Each device should be assessed
by a successful tracheal intubation and precise electrode positioning. This review summa-
rizes the available intubation devices to place an EMG tube and confirms the electrode
positioning (Table 1).

Table 1. Rating for intubation devices to place an endotracheal tube and confirm electrode positioning.

Intubation Devices Successful Tracheal
Intubation

Precise Surface Electrode
Position

Macintosh laryngoscope [8,17]
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2.1. Direct Laryngoscope

Direct laryngoscopy with a Macintosh blade is used to distract the upper airway
and allow a direct visualization of the larynx with an intact field of view and without
image distortion from indirect lenses [29,30]. Direct laryngoscopy remains a standard
and valuable skill for tracheal intubation in various scenarios, including the emergency
department, intensive care units, and operation rooms. Although direct laryngoscopy is
a mandatory technique for all physicians, difficult intubation is inevitable and common
among the general population, occurring in 1.8–5.8% of cases [31]. This incidence was
noted to be higher among patients undergoing thyroid surgery, occurring in 5.3–24.6% of
cases [11–13].

With respect to the placement of an EMG tube for a monitored thyroidectomy, the
successful rate on the first attempt via direct laryngoscopy was as high as 94.3–96.4% in
experienced anesthesiologists [17,25]. In a 4-year period of clinical reviews, 2.3% (8/336) of
patients required a second method to accomplish the intubation task [25].

The limitations of this conventional intubation device include a higher intubation diffi-
culty scale, longer intubation, and lower success rate compared with a video-assisted laryn-
goscope or an intubating stylet in both normal and difficult intubation scenarios [25,32,33].

2.2. Fiber-Optic Bronchoscope

A flexible fiber-optic bronchoscope (FOB) allows for the direct visualization of both
the upper and lower airways. It is a valuable device for the diagnosis or treatment of
pulmonary disease and the establishment of a secure airway [34,35]. The two roles of a
FOB in IONM include: (1) its use as an alternative management for difficult intubation or
in awake or anesthetized patients that cannot be intubated [25,36]; and (2) its use as an
examination to confirm the accurate surface electrode positions of an EMG tube [8]. The
examination or adjustment of the EMG tube position can be assisted by inserting a FOB via
a nasal route.

For intubation, Chang et al. reported a total of 8 “cannot intubate” events in 336 direct
laryngoscopy procedures; 3 of the 8 patients underwent successful intubation by FOB with
a second attempt [25]. Anguraj demonstrated a successful fiber-optic nasal intubation in
an anticipated difficult airway resulting from thyroid cancer with a tracheal invasion [36].
Fiber-optic intubation is not recommended as a routine practice because a FOB via the oral
route encounters a higher difficulty and placing an EMG tube via the nasal route may cause
trauma concerns.

For examinations, a FOB provided an adjustment of the EMG tube position for dis-
placement only in 3.6–5.7% of patients [8,17]. A FOB is effective but time-consuming to
check the tube position; thus, we believe a fiber-optic examination can be waived in most
conditions with cumulative experience and a modified protocol [37,38].

2.3. Video-Optical Intubating Stylet

The optical stylet is an intubation device with optical fibers inside a metal or plastic
tube. It was initially introduced to clinical intubation in 1979. However, the original
products did not gain commercial success due to unfriendly practices and significant
experience demand [39]. The new generation of video-optical intubating stylets obtained
clinical popularity and commercial success after 2010. They usually consist of a rigid
or semi-rigid stylet, a light source, video chips instead of optic fibers, and a monitor
screen attached to the handle [40]. Video-optical intubating stylets have been shown to
be effective for tracheal intubation compared with conventional laryngoscopes and video
laryngoscopes.

With respect to tracheal intubation during a monitored thyroidectomy, the use of the
Trachway intubating stylet (Biotronic Instruments Enterprise Ltd., Taichung, Taiwan) in
412 patients depicted a 99% (408/412) successful intubation rate on the first attempt. The
study concluded that the intubating stylet was better than conventional laryngoscopy with
a higher success rate and lower difficulty of intubation [25]. Liu et al. used the Shikani
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optical stylet in 40 patients with difficult airways due to thyroid tumors and showed that
90% (36/40) of patients were intubated successfully on the first attempt [26].

