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Abstract: Cancer stem cells (CSCs) refer to a certain subpopulation within the tumor entity that
is characterized by restricted cellular proliferation and multipotent differentiation potency. The
existence of CSCs has been proven to contribute to the heterogeneity of malignancies, accounting
for intensified tumorigenesis, treatment resistance, and metastatic spread. Dormancy was proposed
as a reversible state of cancer cells that are temporarily arrested in the cell cycle, possessing several
hallmarks that facilitate their survival within a devastating niche. This transient period is evoked to
enter an actively proliferating state by multiple regulatory alterations, and one of the most significant
and complex factors comes from local and systemic inflammatory reactions and immune components.
Although CSCs and dormant cancer cells share several similarities, the clear relationship between
these two concepts remains unclear. Thus, the detailed mechanism of immune cells interacting
with CSCs and dormant cancer cells also warrants elucidation for prevention of cancer relapse and
metastasis. In this review, we summarize recent findings and prospective studies on CSCs and cancer
dormancy to conclude the relationship between these two concepts. Furthermore, we aim to outline
the mechanism of immune components in interfering with CSCs and dormant cancer cells to provide
a theoretical basis for the prevention of relapse and metastasis.
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1. Introduction

Complete management of cancers remains refractory, due to their several intractable
properties, among which the most prominent are intertumoral and intratumoral hetero-
geneity, which contribute to the complex peculiarity of cancers. The formal approach is
now under intense investigation through a more accruable molecular subtyping within
each type of malignancy to develop precise treatment regimens, while strategies to man-
age the latter one seem to be more complicated. For a long time, we have accepted the
observation that not all cancer cells are identical, and, in some cancer types, certain cell
subpopulations possess a distinguished differentiation degree, and this observation firmly
supports the notion that undifferentiated cell proportions are referred to as cancer stem
cells (CSCs) [1]. Similar to tissue-specific stem cells, which are indispensable for tissue
homeostasis and repair, CSCs play a prominent role in maintaining self-renewal and
multipotent differentiation capacity and giving rise to more differentiated cell lineages
in cancers [2]. Sufficient evidence has revealed that the presence of CSCs contributes
mainly to the heterogeneity of cancers and accounts for several properties that facilitate
their survival and aggression, including genotoxic agent resistance [3], radio-resistance [4],
oncogenesis [5], metastasis [6], tumor immune-microenvironment remodeling [7], and
metabolic reprogramming [8]. Thus, cancer stemness might be the most significant factor
for drug resistance, cancer recurrence, and metastasis. Multiple strategies have been pro-
posed to tackle CSCs, including targeting tumor microenvironment, specific cell surface
markers, and intrinsic signaling pathways. Many stem-cell surface markers have been
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well-established, and their expression has also been implicated in the promotion of treat-
ment resistance and cancer progression. For example, the combination of CD44+/CD24−
is now commonly employed to define breast-cancer stem cells (BCSC) [9], and most of
them are located at the invasive edge, indicating that their presence is associated with
enhanced aggression [10]. In addition, expression of CD44 in hepatocellular carcinoma
(HCC) promotes sorafenib resistance and tumorigenicity [11]. Aldehyde dehydrogenase
(ALDH) is another well-accepted cell-surface marker for BCSCs [12], and studies have
reported that ALDH+ BCSCs manifest intensified colony formation, tumor initiation, and
chemo-resistance than CD44+/CD24− BCSCs [13]. Other core components of stemness reg-
ulatory transcription factors, including Oct4, SOX2, and Nanog, participate in self-renewal
and differentiation regulation [14]. These markers involved in cancer stemness may serve
as potential cell-intrinsic treatment targets in multiple cancers. However, how cell-extrinsic
mutual interaction between tumor immune-microenvironment (TIME) and CSC eradicates
cancer cells under immunosurveillance or promotes cancer progression is not yet clear,
and elucidating the precise mechanism would assist in harnessing the immune system to
effectively recognize and eliminate the possibility of cancer re-emergence or reverse the
immunosuppressive niche into a cancer-detrimental one.

Sharing several identical properties with CSC, tumor dormancy has also been pro-
posed as an important contributor to long-term cancer relapse and metastasis, thus ac-
counting for the majority of cancer-related deaths. In many circumstances, patients present
with metastases long after comprehensive local and systemic treatment; for instance, the
probability of tumor relapse for hormone receptor-positive breast cancer increases steadily
for 15 years after completion of 5-year endocrine therapy. This phenomenon was also
observed in multiple solid cancers, including lung, colon, and prostate; and hematological
malignancies, such as leukemia and multiple myeloma, strongly indicating the persistence
of residual cancer cells or minimal residual disease situated in the dormancy state even
after effective treatment for cancer. The concept of tumor dormancy is now classified
into “population dormancy” and “cellular dormancy”. “Population dormancy” could be
further divided into “angiogenic dormancy” and “immune dormancy”, implicating that
deficiency in nutrient supplementation and pressure from immunosurveillance induce
the proliferation and apoptosis within the residual tumor mass to reach equilibrium, thus
the tumor mass maintains to be stable in size and stops progressing. However, in this
review, we emphasize the concept of cancer-cell dormancy, in which cells are temporarily
and reversibly arrested at the G0/G1 cell-cycle phase. Mounting evidence has revealed
that early in the process of tumor initiation, single cancer cells or cell clusters could detach
from the primary foci and enter the peripheral circulation in the form of circulating tumor
cells (CTCs). Early in this phase, CTCs could adopt phenotypic, genetic, and functional
mutations to enter into the dormant state and survive the attack from physical shear force
and immunosurveillance [15]. Once they arrive and reside at specific sites of the target
organ, such as the endosteal surface of the bone [16,17], CTCs become disseminated tumor
cells (DTC) after a series of continuous adaptive regulatory processes, including occupancy
of the metastatic niche, interaction and engagement with niche, adaptation to niche through
reprogramming, and establishment of long-term dormancy [18]. Cancer cells in dormant
state are a “double-edge sword”, because their presence exposes the limited threat instantly,
while forced stimulation intrinsically or from niche alteration could result in metastatic
outgrowth. Although switching from dormancy to active propagation sensitizes cancer
cells to antimitotic drugs, the lack of effective timely monitoring strategies and the risk
of resistance development deny the viewpoint of artificially and completely eradicating
dormant cancer cells.

Despite its significance in complementing tumor biology and enriching treatment
strategies, the concept of dormancy remains vague and diverse. Based on their characteris-
tics and biological functions, dormant cancer cells are also referred to as “drug persister
cells”, “tumor-initiating cells”, “metastasis-initiating cells”, or “latency competent cells”, all
of which cause confusion and hinder better understanding of dormant cancer cells. Several
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hallmarks, namely niche dependence, cell-cycle arrest, drug resistance, immune evasion,
metastatic relapse potential, and reversibility to switch from dormancy to activation, have
been proposed to help define and discriminate dormant cells. Of note, most of these
hallmarks overlap those of CSCs, so occasionally “dormant cancer cells” and CSCs are
considered to be the same. However, we need to address the existence of certain disparities
between the two concepts and discuss their actual relationship in detail. Moreover, complex
interactions between TIME and dormant cancer cells and CSCs warrant elucidation, as both
of them could escape immunosurveillance from tumor-suppressive immune components,
indicating their role in modulating local TIME into tumor-supportive facilitating cancer
progression.