The major disadvantage of the intubating stylet is its limited visual field. With respect
to the surface electrode position, it only allows for visualization via the inner lumen
of an EMG tube. The surface electrodes on the outer side of an EMG tube cannot be
observed by this method. Fortunately, a proper EMG tube depth according to a reference
value can be suitable in most circumstances [17]. A widely used EMG tube (Trivantage;
Medtronic Xomed Inc., Jacksonville, FL, USA) has been designed to have a longer electrode
working length (49 mm) to detect EMG. The Trivantage tube has a higher range to tolerate
displacement or rotation compared with an EMG tube with a 30 mm working length [17,41].

2.4. Video Laryngoscope

A video laryngoscope is a laryngoscope equipped with a video camera to indirectly
visualize the glottis structure; hence, the conventional view of direct laryngoscopy through
the oral pharyngeal to laryngeal axis was no longer mandatory. This indirect laryngoscopy
has improved the visualization of the glottis, decreased the lifting force to the tongue, and
reduced cervical movement compared with direct laryngoscopy [42,43].

The advantages of video laryngoscopy in placing an EMG tube include a high intu-
bation success rate, the confirmation of the electrode positions, and the adjustment of a
malposition if necessary [18,24,27,28]. In an EMG tube placement protocol, a UESCOPE
video laryngoscope (UE Medical Devices, Inc., Newton, MA, USA) was utilized to achieve
100% (40/40) successful intubation in patients undergoing a monitored thyroidectomy
(Table 1). All of the patients showed functional IONM and only one patient (2.5%) needed
a further EMG tube position adjustment [24].

Although video laryngoscopy is useful and feasible in most scenarios for EMG tube
placement, it has a few disadvantages. First, the blade is difficult to insert in a patient with
very poor dentures or a severely limited mouth opening. Second, the camera image might
be obscured by secretions, blood, or exhaled air. Finally, expertise is required to obtain a
good view, manipulate the EMG tube, and prepare for a possible difficult intubation [44].

3. Neuromuscular Blocking Agents

Muscle relaxation, analgesia, and hypnosis are the triad of general anesthesia. The
utilization of neuromuscular blocking agents facilitate tracheal intubation and surgical
relaxation. Once tracheal intubation is complete, the degree of neuromuscular block turns
into a key factor for EMG signaling during thyroid surgery with IONM [45,46]. The ideal
neuromuscular block profile includes a maximum at tracheal intubation, is light enough
when an EMG signal is required, and is deep enough to avoid unwanted movements
during the entire operation. Hence, the use of neuromuscular blocking agents for IONM
should take onset, duration, and dose titration into consideration. To optimize IONM
signaling, the duration of a neuromuscular blocking agent and the time interval between its
administration and obtaining the EMG signal play key roles. Commonly available NMBAs
are summarized below.

3.1. No Neuromuscular Blocking Agents

The use of no neuromuscular blocking agent is not a recommended regimen for a
routine monitored thyroidectomy. The only advantage of abandoning neuromuscular
blocking agents is to avoid the influence of muscle relaxation on the EMG signals from the
target nerves. However, the disadvantages of this regimen may be significant. First, from an
anesthetic perspective, it does not provide sufficient intubation conditions in most patients
and leads to greater intubation-related airway trauma [47,48]. Second, from a surgical
perspective, inadequate surgical relaxation might also result in a higher anesthetic and
analgesic consumption as well as more intraoperative limb movements or bucking events.
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3.2. Short Duration: Suxamethonium (Succinylcholine)

Suxamethonium is a regional preference for routine neural monitoring anesthesia in
many institutes because of its unique advantage. However, it should be used with caution
when considering its risk/benefit balance and other options of feasible neuromuscular
blocking agents (i.e., rocuronium, cisatracurium) [20]. The unique advantage of suxametho-
nium for EMG monitoring is its pharmacological properties. Suxamethonium, also known
as succinylcholine, is a depolarizing neuromuscular blocking agent with a rapid onset of
60 s and ultra-short duration within 5–10 min. A single intubation dose of suxamethonium
provides sufficient relaxation for a tracheal intubation and the timely restoration of neu-
romuscular transmissions for monitoring nerve integrity [15]. Although suxamethonium
possesses an ideal pharmacological profile for neural monitoring, it may be associated with
various adverse events from minor (such as myalgia and dysrhythmia) to fatal (such as
hyperkalemia and malignant hyperthermia) [49].