2. Stem Cell and Dormancy in Tumor Microenvironment
2.1. Relationship between CSC and Dormant Cancer Cell

Since the proposal of CSCs that explains the distinct differentiation status of cancer
cells within the tumor mass, which contributes to intratumoral heterogeneity, the demon-
stration of CSCs in multiple hematological and solid malignancies, such as acute myeloid
leukemia, breast cancer, glioma, and melanoma, have greatly revolutionized our knowl-
edge of their biological essence and origin of their representative characteristics, including
drug-persistence and enhanced tumor-initiating capacity. Various ATP-binding cassette
(ABC) transporters, such as ABCG2, ABCC1, ABCB5, and P-gp, have been found to be
overexpressed in BCSCs, all of which are involved in the transportation of chemotherapy
drugs out of cancer cells and partially reveal one of the mechanisms for BCSC drug-
persistence [19]. In addition to the contribution of CSC cell surface drug-resistance-related
transporters, certain surface markers, including CD10, CD24, CD44, CD133, ALDH1, and
GPR77, are employed for the identification and isolation of CSCs and have also been
shown to be the cause of drug-resistance phenotype. The resistance of CSCs to drugs can
also be modulated through certain components in the tumor microenvironment (TME).
As observed in one study conducted by Su et al. [20], one group of cancer-associated
fibroblasts, defined by a combination of CD10 and GPR77, participates in the formation
of a pro-survival niche for breast cancer cells by sustaining cancer stemness, and thus
contributing to chemoresistance. CSCs also exhibit enhanced potential and efficacy to
generate neoplasms, as approximately 100 CD44+/CD24− BCSCs injected orthotopically
could result in tumor formation in the breast [9].

As the concept of dormancy was first proposed more than half a century ago, the
evolving understanding and knowledge about this distinguished cellular state has greatly
prompted progress in exploring molecular mechanisms and triggering factors leading
to drug resistance, local recurrence, and long-term distant metastasis. From the several
abovementioned hallmarks that discriminate the dormant state, it is natural to notice that,
indeed, there exist many similar properties between dormancy and stemness, such as treat-
ment resistance and immunosurveillance evasion, serving as the origin and manifesting
greater propensity for giving rise to metastatic relapse. Thus, the concept of dormancy and
CSC is considered one and the same occasionally. However, there are essential differences
between the two. First, as the origin contributing to the heterogeneous constituent of
cancers, CSCs are also not identical, including their proliferation rate. Some CSCs are
situated in a quiescent state with an extremely low self-propagation rate. This state, indeed,
greatly resembles that of cancer-cell dormancy, while subgroups that will proliferate at a
relatively rapid rate to compensate for the progeny pool also exist [21]. This dissection in
their cell-cycling frequency depends on many factors, which may be attributed to their
distinct differentiation status. Thus, since there is a broad range of CSCs, there is no direct
and comprehensive evidence proving that CSCs have arrested cell cycle as the fundamental
characteristic of dormancy. Furthermore, significant cell surface markers and transcription
factors that distinguish CSCs, such as CD34, Nanog, SOX2, and Oct4, have only been de-
tected in a small proportion of dormant cancer cells [22,23]. Most importantly, the proposal
of the CSC complies with the hierarchy model of tumor composition, in which only a small
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proportion is thought to be tumorigenic and generate differentiated cancer cells, contrary to
the stochastic model that each cell possesses an equal chance. Therefore, CSCs are located
at the apex of the hierarchical structure. However, the dormant cells and their downstream
activated proliferating cells manifest equal extent of differentiation, which ensures their
reversible hallmark to switch between these two cell status. In summary, although many
similarities exist between dormancy and CSC, they only share overlapping properties, and
these two concepts should not be confused into one.

Despite their distinct phenotypes with regard to the definition of dormancy and the
presence of specific stemness-related markers, CSCs and dormant cancer cells share several
similar biological functions, indicating their potential comparability. Both CSCs and dor-
mant cancer cells have the capacity to survive detrimental cytotoxic microenvironments
through activated stress-tolerant signaling pathways and enhanced cellular autophagy,
accounting for distant organ colonization in multiple carcinomas. In addition, the identical
niche that dormant cancer cells occupy with CSCs highlights the similar extracellular cues
that maintain their undistinguishable hallmarks [24]. As the most prominent metastatic site
for breast cancer, detection of DTCs in the bone marrow serves as an independent prognos-
tic factor and accounts for poor outcomes. Immunohistochemistry double/triple-staining
of cytokeratin (CK), CD24, and CD44 was carried out by Balic et al. [25] to discriminate
DTCs in the bone marrow and determine the presence and proportion of CD44+/CD24−
BCSCs, thus evaluating metastatic potential. Among the CK+ DTCs, the mean proportion
of stem/progenitor-like cells was observed to reach as much as 72%, higher than that of the
primary tumor (<10%), which strongly indicates that CSCs comprise a major constituent
of dormant DTCs within the bone marrow [26]. In addition, since CTCs transport via the
bloodstream before arriving and colonizing the bone marrow, they tend to accumulate
in sites that favor their enrichment and survival, among which the most important site
is the perivascular niche (PVN) [27]. Previous studies have reported that occupation of
PVN favors survival of hematopoietic stem cells (HSCs) and various tumor cells, includ-
ing breast cancer DTC, as well as the regulatory role of integrin within PVN-mediating
CSC stemness and DTC dormancy, resulting in immunosurveillance escape [28,29] and
chemotherapy resistance [30]. Dormant DTCs in prostate cancer have been discovered
to compete with HSCs for the PVN and osteoblastic niches, which would influence their
seeding efficacy. Moreover, HSCs and breast cancer DTCs are trafficked to the bone marrow
through the CXCR4-CXCL12 axis. Multiple cytokines, including transforming growth
factor (TGF) beta2 (TGF-β2), growth arrest-specific 6 (GAS6), bone morphogenic protein 7
(BMP7), Wnt5α, and CXCL12, also correlate with the maintenance of dormant DTCs and
CSCs generated from the bone marrow [31]. Heterogeneity was also observed among the
stem-cell-like population within colorectal carcinoma, with some subgroups maintaining
the progenitor pool and others responsible for developing into overt metastases [21]. In the
dormancy-competent CSC (DCC) model proposed by Crea et al. [32], normal stem cells
and CSCs situated at the early phase possess the capacity to switch from dormancy and
proliferation (DCC) through reversible epigenetic modifications, which allow for neoplastic
conversion and survival until irreversible genetic mutations occur. This leads to DCCs
developing into more differentiated cells lacking dormancy-proliferation switching capac-
ity. The DCC model is in accordance with the assumption that DTCs detached early from
primary tumors may contain a larger fraction of stem-like cells with metastasis-initiating
potential, as early DTCs with less chromosome gains or losses could seed distant metastases
more efficiently.

In summary, although many similarities exist between CSCs and dormant cancer cells,
they are still distinct concepts with essential differences. However, the partial compara-
bility between them determines some common properties that maintain their biological
characteristics, including common cell-intrinsic mechanisms and extracellular interactions
with surrounding niches, which govern dormancy and stemness properties. The DCC
model also bridges the relationship between CSCs and dormant cancer cells. Current
well-recognized biomarkers of CSCs (Table 1) and factors leading to cancer-cell dormancy
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(Table 2) are summarized. Thus, elucidation of the similarity between CSC and dormant
cancer cells may facilitate a better understanding of these two risk factors responsible
for tumor initiation and cancer metastasis, thus aiding in the development of treatment
regimens for inducing dormant subpopulations into more differentiated ones to inhibit
activation of the harmless state and prevent lethal recurrence or metastasis.

Table 1. Typical biomarkers of cancer stem cells in solid tumors.

Markers Tumor Type Reference

Surface Markers

CD24 breast cancer, gastric cancer, liver cancer, and
colorectal cancer [33–36]

CD44
lung cancer, breast cancer, gastric cancer,

liver cancer, and
colorectal cancer

[37–42]

CD90 lung cancer, breast cancer, gastric cancer, and
liver cancer [43–46]

CD133
lung cancer, breast cancer, gastric cancer,

liver cancer, and
colorectal cancer

[47–51]

CD166 lung cancer and colorectal cancer [42,52]

EpCAM
lung cancer, breast cancer, gastric cancer,

liver cancer, and
colorectal cancer

[35,52–55]

CXCR4 breast cancer and gastric cancer [56,57]
LGR5 breast cancer and gastric cancer [58,59]

Intracellular Markers

ALDH lung cancer, breast cancer, gastric cancer, and
colorectal cancer [60–62]

Nanog
lung cancer, breast cancer, gastric cancer,

liver cancer,
and colorectal cancer

[63–67]

Oct-3/4
lung cancer, breast cancer, gastric cancer,

liver cancer,
and colorectal cancer

[49,64,68–70]

SOX2 breast cancer, gastric cancer, liver cancer,
and colorectal cancer [49,64,67,69]

Notch breast cancer and liver cancer [50,71]

Table 2. Intracellular and extracellular factors leading to cancer cell dormancy.

Factors Mechanism Reference

Intrinsic Factors

interferon regulator
factor 7 (IRF7)

IRF7 is the master transcription factor
responsible for production of type I interferon
and transcription of interferon-related genes,

suggesting its crucial role in
immunosurveillance mediated dormancy.

[23,72]

Spi-C Transcription
Factor (SPIC)

Axl regulated by SPIC mediates prostate cancer
DTC dormancy in the bone marrow via

GAS6/Axl axis; macrophage-expressed gene 1
(Mpeg1) and signal regulatory protein (Sirp)

regulated by SPIC are associated with monocytes
and macrophages, and these immune-related

genes play important role in dormancy
maintenance.

[23,73,74]
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Table 2. Cont.

Factors Mechanism Reference

Extrinsic Factors

TGFβ2

TGFβ2 as ligand binding with TGF-βRIII
receptor, initiating p38 MAPK phosphorylate RB
protein, which then upregulates p27 and inhibit

cancer-cell-cycle progression; TGFβ2 also
correlates with GAS6/Axl axis to induce

dormancy.

[75]

Bone morphogenetic
protein7 (BMP7)

BMP7 binds with BMP receptor 2 (BMPR2) to
activate p38 MAPK phosphorylation of RB

protein and upregulates cell cycle inhibitor p21
and metastasis suppressor gene NDRG1.

[76]

Leukemia inhibitory
factor (LIF)

LIF belongs to belongs to IL-6 cytokine family,
binding of LIF with its receptor LIFR controls

tumor dormancy possibly through downstream
STAT.

[77]

Thrombospondin 1
(TSP1)

TSP1 is a glycoprotein secreted by vascular
endothelial cells with anti-angiogenic effect,

which is observed to inhibit breast cancer cells
proliferation and lead to cell-cycle arrest at

G0/G1 phase.

[78]

Osteopontin (OPN)
OPN expressed in endosteal niche could interact
with disseminated leukemia cells to induce them

into dormancy
[79]

Annexin A2
Annexin A2 upregulates GAS6 and induces

cancer cells into dormancy via Annexin
A2-GAS6-TAM family (TYRO3, AXL, and MER).

[80]

2.2. Effect of Mesenchymal Stem Cells (MSCs) on Regulating Dormancy

Bone is the most prominent site for metastasis in multiple cancer types. Early phase
occult DTC seeding in the bone and surviving the foreign environment contribute to their
latency before converting into overt metastases, most of which remain in the dormant
state and are also enriched for stem-cell-like subpopulations to escape elimination pressure
from cytotoxic agents and immunosurveillance. Therefore, identifying and elucidating the
signals contributing to DTC dormancy maintenance could be helpful for targeting strategy
innovation, which may serve as the most convenient pathway to improve cancer patients’
prognosis and outcome. The dormant phenotype of DTC in the bone marrow mainly
arises from the proliferation-restrictive microenvironment, apart from signals from several
dormancy-inducing cytokines, including TGF-β2, BMP7, GAS6, leukemia inhibiting factor
(LIF). Furthermore, existence of cellular compartments, such as MSCs, osteoblasts, and
vascular endothelial cells, participate in the construction of this metastasis-inhibitory niche.
MSCs and HSCs are two major normal stem cell populations residing in the bone marrow.
MSCs demonstrated differentiation potency, migration capacity to tissue injury site and
regeneration, immunomodulatory effect on regional TIME, and regulation of HSCs, which
are mainly responsible for maintaining pluripotency of MSCs [81]. Thus, MSCs serve as one
of the most important bone marrow resident-supporting stromal cells. Sufficient evidence
revealed that DTCs share identical residing locations with HSCs. Strategies employed by
HSCs to maintain their dormancy-like phenotype and proliferation-switch capacity may
also be adapted by DTCs [82]. MSCs mainly interact intercellularly with DTCs through
three mechanisms: transportation of cellular contents through gap-junction intercellular
communication (GJIC), microvesicles mainly comprising exosomes, and release of growth-
suppressive cytokines in a paracrine manner.
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A study conducted by Lim et al. [83] demonstrated the dominant role of GJIC in
mediating cellular non-coding genetic material transportation to arrest breast cancer pro-
liferation. The authors co-cultured T47D and MDA-MB-231 cell lines with bone-marrow
stromal cells, and an increased proportion in the G0/G1 phase was detected, accompanied
by decreased cyclin D1 and CDK4-mediated G1 to S-phase transition. Detailed mechanistic
insight indicated that GJIC between breast cancer cells and MSCs facilitated the intercellu-
lar transfer of several miRNAs, including miR-127, miR-222, and miR-223. The miRNAs
participated in the downregulation of CXCL12, which is ubiquitously expressed in the
bone marrow and is responsible for chemotactic migration of cancer cells from the primary
site toward the bone. Attenuation of CXCL12 significantly reduced cellular proliferation
after accumulation of the three miRNAs as during the co-culture.

In addition, the interaction between MSCs and DTCs to maintain their dormant pheno-
type is mainly achieved via the abundant release of exosomes. Being recognized as a subset
of extracellular vesicles originating from endosomes and containing numerous cellular
contents, including nucleic acids, proteins, lipids, amino acids, and metabolites, exosomes
and their biological functions have evolved from simply releasing unnecessary cellular
constituents to regulating intercellular communication [84]. Initially, a breast-cancer-cell-
line BM2 was generated through in vivo clonal selection with enhanced osteo-metastatic
capacity and co-cultured with bone-marrow-derived MSCs (BM-MSCs), which suppressed
the proliferation of BM2 cells and attenuated invasion capacity and docetaxel resistance
property. Acquisition of this dormancy phenotype after culturing BM2 cells with purified
exosomes secreted from BM-MSCs prompted screening of miRNAs enriched in exosomes,
accounting for the dormant state induction. Among them, high expression of miR-23b was
associated with a reduced proliferation rate by targeting downstream MARCKS, which
results in attenuated cell cycling and motility [85]. Furthermore, miR-222 and miR-223 were
also found to be involved in dormancy induction in this manner, promoting dormancy
of DTCs and conferring them with drug-resistant characteristics. Moreover, antagomiR-
222/-223 embedded in MSCs was administered in vivo to target the dormant subset and
reverse the inferior outcome. The results showed promising findings, as antagonism of
miR-222/-223 sensitized the dormant DTCs to cisplatin-based chemotherapy and improved
host survival, strongly highlighting the crucial role of miRNA-containing exosomes in
mediating the dormancy-inducing function of MSCs on DTCs, as well as the targetable
and reversibility of this process [86]. More recently, a stepwise modification of MSCs to
DTCs into dormant state was proposed, in which Wnt/β-catenin regulation mediates
early metastasized breast cancer cells de-differentiating into preliminary CSCs at the bone
marrow perivascular niche. Furthermore, CSC-phenotypic cells interact with MSC-secreted
extracellular vesicles, including exosomes, to initiate transition into cycling quiescence and
activation of DNA repair, thus de-differentiating into a more complete CSC subpopula-
tion. This mechanism elucidated the precise process of dormancy induction within the
perivascular niche and under BM-MSC-secreting exosome induction [87].