3.3. Intermediate Duration: Rocuronium and Aminosteroid Agents

Rocuronium has been highly recommended as a mainstay of neural monitoring anes-
thesia [38,50–52]. Both rocuronium and vercuronium are commonly used agents with an
aminosteroid structure. Three advantages of rocuronium for a monitored thyroidectomy
are a rapid onset, titratable duration, and reversal by a selective binding agent, namely,
sugammadex. Regarding the onset, rocuronium in 0.83 and 1.04 mg/kg doses has reported
a 90% and 95% probability of successful intubation within 60 s, respectively [53]. The
rapid onset time is not inferior to succinylcholine. For duration, rocuronium in 0.83 and
1.04 mg/kg doses showed a 32 and 46 min neuromuscular block duration, respectively [53].
To meet the monitored thyroidectomy demand, it is feasible to titrate the rocuronium
dose to shorten the duration of the neuromuscular block. For example, rocuronium at
0.3 and 0.6 mg/kg at anesthesia induction showed a different duration and detectable
EMG signals in 100% and 53% of patients at initial vagal stimulation, respectively [52].
Regarding reversal, only rocuronium has a specific antagonist, sugammadex, to effectively
restore neuromuscular function whenever obtaining an EMG signal is necessary [20]. The
disadvantages of rocuronium include its high dependency on the liver metabolism and its
ability to cause hypersensitivity [54,55].

3.4. Intermediate Duration: Cisatracurium and Isoquinoline Agents

In recent randomized control trials, cisatracurium at 1.6 or 2 times of the 95% effective
dose was recommended as a cost-effective alternative to the rocuronium–sugammadex
protocol [56,57]. When two effective doses (0.1 mg/kg) were administrated, the time to a de-
tectable EMG signal was 32 min [57] and the average initial EMG amplitude was 448 µV [56].
Cisatracurium is a commonly used non-depolarizing agent with an isoquinoline structure.
The outstanding advantages of cisatracurium in anesthesia include a non-histamine release
as with other isoquinoline agents (i.e., atracurium) as well as metabolism by Hoffman
elimination independent of liver and renal functions. The pharmacological characteristics
are feasible not only for the general population but also for critical illness and geriatric
patients [58,59]. There are two minor drawbacks of cisatracurium for neural monitoring
during thyroid surgery. First, in low doses (one effective dose at 0.05 mg/kg), a more
difficult laryngoscopy and higher intubation difficulty were noted compared with two
effective doses [56,57]. Second, in regular doses (two effective doses at 0.1 mg/kg), the
duration of the neuromuscular block lasts 45–50 min without a specific reversal agent as
with the rocuronium–sugammadex protocol [60].

4. Neuromuscular Blockade Reversal

“To reverse or not to reverse, that is the question”. The neuromuscular block degree is
one of the most important parameters for successful IONM during clinical surgery. Too
deep a neuromuscular block degree will diminish the EMG amplitude; too light a degree
may be associated with unwanted movements or bucking. The proper management of
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the neuromuscular block can assure excellent tracheal intubation conditions, adequate
surgical relaxation, and the timely restoration of IONM signaling. The development stages
of neuromuscular block management to obtain timely IONM signals are listed below.

4.1. Pre-Sugammadex Era

Before the introduction of sugammadex into the reversal of a rocuronium-induced
neuromuscular block, a spontaneous recovery via the titration of the NMBA dose was
the only way to manage the neuromuscular block degree. A full dose of any NMBA (i.e.,
rocuronium or atracurium) was feasible for IONM but a delayed or suppressed IONM
signal occurred in a few cases [50,51]. During this era, a titration of rocuronium to one
effective dose (0.3 mg/kg) was considered as an alternative option to enable high-quality
IONM signaling in all patients at the expense of suboptimal intubating conditions in a
small portion of patients [52].

4.2. Sugammadex Era

The primary goal of implementing sugammadex into the anesthesia practice was
to prevent postoperative residual curarisation or a residual neuromuscular block after
extubation during the postoperative care [61,62]. Sugammadex is a modified c-cyclodextrin
produced to reverse aminosteroid NMBAs (mainly rocuronium and vecuronium) by en-
capsulating them to form a complex without a neuromuscular blocking action. It has been
reported that sugammadex not only ensures the effective reversal of the neuromuscular
block but also reduces postoperative pulmonary complications (i.e., respiratory failure and
pneumonia) [63,64]. The intraoperative reversal of a neuromuscular block by sugammadex
can restore timely EMG signaling when the evoked target nerve is mandatory for a thy-
roidectomy. Table 2 summarizes the recent clinical trials investigating the effect of reversal
agents on IONM during thyroid surgery [65–71].