In addition, specific subgroups of MSCs have also been identified and validated for
their ability to induce DTC dormancy via secretion of proliferation-limiting cytokines and
release through ligand-receptor combination. Nobre et al. [88] demonstrated one distinct
NG+/Nestin+ MSC in the bone marrow and its abundance resulted in intensified secretion
of TGF-β2 and BMP7 and activation of common downstream p27, p38, and SMAD through
binding with TGFBRIII and BMPRII, respectively, inducing cascade accounting for breast
cancer latency in bone marrow. Furthermore, genetic knockout of the NG+/Nestin+ MSC
resulted in accelerated metastatic outgrowth, and clinical data analysis based on biopsies
from hormone receptor-positive/HER2-negative breast cancers revealed that patients
without long-term relapse or bone metastases exhibited a higher frequency detection of
TGF-β2 and BMP7 in the bone marrow, suggesting that NG+/Nestin+ MSCs are crucial
in the dormancy and proliferation homeostasis maintenance of bone-marrow-residing
DTCs [88]. Taken together, MSCs within the TME exert potent dormancy induction and
maintenance capacity through intercellular communication via multiple miRNAs and
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cytokines (Figure 1). Further investigations are warranted to elucidate the mechanism
underlying the development of targeted strategies against the dormant subpopulation
tamed by MSCs.
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Figure 1. Mechanism of mesenchymal stem cells maintaining cancer cells’ dormancy. Apart from
the cytokines present in the tumor microenvironment responsible for the maintenance of cancer-cell
dormancy, MSCs also exert pivotal functions in arresting cell-cycle progression, mainly through three
mechanisms: (1) intercellular communication of miRNA directly through gap-junction intercellular
communication (GJIC) to reduce transcription of cell-cycle components, thus blocking the G0/G1
transition; (2) transportation of miRNA-containing exosomes to exert the same effect as direct
communication; and (3) secretion of TGF-β2 and BMP7 from NG+/Nestin+ mesenchymal stem cells
to activate p27 and p38 to induce dormancy. Abbreviations: BMP7, bone morphogenetic protein
7; GAS6, growth arrest specific 6; LIF, leukemia inhibitory factor; GJIC, gap-junction intercellular
communication.

3. Immune Component in Regulating CSCs and Dormancy Cancer Cells

Solid tumor masses are composed of parenchymal cancer cells, as well as multiple
types of stromal cells and soluble cytokines constituting the TME, which play an indispens-
able role in supporting cancer progression. Based on the progressive knowledge about TME,
concentrating solely on cancer cells may be insufficient to manage malignancies. Numerous
strategies targeting TME have been developed and have achieved considerable treatment
efficacy, such as anti-angiogenesis therapy and harnessing effective immune components
for elimination of neoplasms, mainly through blockage of immune checkpoints, including
PD-1, PD-L1, and CTLA4. An effective tumor-suppressive immune niche has been shown
to correlate with improved benefits from both neoadjuvant and adjuvant chemotherapy,
highlighting the vital role of the TIME in the complete elimination of cancer cells. However,
the complex interaction between cancer cells and host immunity contributes to the devel-
opment of immunoediting, which consists of three phases: tumor elimination, equilibrium,
and tumor escape as an antitumor inflammation switch from acute to chronic immunity.
Initially, recognition of the non-self-component triggers activation of innate immunity
and dendritic cells’ processing and presenting neoantigens to prime tumor-specific T cells
against cancer cells. Ultimately, after enduring the equilibrium phase where proliferation
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and apoptosis reach balance, a shift from acute to chronic inflammation modulates TIME
into tumor-permissive, including immune cells (regulatory T cells (Treg), myeloid-derived
suppressor cells (MDSC), and tumor-associated macrophages (TAM)) and stroma (fibrob-
last and endothelial cells). The process of immunoediting is accompanied by upregulation
of immune checkpoint expression and activation of immune-suppressive metabolic path-
ways in TIME, which is partly contributed by the regulation of cancer cells, especially the
CSC subset. In addition, systemic and regional inflammation, together with immunity
alteration, account for the awakening of dormant DTCs. This leads to metastatic outgrowth
based on the observation that surgical removal of the primary tumor may trigger DTCs
into metastatic outgrowth, and pre-operative administration of anti-inflammatory drugs
reduces distant recurrence rate within 18 months after breast cancer surgery [89]. Thus,
elucidating the mechanism of CSC modulating TIME into tumor-permissive, as well as the
process by which immune cells cause DTCs to exit from dormancy, will serve as strategies
against these refractory cancer-cell subsets. Here, we review the present reports on the
interaction between CSCs and several kinds of immune cells, along with their influence on
cellular dormancy.

3.1. Tumor-Associated Macrophages

Macrophages belong to myeloid cells and play a major role in anti-infection and tissue
homeostasis maintenance by directly engulfing foreign material and tumor cells, mediating
innate immunity, and facilitating execution of specific adaptive immunity [90,91]. De-
pending on the cytokines, chemokines, and tumor-favoring microenvironments in tumor
mass, monocytes in peripheral circulation can be recruited to the TME and polarize into
TAMs [92]. Macrophages originate from prenatally developed and differentiated tissue-
resident macrophages (TRM) localized to various tissues and organs during embryonic
development, as well as those originating from peripheral circulating precursor monocytes
and constitute the major proportion of macrophages [93]. TRMs have been reported to
be involved in the constitution of the niche supporting several kinds of stem cells, thus
leveraging a similar mechanism for the maintenance of CSCs [94]. Heterogeneity also exists
across macrophages, and based on their distinct functions, they can be categorized into
pro-inflammatory M1 macrophages and immunosuppressive M2 macrophages [95]. Sev-
eral pro-inflammatory cytokines, including interferon (IFN)-γ and GM-CSF, are produced
by M1 macrophages and play an important role in defense against foreign pathogens [96].
Meanwhile, M2 macrophages participate in several biological processes, such as tissue
integrity maintenance, allergic reactions, and angiogenesis [73]. However, this classifica-
tion is somewhat abstract with other macrophage subsets with distinct properties, such
as CD169+ and TCR+ macrophages [95], although it has not been thoroughly clarified.
TAMs consist of a spectrum of macrophages with various activation states, with most
properties matching those of M2 macrophages. Thus, TAMs are sometimes defined as M2
macrophages in a narrow sense, although further exploration revealed that TAMs share
both M1 and M2 molecular signatures.

In a study conducted by Weinberg et al. [97], CD68+ macrophages were demonstrated
to be localized adjacent to CD90+ cancer cells, which possess several characteristics of
CSCs. These findings firmly implicate the close interaction between TAMs and CSCs. The
available in vitro results demonstrating the bidirectional crosstalk between TAM and CSC
are virtually based on their co-culture with the conditioned medium of the other. For
example, co-culture of various types of cancer cells, including HCC and glioblastoma with
CSC-conditioned media, promoted the release of numerous chemokines and cytokines
favoring tumorigenic macrophage factors [98–101], including CCL2, CCL5, CSF1, GDF-15,
IL-13, TGF-β, and WISP1 (Figure 2). A further process of macrophages with these cy-
tokines manifests an immune incompetency phenotype, implicating CSCs could influence
the polarization of macrophages and modulate them into tumor-permissive. Additionally,
adding conditioned medium of M1 macrophages to luminal type breast cancer cells in-
tensified the CSC-related phenotypes and enhanced epithelial–mesenchymal transition
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(EMT) properties. Further mechanistic insight revealed that TAM could also influence CSC
phenotypes through secretion of several soluble cytokines, including IL-6, TGF-β, and
Wnt, further increasing CSC self-renewal and tumor-initiating capacity through activation
of downstream NF-κB, STAT3, and Akt signaling molecules (Figure 2) [50]. Moreover,
upon administration of conditioned medium from TAM, several breast cancer cells man-
ifested increased stemness and EMT-related activity. In MCF-7 cells, this was achieved
by TNF-α-mediated stabilization of Snail [102]. CXCL-1 secreted by TAMs could enhance
SOX4 expression via NF-κB activation in a MMTV-PyMT tumor model [103]. Based on
the above findings, the interaction between TAM and CSCs is mutual and complex. Aside
from polarization modulation effect of CSCs on macrophages, CSCs could also adapt an
anti-phagocytosis strategy through upregulating cell surface CD47 expression and bind
with signal regulatory protein alpha (SIRPα) on macrophages to phosphorylate the ITIM
motif, conveying the “do not eat me” signal to escape elimination pressure from tumor-
suppressive macrophages (Figure 2) [104]. Preclinical data on blockage of the CD47-SIRPα
axis demonstrated enhanced phagocytosis of tumor cells in multiple types of cancer, which
provides promising translational value for targeting interactions between TAMs and CSCs.
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Figure 2. Interaction between cancer stem cells and immune components. Interaction between CSCs and immune cells
are mutual and complex, and their interaction are accomplished mainly through intercellular cytokines communication.
(1) Interaction with macrophage: CSC-secreted CCL2, CCL5, and TGF-β lead to immune incompetency of macrophage,
thus preventing eradication; macrophage-secreted IL-6, Wnt, and TGF-β could enhance CSC stemness; moreover, the
CD47 “do not eat me” signal presented by CSC avoids phagocytosis. (2) Interaction with TAN and PMN-MDSC: TAN-
secreted TGF-β and BMP2 lead to dedifferentiation of cancer cells into CSC, and PMN-MDSC could upregulate stemness
regulatory transcription factors; CSC-secreted chemokines recruit more TAN and PMN-MDSC to form the suitable immune
microenvironment. (3) Interaction with NK cell: Owing to the prominent cytotoxic function of NK cells, CSCs mainly
downregulate NKG2D ligands level to avoid killing. (4) Interaction with T cell: CSCs attenuate MHC-I expression and
upregulate immune checkpoints to prevent immune recognition and attack, conversely, CSC-secreted tenascin C retards T
cells proliferation to thrive. Overall, CSC-secreted cytokines are responsible for inducing incompetency of immune cells; and
immune-cell-released ones are crucial for maintenance and strengthening of stemness to enhance the refractoriness of cancer.
Abbreviations: BMP2, bone morphogenetic protein 2; G-CSF, granulocyte colony stimulating factor 6; PGE2, prostaglandin
E2; SIRPα, signal regulatory protein alpha; TNC, Tenascin C; VTCN1, V-set domain-containing T-cell activation inhibitor 1;
YAP, Yes1-associated transcriptional regulator.
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Metastatic dormancy has been established as the conceptual basis for tumor relapse
many years after complete control of the tumor, while within the same tumor type, a
small proportion of patients develop overt metastases soon after resection of the primary
tumor compared with those surviving with long-term recurrence-free tumors. These
observations prompted researchers to explore tumor-extrinsic factors associated with
triggering of dormant cell metastatic outgrowth. As demonstrated by a previous study,
systemic inflammation and regional immune component alteration contribute to awakening
of the dormant cancer cells as perioperative administration of anti-inflammatory drug
significantly attenuate relapse risk after tumor resection [105,106]. To explore precisely the
exact executor responsible for this awakening role, analysis on peripheral blood leukocytes
and cytokines were analyzed in mice undergoing surgical wound recovery and control,
and the results revealed that circulating monocytes and neutrophils, along with IL-6,
G-CSF, and CCL2, were elevated significantly [106]. The negative correlation between
CD11+ myeloid cells and CD8+ T cells, and the positive correlation with cancer cells
strongly indicate that TAMs could reduce T-cell dormancy maintenance function, and their
elevation after inflammation is associated with an increased risk of metastatic outgrowth.
CCL2 knockout, which is pivotal in attracting and promoting differentiation of peripheral
monocytes into TAM, significantly reduced tumor growth [106]. These results indicate that
TAM could induce dormant cells to outgrow by interrupting tumor-suppressive TIME.
In addition, another study has revealed the role of CCL5 in depositing TAM, leading to
metastasis [107]. Moreover, HER2-downregulation contributed to the expression pattern
of pro-inflammatory signature leading to elevation of several cytokines and chemokines,
including CCL5. This was completed by the activation of TNF-α/NF-κB axis and results
in increased monocyte recruitment and TAM differentiation, leading to activation of the
dormant subset (Figure 3). Thus, targeting the TNF-α/CCL5/macrophage axis may serve
as an optimal strategy for the prevention of long-term metastasis.
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via upon TNF-α/NF-κB axis. (2) Crosstalk with TAN: TANs have been revealed to release neutrophil extracellular trap
to activate dormant cancer cells into proliferation state either through integrin α3β1 receptor or CCDC25. (3) Crosstalk
with NK cell: NK cell-secreted perforin and IFN-γ restrain cancer cells in dormant state; DKK1-expressing dormant
cancer cells adopt similar strategies as CSCs to attenuate NKG2D expression to escape killing. (4) Crosstalk with T cell:
T-cell-mediated dormancy induction is predominantly achieved via IFN-γ secretion and the downstream IDO-Kyn-AhR-p27
axis. Abbreviations: CCDC25, coiled-coil domain containing 25; DKK1, dickkopf WNT signaling pathway inhibitor 1; ERK,
extracellular signal-regulated kinase; FAK, focal adhesion kinase; MLCK, myosin light-chain kinase; YAP, Yes1-associated
transcriptional regulator; ILK, integrin linked kinase; IDO, indoleamine 2,3-dioxygenase; Kyn, kynurenines; AhR, aryl
hydrocarbon receptors; NE, neutrophil elastin; MMP9, matrix metalloproteinase-9.