Table 2. Clinical trials investigating the effect of reversal agents on IONM during thyroid surgery.

Authors and Published
Year

Patients
(n)

Groups
(n)

Reversal
Agent/Dose

Timing of Reversal/
NMBA 1: Reversal Interval

IONM Outcomes/
Mean V1 2 Amplitude (µV)

Lu et al., 2016 [65] 50 1 Sugammadex
2 mg/kg

Skin incision
16 min

100%
V1: 1202 ± 563 µV

Kontoudi et al., 2016 [66] 75 3 Sugammadex
2 mg/kg

Not mentioned
15 min

96% good quality V1
Not mentioned

De Vendin et al., 2017 [67] 120 1 Sugammadex
not mentioned

If V1 < 100 µV
40 min

Rescue for no IONM signal
Not mentioned

Gune et al., 2019 [68] 129 2 Sugammadex
2 mg/kg

At V0
24 min

100%
V1: 567 ± 219

Chai et al., 2021 [69] 102 2 Sugammadex
2 or 1 mg/kg

Tube fixation
<5 min

100%
V1: 1086 ± 673 vs.
1162 ± 728

Lu et al., 2021 [70] 80 2 Sugammadex
0.5 mg/kg

10 min after skin incision
26 min

100%
V1: 1214 ± 6231

Oh et al., 2021 [71] 50 1 Neostigmine
2 mg

Tube fixation
<5 min

100%
V1: 985 ± 472

1 NMBA: neuromuscular blocking agents; 2 V1: vagus nerve stimulation before thyroid dissection.

With similar high success rates for IONM, a decline was noted in the effective sug-
ammadex dose from the first literature report in 2016. A dose of 2 mg/kg in reference to
extubation was effective for high-quality IONM signaling at any surgical step. When an
IONM conductive system was set up effectively, sugammadex could be used as a routine
protocol to guarantee a high EMG amplitude or rescue undetectable EMG signaling [65–67].
However, this dose was associated with unwanted patient movements or bucking in as
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high as 20–35% of cases [65–69]. In recent reports, a dose of 1.0 or even 0.5 mg/kg was
also sufficient to ensure a high-quality EMG signal in all patients with preserved surgical
relaxation [69,70].

4.3. Neostigmine Returns

With respect to neuromuscular reversal for postoperative recovery, sugammadex is
undoubtedly superior to neostigmine. However, little is known about neostigmine reversal
for IONM [71]. Traditionally, neostigmine is used to reverse broad-spectrum NMBAs;
either isoquinoline NMBAs (e.g., atracurium and cisatracurium) or steroidal NMBAs (e.g.,
rocuronium and vecuronium) [72].

Recently, Oh et al. demonstrated a novel use of neostigmine reversal for IONM during
thyroid surgery. The study showed that neostigmine (2 mg)–glycopyrrolate (0.4 mg) was a
cost-effective option to allow for sufficient IONM signaling with minimal bucking events
in 4% (2/50) of patients [71]. The combination of neostigmine and anticholinergics (e.g.,
glycopyrrolate or atropine) was a standard regimen to prevent bradycardia events. With
respect to neuromuscular reversal for IONM during thyroid surgery, neostigmine may
not be inferior to sugammadex. Neostigmine deserves further investigation in its timing,
dosing, and risk/benefit issues.

5. Conclusions

To optimize IONM for recurrent laryngeal nerves in thyroid surgery, advanced video-
assisted intubation devices are recommended to fulfill a successful tracheal intubation
and to confirm the proper positioning of an EMG endotracheal tube. The titration of
any intermediate-effect NMBA could be feasible for IONM during thyroid surgery. Both
intraoperative sugammadex and neostigmine have demonstrated a sufficient neuromus-
cular reversal for a high-quality EMG amplitude. The combination of rocuronium and
sugammadex has been considered as a standard to reverse a neuromuscular block at any
degree and restore EMG signaling at any time. A further investigation of neostigmine and
its role in neuromuscular reversal is required.
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