3.2. Tumor-Associated Neutrophils and Polymorphonuclear MDSC (PMN-MDSC)

Neutrophils constitute a substantial proportion of leukocytes serving as the first-line
defense against invading foreign pathogens and responding to tissue damage [108,109].
Recruitment of neutrophils to sites of acute inflammation exerts a direct cytotoxic effect
through the secretion of multiple enzymes, mainly myeloperoxidase (MPO) [110], neu-
trophil elastase [111], and matrix metalloproteinases [112], which play a pivotal role in the
early acute phase of inflammation. Clearance of neutrophils by apoptosis or engulfment
from macrophages avoids regional inflammation switching into chronic inflammation
causing tissue damage [113]. Aberrant accumulation of neutrophils within tissues results in
sustained inflammation, which eventually contributes to tumorigenesis [114], highlighting
the multifaceted role of neutrophils in the TME. Similar to TAM, neutrophils within tumors
exhibit high plasticity and can switch phenotypes depending on regulatory cues from the
surrounding environment, and are mainly classified into N1- and N2-tumor-associated
neutrophils (TAN) based on their functional differences owing to the lack of distinguishable
markers [115,116]. TGF-β secreted by tumor cells could induce neutrophils into N2 TAN,
manifesting a tumor-permissive phenotype that mediates immunosuppression, angiogene-
sis, and metastasis [115]. Meanwhile, depletion of TGF-β or administration of type 1 IFNs
could polarize neutrophils into N1 TAN, exhibiting antitumor phenotype [117]. Apart from
N1 and N2 TANs, one subset of MDSCs and PMN-MDSCs have been identified to share the
same origin and identical differentiation portraits with neutrophils to further complement
the spectrum of these heterogeneous populations [118]. Although phenotypes similar
to neutrophils manifest CD11b+/Ly6G+/Ly6Clow in mice and CD14−/CD11b+/CD15+
(CD66b+) in humans [119], functional annotations and transcriptomic analysis have de-
fined their distinctions: TANs exhibit tumor-promoting roles by exerting innate immune
inflammation; CCL2 and CCL17 secreted by TANs recruit peripheral monocytes to further
differentiate into TAMs and Tregs to suppress effective antitumor immunity, as described
above [120,121], and PMN-MDSCs promote tumor progression by suppressing adaptive
immune response via inhibiting T-cell function [122]. Transcriptomic analysis also revealed
elevated endoplasmic reticulum stress response and lectin-type oxidized LDL receptor
1 expression in PMN-MDSC [123], which would help distinguish these cells from neu-
trophils within peripheral blood and tumor tissues across multiple solid cancers. Recent
studies have revealed that reverse migration from the inflammatory site reverts blood
circulation, providing an additional pathway for neutrophil clearance [124]. A recent
study captured neutrophils in hepatic sterile inflammatory sites moving reversely into
peripheral circulation and seeding into the lung and bone marrow [113]. Considering that
the bone and lung serve as principal sites for cancer metastasis, neutrophils are thought to
be involved in the construction of a pre-metastatic niche that facilitates DTC seeding, and
mutual crosstalk could facilitate tumor progression. Here, we review the present findings
on the interaction between CSCs and TANs, as well as PMN-MDSCs, and outline the role
of neutrophils in awakening dormant DTCs.

Aside from the complex regulatory mechanism of TANs and PMN-MDSCs in modulat-
ing tumor-permissive TIME facilitating initiation and progression, they have also recently
been found to be involved in CSC stemness across several cancers, and CSCs could reverse
their infiltration. TANs secreting TGF-β and BMP2 were found to be involved in the
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dedifferentiation of HCC cells into the CSC phenotype through upregulation of the NF-κB
signaling pathway [115,125], and HCC-derived CXCL5 was responsible for chemotactic
recruitment of TANs to increase infiltration (Figure 2) [125]. In the context of PMN-MDSCs,
co-culture of PMN-MDSCs with multiple myeloma cells upregulated key stemness-related
transcription factors, including Nanog, OCT4, and SOX2 (Figure 2) [126]; prostaglandin
E2 (PGE2) secretion from PMN-MDSCs was found to induce expansion of the ALDH+
CSC subset in human cervical cancer [127], and PMN-MDSCs upregulate CD44 and CD133
expression levels through phosphorylation of STAT3 in colorectal carcinoma [128]. G-CSF
overexpression in cervical cancer could generate more PMN-MDSC and ALDH+ CSCs
compared with control; YAP activation in prostate cancer is responsible for CXCL5 upregu-
lation to attract CXCR2+ PMN-MDSC [129], and TGF-β secretion by CD133+ melanoma
cells could increase surrounding PMN-MDSCs and TAM infiltration (Figure 2) [130]. Thus,
TANs and PMN-MDSCs could cooperate with CSCs to enhance their stemness features
and further modulate tumor-permissive TIME.

Metastatic dormancy refers to the viable but undetectable situation of DTCs until
certain awakening signals arise during the proliferation phase. Since systemic and sus-
tained inflammation correlates with shortened metastasis-free survival and neutrophils
comprise the major executor in immune inflammation, it is reasonable that neutrophils
account mainly for awakening dormant DTCs. Neutrophil extracellular traps (NETs)
were first discovered by Brinkmann et al. [131] as the major pathway for neutrophil de-
fense against bacterial infection. NET has been found to have a non-negligible role in
promoting cancer metastasis. NET is an extracellular web-like structure composed of
chromatin DNA filaments, histones, and antimicrobial enzymes, such as NE, MPO, and
MMP9, to trap microorganisms and sequester CTCs in the context of its tumor promo-
tion property [132]. Citrullinated histone H3 could serve as a biomarker for detecting
NET [133], whose elevation in peripheral blood and vital organs has been revealed to cor-
relate positively with distant metastasis risk. Albrengues et al. [134] found that sustained
inflammation stimulated the formation of NETs, while NE and MMP9 exert their degrada-
tion function on extracellular laminin. Furthermore, the proteolytically remodeled laminin
residues transformed into the integrin α3β1-activating epitope, initiating downstream
FAK/ERK/MLCK/YAP signaling pathway to awaken dormant DTCs and contribute to
lung metastasis outgrowth (Figure 3) [134]. In addition to the role of NET-composed en-
zymes in triggering dormancy awakening, the DNA component of NETs (NET-DNA) has
more recently been characterized for their chemo-attractive role in chemotactic migration
of DTCs to sites of future metastasis occurrence [135]. In their study, elevated NET levels
in the liver could predict future liver metastasis and mediate detached DTCs migrating
to the liver rather than other organs; therefore, NET-DNA was identified as an active
attractive factor rather than passively waiting for trapping DTCs. In addition, CCDC25
was identified as a transmembrane protein in cancer cells for sensing distant NET-DNA
signals, and activation of the ILK-β-parvin pathway downstream of CCDC25 enhanced
breast-cancer-cell motility towards NET (Figure 3). Thus, inhibition of CCDC25 could
effectively prevent dormancy subpopulation awakening and reduce metastasis-related
mortality.

3.3. Natural Killer (NK) Cells

NK cells are a subpopulation of cytotoxic lymphocytes belonging to the innate immune
system [136,137], and they play a pivotal role in the first-line defense against virally infected
and neo-transformed cells mainly via cytotoxic effects and the release of pro-inflammatory
cytokines [138]. NK cells are the first identified subtype of innate lymphoid cells (ILCs),
and together with ILC1, ILC2, and ILC3, they originate from the same common lymphoid
progenitor cells as B cells and T cells [139,140]. Originally, CD34+/CD45RA+ hematopoietic
progenitor cells migrate from the bone marrow to various destinations and differentiate
into mature NK cells characterized by CD3−/CD56+ mainly induced by IL-15 [141,142].
In contrast to B cells or T cells, which recognize foreign antigens through somatically
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arranged antigen-specific receptors, NK cells exert their function mainly through several
activating and inhibitory receptors, and the balance between these receptors determines
the cytotoxic response or immune repression [143]. The low-affinity IgG Fc region receptor,
also known as CD16, is the most potent activating receptor that crosslinks with the Fc
region of the IgG antibody labeled on target cells and mediates the antibody-dependent
cell-mediated cytotoxicity (ADCC) effect [144]. In addition to CD16, the natural cytotoxicity
receptor family, including Nkp30, Nkp40, Nkp44, and Nkp46, could directly bind with
virally infected or tumor-associated epitopes and activate downstream cascades to mediate
cytokine production and cytotoxicity [145]. NKG2D and NKG2C are also important
activating receptors, and MHC class I polypeptide-related sequence (MIC) A, MICB, and
retinoic acid early transcript/U16 binding protein are typically expressed on multiple
abnormal cells and serve as ligands for NKG2D [146]. NK cells have been originally
designated for their considerable capacity of killing tumor cells, and the process and
mechanism mediating their effect mainly includes ADCC and “missing-self” regulation;
the latter one refers to the process that NK cells are normally repressed via binding with
MHC I molecules [147], while cancer cells’ evolution trend towards downregulating their
MHC I expression could reactivate NK cells to exert their effector function and supplement
the immune evasion from CD8+ T cells [148]. While NK cells consistently defend against
tumor cells, immunosuppressive strategies have been adopted by tumor cells to evade
slaughter from NK cells, mainly through secretion of multiple cancer-associated soluble
immunosuppressive molecules, including IL-10, indoleamine 2,3-dioxygenase, PGE2, and
TGF-β) into the TME [149–151]. Among these cytokines, TGF-β is the most abundant and
is secreted not only from cancer cells, but also from suppressive immune components,
including Tregs, MDSCs, and TAM [151], and functions as the most potent regulator
mediating cancer-cell immunosurveillance evasion.

Crosstalk between CSCs and NK cells still has a limited understanding, except for
several mechanisms discovered for CSCs to escape from NK cells. CSC subsets in multiple
cancers, including those in lung cancer, colorectal carcinoma, melanoma, glioblastoma,
and leukemia [152–155], have been discovered to attenuate the expression of NKG2D
ligand, which would abrogate the capacity to recognize and initiate effective cytotoxicity.
In addition, CD133+ glioblastoma CSCs have also been discovered to secrete TGF-β, which
directly downregulates the NKG2D expression level and facilitates avoidance of cellular
lysis (Figure 2) [156,157]. The negative strategies employed by multiple CSCs prompt
further discovery and enrichment of mechanisms for the performance of the full degree
cancer-limiting effect of NK cells.

NK cells play a significant role in maintaining both tumor-mass and cancer cellular
dormancy. Wu et al. [158] have a significantly higher percentage of NK cells was detected in
mice with dormant tumor mass compared with those with progressing sarcoma, suggesting
that NK cells are pivotal in limiting the proliferation of cancer cells and reach equilibrium
with apoptosis to maintain tumor mass dormancy. Cytokines secreted by NK cells into
the TME seems to play the major role in restraining cancer cells at the dormant state.
Brodbeck et al. [159] verified that NK cells are indispensable in restraining tumor growth at
both primary site and the metastatic lesion in colon cancer. Through further computation
analysis they observed that the perforin-mediated cytotoxicity of NK cells serve as the main
force leading to cancer cells remaining dormant [159]. Moreover, a recent study provided
direct evidence that abundance of NK cells reservoir pool determines entering into or
exiting from dormant state in metastatic breast cancer cells to liver. Sufficient stimulation
from IL-15 could ensure abundant amount of NK cells surrounding the metastasized
cancer cells in the TME, which would subsequently secrete IFN-γ to restrain cancer cells
in dormant state (Figure 3). Moreover, under a condition such as liver damage, activated
hepatic stellate cells could secrete CXCL12 to bind with NK cells’ surface CXCR4 and result
in a quiescent phenotype of NK cells, and the incompetent NK cells eventually lose their
dominance and result in re-population of the metastasized cancer cells [160]. Apart from
the mechanism of NK cells maintaining dormancy, several kinds of cancers adopt strategies
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to evade. For instance, multiple dormant cancer cells express dickkopf-related protein 1,
which is one inhibitor of Wnt and could lead to downregulation of ULBP level in NK
cells [161], attenuated crosslinking between ULBP and NKG2D results in abrogated NK
cells effect (Figure 3). Taken together, the prominent effect of NK cells on diminishing the
dormant subpopulation has brought great promise for the development of NK cell-directed
immunotherapy for the purpose of completely eradicating refractory dormant cancer cells.

3.4. Effector T and Tregs

T cells constitute the major proportion of lymphocytes intratumorally and represent
the most heterogeneous subset with varying and complex functions [162], and the most
concentrated subsets include the tumor-repressive effector T cells, including CD4+ T cells
and CD8+ T cells, and tumor-permissive regulatory T cells, mostly referring to Tregs. CD8+
T cells are also called cytotoxic lymphocytes (CTLs), which exert potent antitumor effects by
recognizing neoantigens expressed by cancer cells or presented by antigen-presenting cells,
subsequently initiating cytokine secretion or releasing granzyme B and perforin to mediate
targeted cancer-cell eradication [163]. Aside from CD8+ T cells, CD4+ T cells, also known as
T-helper (Th) cells, display a non-negligible role in defense against tumor as well, and the
mechanisms behind them are diverse. First, Th cells could facilitate CD8+ T cells to exert a
cytolytic effect, which could directly damage cancer cells [164]. Second, TME modulation
through tumor-limiting cytokine release could hinder the development and progression of
tumors [165]. More importantly, Th cells facilitation to CD8+ T cells ensures avoidance of
negative regulation on the most competent subpopulation, thus enhancing antitumor re-
sponse [166]. Meanwhile, Tregs are normally characterized by CD4+/CD25+/Foxp3+ and
constitutively express CTLA4 to competitively bind to CD80/CD86 against CD28 [167,168].
The abundance of Tregs in TIME has been shown to correlate with immune suppression
and negative outcomes in multiple cancers [169–172]. Their tumor-permissive effect is
achieved either by restraining the proliferation of tumor-specific effector cells or by limiting
the secretion of IL-2 and IFN-γ owing to the expression of CTLA-4, glucocorticoid-induced
tumor necrosis factor receptor (GITR), and Foxp3 [173–175]. Attempts aimed at potenti-
ating the cytotoxic effect of effector T cells or repressing Treg activity, including immune
checkpoint inhibitors, have been developed and applied to revolutionize cancer therapy,
which has achieved considerable benefits. However, a low fraction of treatment efficiency
indicates that resistance mechanisms are still underway, especially the crosstalk between T
cells, CSCs, and dormant cancer cells.

Based on preclinical findings on melanoma and B-cell lymphoma, development of
local recurrence or overt metastases is postponed due to the presence of dormant DTCs, and
the duration of the latency period relies on the content of effector T cells [176,177]. Depletion
of CD8+ T cells shortens the time for re-emergence of overt foci, and this phenomenon is
mainly attributed to decreased secretion of IFN-γ. In accordance with the above finding
in NK cell-mediated liver metastasized breast-cancer-cell dormancy, IFN-γ is responsible
for inducing G0/G1 phase arrest [178], as well as maintaining a low proliferation rate of
the tumor-repopulating cells in hepatic carcinoma and melanoma [179], which is achieved
through the IDO1-kynurenine-aryl hydrocarbon receptor-p27 axis (Figure 3) [180]. Apart
from the dominant effect of CD8+ T cells in enforcing dormancy, CD4+ T cells secrete IFN-γ,
and the binding TNFR1 can induce tumor growth arrest and establish tumor dormancy
in a mouse model of pancreatic cancer [181]. An increased CD8+ /CD4+ T cell ratio has
also been discovered in dormant tumors compared with developing ones, which further
suggests the dominant force exerted by CD8+ T cells [158]. The crosstalk between CSCs and
effector T cells eventually contributes to evasion of CSCs from T-cell-mediated cytotoxicity
or attenuation of the anti-tumorigenic capacity of T cells, including downregulation of
CSC surface MHC-I expression to prevent immune recognition and upregulate CD80
expression in a TGF-β-dependent manner to induce immune tolerance (Figure 2) [154,
182]. The latter highlights the strategy employed by CSCs to enrich inhibitory immune
checkpoint ligands, including PD-L1 and VTCN1 (Figure 2) [183–185]. In addition, tenascin
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C containing extracellular vesicles could interfere with the α5β1 integrin receptor on T cells
to impair cellular proliferation through downregulation of AKT and ERK phosphorylation
(Figure 2) [186].

Direct evidence demonstrating the role of Tregs in regulating tumor dormancy is
limited and controversial, and the content of Tregs is lower in dormant sarcomas than
in progressing sarcomas [158], thus corresponding with the immunosuppressive role
that Tregs exert. However, the presence of dormant cancer cells in B-cell lymphoma
is accompanied by elevated Treg levels [187], and this suggests that the regulation of
dormancy imposed by Tregs is tumor-type specific and warrants further investigation. In
the context of CSCs, the interaction between CSCs and Tregs is mainly achieved through
the secretion of chemokines and cytokines to facilitate recruitment of Tregs into TIME.
CCL1, CCL2, and CCL5 are the main chemokines released by CSCs. CCL1 mediates the
migration of Tregs to SOX2+ breast cancer cells [188], and CCL2–CCR4 and CCL5CCR5
binding are responsible for the attraction of Tregs in glioblastoma and ovarian cancer,
respectively [189,190]. In addition, elevated expression of IDO1 and TGF-β originating
from CSCs also accounts for the recruitment of Tregs [191,192]. Thus, the above findings
regarding the crosstalk between T cells, dormant cancer cells, and CSCs are centered around
strategies to evade immunosurveillance or attenuate cytotoxic capacity. The underlying
mechanism still warrants further investigation and enrichment to guide effective target
strategies to overcome the immunosuppressive effect and control this detrimental cancer-
cell subpopulation.

4. Discussion

CSC and dormant subpopulations within primary lesions or metastatic sites account
for several detrimental properties of malignancies, leading to treatment failure and eventu-
ally to the most devastating outcome. Although they are functionally and phenotypically
similar, and sometimes confused into one concept, CSCs and dormant cancer cells can
hardly be mixed into one. As discussed above, CSCs and dormant cancer cells share
overlapping characteristics, yet essential distinctions exist between them, thus highlighting
that heterogeneity is also present in the CSC population, both in the dormant and rela-
tive proliferative state. However, the resistance of CSCs to chemotherapy and DTCs in a
dormant state evade pressure from genotoxic agents, radiotherapy, and other biological
interventions. This calls for urgent development of effective strategies to eradicate them,
preventing occult lesions from developing into occult metastases. The striking similarities
shared between CSCs and dormant cancer cells will provide novel co-targets in the near
future. In addition, the interaction between dormant cells and MSCs, the most prominent
stem cells, within the most commonly occurring metastatic site in the bone enrich numer-
ous dormancy-inducing signals, and this enrichment occurs mainly through intercellular
communication mediated by miRNA-containing exosomes and direct regulation of TGF-β
and BMP7 in a paracrine manner. The dormancy-regulating capacity of MSCs further un-
ravel the “stemness force” in balancing local tumor initiation and progression. As the most
complex and crucial factor in modulating CSC and dormancy, the immune components
have been widely reported for their dual regulatory role in the crosstalk between local
TIME and CSCs and dormant cancer cells. Thus, the underlying mechanism should be
elucidated and summarized. This would be of great significance in enriching the knowl-
edge on the eradication of CSCs and reverse modulation of TIME into a tumor-suppressive
one under the delicate mechanisms exerted by CSCs, as well as identifying the potential
awakener leading to tumor re-initiation.

This review sheds light on analogues between cancer stemness and dormancy, and
further research is warranted for the development of effective therapeutic avenues through
several shared targets, which may potentially “achieve two aims at once” in the near
future. In addition, this review is the first to list the immune components that have been
reported to exert simultaneous regulation of CSCs and dormancy; thus, it may inspire
future strategies for overcoming these tumor promoters.
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166. Borst, J.; Ahrends, T.; Bąbała, N.; Melief, C.J.; Kastenmüller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat.
Rev. Immunol. 2018, 18, 635–647. [CrossRef]

167. Walker, L.S. Treg and CTLA-4: Two intertwining pathways to immune tolerance. J. Autoimmun. 2013, 45, 49–57. [CrossRef]
168. Tanaka, A.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017, 27, 109–118. [CrossRef] [PubMed]

http://doi.org/10.3389/fimmu.2018.01869
http://www.ncbi.nlm.nih.gov/pubmed/30150991
http://doi.org/10.1002/cyto.a.22302
http://www.ncbi.nlm.nih.gov/pubmed/23650273
http://doi.org/10.1111/j.1600-065X.2006.00457.x
http://doi.org/10.3389/fimmu.2019.00909
http://www.ncbi.nlm.nih.gov/pubmed/31134055
http://doi.org/10.1016/j.smim.2014.02.007
http://doi.org/10.1038/cmi.2016.26
http://doi.org/10.1002/eji.201344272
http://doi.org/10.1172/JCI121227
http://doi.org/10.1016/j.it.2010.04.002
http://doi.org/10.1158/1078-0432.CCR-09-2730
http://doi.org/10.4049/jimmunol.1301342
http://doi.org/10.1186/s12885-018-4389-3
http://www.ncbi.nlm.nih.gov/pubmed/29699516
http://doi.org/10.1038/s41586-019-1410-1
http://doi.org/10.1089/scd.2011.0660
http://doi.org/10.1016/j.cell.2013.02.021
http://doi.org/10.1016/j.canlet.2013.07.038
http://doi.org/10.1186/1476-4598-13-244
http://www.ncbi.nlm.nih.gov/pubmed/25373310
http://doi.org/10.1038/s41586-021-03614-z
http://www.ncbi.nlm.nih.gov/pubmed/34079127
http://doi.org/10.1016/j.cell.2016.02.025
http://www.ncbi.nlm.nih.gov/pubmed/27015306
http://doi.org/10.1038/s41577-020-0306-5
http://www.ncbi.nlm.nih.gov/pubmed/32433532
http://doi.org/10.1038/nri3839
http://www.ncbi.nlm.nih.gov/pubmed/25998963
http://doi.org/10.1016/j.immuni.2019.10.009
http://www.ncbi.nlm.nih.gov/pubmed/31810883
http://doi.org/10.1182/blood-2018-04-843714
http://doi.org/10.1038/s41577-018-0044-0
http://doi.org/10.1016/j.jaut.2013.06.006
http://doi.org/10.1038/cr.2016.151
http://www.ncbi.nlm.nih.gov/pubmed/27995907


Cells 2021, 10, 2826 24 of 25

169. Deng, L.; Zhang, H.; Luan, Y.; Zhang, J.; Xing, Q.; Dong, S.; Wu, X.; Liu, M.; Wang, S. Accumulation of foxp3+ T regulatory cells
in draining lymph nodes correlates with disease progression and immune suppression in colorectal cancer patients. Clin. Cancer
Rese. 2010, 16, 4105–4112. [CrossRef]

170. Schuler, P.J.; Harasymczuk, M.; Schilling, B.; Saze, Z.; Strauss, L.; Lang, S.; Johnson, J.T.; Whiteside, T.L. Effects of adjuvant
chemoradiotherapy on the frequency and function of regulatory T cells in patients with head and neck cancer. Clin. Cancer Res.
Off. J. Am. Assoc. Cancer Res. 2013, 19, 6585–6596. [CrossRef] [PubMed]

171. Szekely, B.; Bossuyt, V.; Li, X.; Wali, V.; Patwardhan, G.; Frederick, C.; Silber, A.; Park, T.; Harigopal, M.; Pelekanou, V.; et al.
Immunological differences between primary and metastatic breast cancer. Ann. Oncol. 2018, 29, 2232–2239. [CrossRef]

172. Ji, L.; Qian, W.; Gui, L.; Ji, Z.; Yin, P.; Lin, G.N.; Wang, Y.; Ma, B.; Gao, W.-Q. Blockade of β-Catenin–Induced CCL28 Suppresses
Gastric Cancer Progression via Inhibition of Treg Cell Infiltration. Cancer Res. 2020, 80, 2004–2016. [CrossRef]

173. Zappasodi, R.; Sirard, C.; Li, Y.; Budhu, S.; Abu-Akeel, M.; Liu, C.; Yang, X.; Zhong, H.; Newman, W.; Qi, J.; et al. Rational design
of anti-GITR-based combination immunotherapy. Nat. Med. 2019, 25, 759–766. [CrossRef]

174. Barbi, J.; Pardoll, D.; Pan, F. Treg functional stability and its responsiveness to the microenvironment. Immunol. Rev. 2014, 259,
115–139. [CrossRef]
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